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Abstract: This paper presents simulations of a conductance-based neural network implemented on a mixed hardware-
software simulation system. Synaptic connections follow a bio-realistic STDP rule. Neurons receive correlated
input noise patterns, resulting in a weights convergence in a confined range of conductance values. The
correlation of the output spike trains depends on the correlation degree of the input patterns.

1 INTRODUCTION

The first neurophysiology experiments on synaptic
plasticity were largely inspired by Hebb’s postu-
late (Hebb, 1949). Today, this postulate is often
rephrased in the sense that modifications in the synap-
tic transmission efficacy are driven by correlations in
the firing activity of pre- and postsynaptic neurons.
Spike-timing-dependent plasticity (STDP) describes
the adaptation temporal mechanisms (depression, po-
tentiation, saturation, ...) at the level of individual
spikes (Markram et al., 1997; Bi and Poo, 1998; Ab-
bott and Nelson, 2000; Feldman, 2000; Roberts and
Bell, 2002; Kepecs et al., 2002). Synapses with that
kind of plasticity were found in the cortex (Markram
et al., 1997), in hippocampus cells (Magee and John-
ston, 1997) and in cultured cells (Bi and Poo, 1998).
First studies showed the existence of Long Term Po-
tentiation (LTP) and Long Term Depression (LTD)
dependence, as functions of the synaptic weights to
the time difference between the pre- and postsynaptic
spikes.
More complex models were developed considering
phenomenons such as previous spikes effect for the
same neuron (Froemke and Dan, 2002), or the ef-
fect of synapse location (Rumsey and Abbott, 2003;
Froemke et al., 2005). STDP models can also have
different rules depending on the synaptic strength (Bi
and Poo, 1998; van Rossum et al., 2000). These
models are inspired by biophysical features. Con-
cerning functional aspects, STDP is known to en-
hance the connections strength for synchronized neu-
rons (van Rossum and Turrigiano, 2001; Song and
Abbott, 2001) and is supposed to play a role in neural
assembly synchronization (Singer and Gray, 1995).

Depending on the shape of the STDP model, the net-
work behavior can change, as the ratio between LTP
and LTD influences the weights convergence (Song
and Abbott, 2001).
Noise is considered as an interesting input in bio-
realistic neural networks as it helps modeling the
irregularity of real neuronal activity. Simulations
showed also the impact of noise inputs on the synap-
tic strength evolution when driven by STDP. In (Song
and Abbott, 2001), synaptic weights convergence is
bimodal. STDP is applied on synapses connecting
input noise spike patterns to a single spiking neuron.
These input spike trains can be cross-correlated and
have a Poisson distribution. With a different STDP
rule, where the potentiation (LTP) depends on the
synaptic strength, synaptic weights convergence is not
bimodal but confined in a limited range (van Rossum
et al., 2000).
Here we propose to explore, in a small neural net-
work, the effect of correlated input noise patterns
(one pattern per neuron) when a STDP rule is ap-
plied on synapses. The effect is evaluated on synap-
tic (between neurons) conductance distribution and
on correlation in neurons’ spike trains. Every neu-
ron is attacked by an input noise pattern. These noise
patterns have different levels of correlation. We use
conductance-based model of cortical neurons.
STDP features are usually explored in large scale
spiking neural networks, or in only one single spiking
neuron. In this work, we use a 6 neurons network
with a complex neuron model based on the Hodgkin
and Huxley formalism (Hodgkin and Huxley, 1952).
Neurons are implemented on analog VLSI circuits,
and the whole simulation system is a mixed hardware-
software instrumentation tool (see section 2). These
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same neural chips have already been successfully
used to simulate neural networks with STDP (Zou
et al., 2006b). The advantage of analog VLSI for
neural simulation is the speed of execution, it ensures
simulations in a biological real time. Furthermore,
hardware environment provides an electronic noise as
in biology living cells are in a noisy environment and
emulates in a way biological dispersion. In subsec-
tion 2.3, we present the STDP model we use and in
subsection 2.4 the method for correlating input noise
patterns. Then, in section 3, we show how hardware
parameters are related to biophysiological values. In
section 4, we present the simulation configuration,
tools to observe the distribution of synaptic weights
and the correlation of spikes, and we show results and
analysis of experiments. Finally, we discuss the spec-
ifications and the results of these experiments.

2 THE SIMULATION PLATFORM

We used for the simulation a hardware implementa-
tion of a conductance-based neuron model following
a Hodgkin and Huxley formalism. The implementa-
tion is done on analog VLSI circuits; the neural net-
work connectivity is driven by a custom hardware-
software system named PAX (Renaud et al., 2007).
This system is embedded on a computer through a
PCI interface board.

2.1 The Neurons Models

Analog VLSI circuits, model the neurons ionic cur-
rents, as described in the Hodgkin and Huxley for-
malism. An external capacitor connected to the cir-
cuits provides a voltage that is equivalent to the mem-
brane potential and ionic currents channels modulate
this potential. Four voltage-dependent ionic currents
are implemented:INa+ , IK+ , ILEAK and a modulating
slow voltage-dependent potassium currentIM. The
modeled neuron is the glutamate excitatory regular
spiking neuron (Connors and Gutnick, 1990). Hard-
ware neurons are characterized by their static pa-
rameters as time kinetics, potential offsets, conduc-
tance values (table 1), and by their functional fea-
tures as f(I) curves and spike-frequency adaptation
(see section 2.2). The neurons model parameter are
listed in table 1. m, n, mm in case of activation
and h in case of inactivation are state variables (s),
describing the state of ionic channels, defined by:
τ(VMEM)ds(t)

dt = s∞(VMEM)− s(t) with s∞(VMEM) =
1

1+exp(±
VMEM−VOFFSET

VSLOPE
)
.

The synapses conductance-based model is the kinetic

synapse model presented in (Destexhe et al., 1994).
It describes the synaptic strength as the duration of
postsynaptic receptors opening (AMPA receptors for
excitatory synapses). A pulse length represents the
conductance increase due to the release of transmit-
ters (Zou et al., 2006a).

Table 1: Ionic channels parameters for the implemented
model, relative to a membrane area of 0.00022cm2.

Leak ILEAK = gLEAK(VMEM −VEQUI)
gLEAK = 33nS, VEQUI = −80mV

Na INa = gNam3h(VMEM −VEQUI)
gNa = 11µS, VEQUI = 50mV
m : VOFFSET= −37mV, VSLOPE= 7.2mV
h : VOFFSET= −42mV , VSLOPE= −4.6mV

τ(m) = 0.03ms, τ(h) =
{

3.00msif VMEM>0
0.25msif VMEM<0

K IK = gKn4(VMEM −VEQUI)
gK = 1.1µS, VEQUI = −100mV
n : VOFFSET= −37mV, VSLOPE= 11.38mV
τ(n) = 3ms

Mod. IM = gMm(VMEM −VEQUI)
gM = 10nS, VEQUI = −100mV
mm: VOFFSET= −35mV , VSLOPE= 11.4mV

τ(mm) =
{

300msif VMEM<0
8msif VMEM>0

2.2 Neurons Functional Features

In the PAX system, values of stimulation currents
are electronic values that can differ from one neuron
to the other to trigger a same frequency. This phe-
nomenon is due to the mismatch and variations in the
VLSI circuits fabrication process. We use the f(I)
curves to benchmark the circuits and tune the simu-
lation parameters. The measured f(I) curves match
the software simulations of the corresponding model.
Differences exists concerning origin and scale val-
ues for the current range of the f(I) curves. Spike-
frequency adaptation shape observed on raster-plots
is consistent with biological data. These results are
detailed in (Lewis et al., 2006).

2.3 The Neural Network Connectivity

The STDP algorithm used is based on (Badoual et al.,
2006) biophysical model equation:

+(ω ji −ωLTD)∑
l

Q[t − t̃i(t)]δ(t − t j ,l)
]

(1)

whereω ji is the synaptic weight from neuron j (presy-
naptic) to i (postsynaptic).ti,k and t j ,l are respec-
tively the sets of post- and presynaptic spikes times.
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P and Q are respectively the amount of LTP (potenti-
ation) and LTD (depression) change and are given by:
P(t) = A+exp(−t/τP) andQ(t) = A−exp(−t/τQ). εk
are functions taking into account spikes history of a
neuron and are given byε j = 1−exp[−(t− t̃ j(t))/τε j ]
andεi = 1−exp[−(t − t̃i(t))/τεi ]. ωLTP is the maxi-
mal soft bound whileωLTD is the minimal soft bound.
t̃ j(t) is the neuron j last spike time andt̃i(t) is the neu-
ron i last spike time.
The STDP equation (1) is based on a precise biophys-
ical model. Parameters for exponential constants are
A+ = 0.1 concerning potentiation andA− = 0.005 for
depression. Time constants areτP = 14.8ms for po-
tentiation exponential of P andτQ = 33.8ms for de-
pression exponential for Q. The eligibilityε (influence
of previous spikes of a same neuron), has an expo-
nential time constant for the presynaptic neuronτε j =
28ms and for the postsynaptic neuronτεi = 88ms
(Froemke and Dan, 2002). This takes into account
features as frequency dependence and spike triplets.
The STDP algorithmic implementation and parame-
ters are detailed in (Zou, 2006).

2.4 Correlated Input Noise Patterns

The noise inputs applied to neurons are coded as pat-
terns generated from a Poisson distribution and cor-
related with a defined degree. The Poisson distribu-
tion X is obtained as follows:X = {x1, ..xn}/xi =

N(0,1).
√

m−1/2+m where N(0,1) is a normal dis-
tribution, m the average. X is converted in an absolute
time pattern Y:X = {x1, ..xn}→Y = {y1, ..yn}:

Y : yi =
i

∑
j=1

x j (2)

Noise input patterns are generated with one event
around each Y event. The time-lap between the event
Y and the pattern event is given byε:

ε = N(0,1).(α−1).
T
6

(3)

where N(0,1) is a normal distribution, T is the average
period andα ∈ [0,1] is the correlation coefficient.

3 FIXING HARDWARE/BIOLOGY
EQUIVALENCES

The stimulation currents applied to neurons are not
directly linked to the biophysical values. The possi-
ble values are in the range 0 to 4095. We have the
same inconvenience with synaptic conductances. In
the hardware, the values are coded as integers that

can vary from 0 to 255. To find for each VLSI neu-
ron the correspondence with biophysical values, we
developed a neuron model using the software NEU-
RON (Hines and Carnevale, 1997) corresponding to
the VLSI neuron model. The morphology of the neu-
ron is a cylinder of 1 section, diameter 96 nm and
length 73 nm. Having equivalent models, we devel-
oped a protocol to define the biophysical equivalent
to the digital parameters values used in PAX.

3.1 Determining Synaptic
Conductances in the Pax System

We extracted from the measurements on the PAX sys-
tem a rule for converting a PAX synaptic strength
value in a biophysical corresponding conductance
value and conversely. We created a two neurons net-
work (figure 1). Neuron A was stimulated by a cur-
rentIA that implies oscillations at about 8.5 Hz. Neu-
ron B is stimulated by a currentIB that implies os-
cillations at about 3 Hz. Then an excitatory synapse
ωAB is created connecting A to B with A presy-
naptic to B. The synaptic strength increases from 0
to 255 for PAX, 0.02µS for NEURON. For each
weight, neurons frequenciesfA and fB are measured
( fA doesn’t change for NEURON and is near con-
stant for PAX with standard deviation equal to 0.4
and mean value 8.7 Hz). Equations (f (ω) = a.ω +
b) of the straight line fitting the experiments points
are calculated for both measurements on PAX and
on NEURON. The rules (ωPAX = a.ωNEURON+ b ;
ωNEURON = a′.ωPAX + b′) give the correspondence
between the biological model and the hardware pa-
rameter. Results are:ωNEURON = (0.0943ωPAX +
3.0562)/1070.33 andωPAX = (1070.33ωNEURON−
3.0499)/0.0943 .

Figure 1: Network of two neurons A and B stimulated by
constant currents, respectivelyIA andIB. ωAB is the synaptic
strength of the excitatory synapse connecting A to B.

3.2 Determining Stimulation Currents
in the Pax System

The aim here is to extract from measurements a cor-
respondence between a PAX stimulation current value
and its biophysical equivalent. The principle is to ex-
cite a neuron B by a presynaptic neuron A. A is stim-
ulated as in previous section with a static current. The
weight of synapse connecting A to B is also constant.
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The B stimulation current varies in a range such that:
the lowest value doesn’t make B oscillating and the
highest value synchronizes B to A firing. Data col-
lected for each neuron B’s stimulation currentIB are
frequency of B fB and A’s frequencyfA (constant).
IA was chosen to have a frequencyfA = 8.5Hz. Us-
ing PAX this frequency is approximate (for 10 trials:
m=8.7, SD=0.4) due to electronic noise. The simu-
lations duration is 30 s. Frequencies are calculated
between 2 s and 29 s. The equivalent synaptic weight
is calculated using the rule defined in subsection 3.1.
The correspondence is not exactly linear between fre-
quency and current, but the rule that we establish pro-
vides a good approximation of the biophysical val-
ues corresponding to PAX parameters. This process
has to be repeated for every neuron because of their
intrinsic variability. We obtain for every PAX neu-
ron, a correspondence rule:IPAX = a.INEURON+band
INEURON= a′.IPAX+ b′. For instance, the rule giving
the PAX neuron number 2’s biophysical current value
is: INEURON= −0.01625IPAX+36.363.

4 EXPERIMENTS AND RESULTS

4.1 Experiment: STDP Simulation with
Correlation

The PAX system, including the VLSI neurons’ was
used for the experiments. The system is embedded
in a computer, through a PCI interface, that computes
plasticity algorithms. The computer features are: pro-
cessor Intel Pentium 4R©, dual core, 2.6GHz, cache:
512 Ko, SDRAM: 1Go. The operating system is the
UbuntuR© Linux system. We ran a series of simula-
tions with STDP as described in section 2.3 and noise
input patterns as described in subsection 2.4. The sim-
ulated neural network comprises six excitatory neu-
rons with all-to-all connectivity. All connections fol-
low a STDP rule.ωLTP is fixed in order to have all
neurons presenting a non-bursting activity bursts. The
experiment will help evaluating the STDP effects in
this small excitatory network when correlated noise
patterns are stimulating the neurons.

Network and Neurons Features. The neurons are
stimulated by constant currents chosen from f(I)
curves to maintain the membrane potential under the
firing threshold. Each neuron receive additional stim-
ulation: an input noise pattern (rate 5Hz) tuned in or-
der to trigger an oscillating frequency lower than 5Hz
(mean value 3Hz). All currents are in the biological
range [0.4nA-0.5nA].

Initial synaptic weights are either null or randomized
using an uniform law. Corresponding randomized
conductances values, using the correspondence rules
determined in section 3.1, are in the range [0nS-20nS]
which corresponds to numerical values in the range
[0-180]. Furthermore, a neuron receives synaptic in-
puts from all other neurons and projects its output to
all synapses of the other neurons. The simulation lasts
360 seconds. When a neuron spikes, all the related
synaptic weights are recalculated using the STDP al-
gorithm. For data analysis, each weight change is
recorded together with the timing. For each neuron,
all the timing of its spikes are also recorded for further
analysis.

4.2 Analysis Tools

Weight Histogram. The method used to assess
weight convergence is the building of a histogram of
weights distribution (see top line of figure 2). For this
experiment, the encoded maximum weight value is
180. We divide the weight axis into 36 bins, thus each
section corresponds to an interval of 5. The weights
distribution is then calculated at the end of the simu-
lation and normalized.

Spike Correlation Histogram. To evaluate the cor-
relation between the neurons output firing patterns, a
correlation histogram is defined (see bottom line of
figure 2). The method is to divide the time axis into
sections, each section corresponding to 10 ms. Spikes
occurring in each time section are accumulated. As
we have 6 neurons, the maximum count per section
is 6 if every neuron spikes in that 10 ms window, ex-
cept if a neuron spikes 2 times in the same window.
We don’t consider that exception here. For every pos-
sible spikes count (here from 1 to 6), the number of
sections having this value is calculated. Both axis are
then normalized. This provides a graph showing the
spikes distribution relative to a minimal time window.
If the spikes of different neurons are well correlated
in that time window, distribution tend to 1, whereas
distribution will be closer to 0 for uncorrelated activ-
ity.

4.3 Results Analysis

As we can see on the bin histogram of figure 2A,
the weights after STDP are distributed in a limited
range when the correlation of input patterns is weak
(α < 0.5, α from equation 3). When the input cor-
relation grows, extrema values of the weights appear
(e.g. withα = 0.6 figure 2C). When the input correla-
tion is maximum (α = 1) then the weights distribution
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Figure 2: Simulation of input correlation’s effect on the synaptic weights convergence and the spikes correlation. Time
simulation lasts 360 s with initial weights randomized and afrequency of input noise around 5Hz.Top line: Weight histograms
for a simulation with input correlation of 0.35 (A), 0.6 (C) and 1 (E).Bottom line: Correlation histograms for a simulation
with a time window of 10 ms. The input correlations are 0.35 (B), 0.6 (D) and 1 (F).

is bimodal (figure 2E). At the same time, the correla-
tion histogram shows that correlation of output spikes
in a window time of 10 ms is weak when correlation
input hasα < 0.8 (figure 2B and D), grows whenα
is higher. Up to a high correlation whenα = 1 (fig-
ure 2F).
In (van Rossum et al., 2000), where the STDP rule
has no soft bound (ωLTP andωLT D) and where LTP
depends on the synaptic strength (ω ji ), the weights
always converge in a limited range. In (Song et al.,
2000), where the soft bound is introduced but with
no LTP depending onω ji , the weights systematically
show a bimodal convergence.
Our STDP model was simulated in (Zou and Des-
texhe, 2007) in single neuron configuration. In that
case, all weights converge into a limited range.
The experiments we presented showed that this same
STDP rule applied to a 6-excitatory neurons network
lead to more complexe figures, mixing bimodal and
range limited weights convergence.

5 DISCUSSION AND
CONCLUSIONS

Using analog VLSI circuits for computational neuro-
science is a performant solution for running simula-
tions at biological real time. The system used can also
be interfaced with real biological neurons to create a
hybrid neural network (Le Masson et al., 2002). One
inconvenient, as seen in section 3, is that the tuning of
some parameters depends on the fabrication for pa-
rameters. The correspondence rules developed pro-
vides an estimation of biophysical values and only

in a short range because of non-linearities. However,
benchmarks showed us the network patterns were re-
spected by such a simulation tool (Zou et al., 2006a).
In our experiments, we showed that the weights dis-
tribution convergence depends on correlation of input
noise patterns. This convergence mixes bimodal con-
vergence and range confinement convergence. This
phenomenon is not covered by other STDP rules. We
also showed that the input correlation degree influ-
ences the correlation in neurons spikes. For the next
PAX system generation, STDP computation will be
embedded in the hardware system. A more important
number of neurons will be available with available in-
hibitory neurons. Experiments will be continued on
more complex neural networks.
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