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Abstract: Falls are one of the biggest concerns of elderly people. This paper addresses a fall detection system which 
uses an accelerometer to collect body accelerations, ZigBee to send relevant data when a fall might have 
happened and a neural network to recognize fall patterns. This method presents improved performance 
compared to traditional basic-threshold systems. Main advantage is that fall detection ratio is higher on 
neural network based systems. Another important issue is the high immunity to events not being falls, but 
with similar patterns (e.g. sitting in a sofa abruptly), usually confused with real falls. Minimization of these 
occurrences has big influence on the confidence the user has on the system. 

1 INTRODUCTION 

Aging of population is a well-known problem in 
developed countries. Nowadays, elderly people (+65 
years old) represents in Spain more than 16% of the 
population (Eurostat, 2007). Falls are one of the 
major fears of the elderly and their relatives. Indeed, 
some authors estimate the amount of falls of people 
aged over 75 to be at least 30 percent per year 
(Sixsmith and Johnson, 2004). In the end, people’s 
concern about falls and whether there will be 
someone there to help them in case of an emergency, 
prevent them to age at home (Rodriguez et al, 2005).  
As a result, people have to move to residences, 
usually causing negative effect in their health and 
happiness and resulting in high costs to the 
individual, their family or the Social Welfare 
System. 

Fortunately, many initiatives are going on in 
order to increase the time people can stay at home. 
We will further see many fall detection systems 
enabling people to receive quickly assistance even 
when they are not able to request the assistance by 
themselves (e.g. immobilized or unconscious). Also, 
combination of these systems with telemedicine 
allows closer monitoring or collaboration of various 
experts in the diagnoses (Tunstall web, 2007). 

Various methods have been described in order to 
detect falls in the elderly. Those based in a sensing 
infrastructure - infrared cameras (Alwan, et al., 
2006), vision systems (Williams et al., 1998) or 
smart floors (Williams et al., 1998) - can be hardly 

used in many cases. We find wearable systems more 
appropriated in real scenarios because people refuse 
to have cameras everywhere in their homes and 
systems are much more expensive.  

Inertial elements are mostly used for mobile 
monitoring, but still the perfect detector does not 
exist. Main reason is the difficulty in modelling a 
fall, it can happen in many different ways; it will not 
always be the typical big impact followed by 
inactivity and horizontality. Williams et al. use a 
shock sensor and a tilt switch to measure the 
inclination after the impact (Williams et al., 1998). 
Doughty et al. also use two sensors to perform the 
same two-stage-analysis (Doughty et al, 2000), 
which moreover is concreted in a commercial gadget 
from Tunstall (Nait-Charif and McKenna, 2004).  
Noury refines the procedure using an accelerometer 
to detect the shock, also a tilt switch, and adding a 
vibration sensor to estimate the physiological 
activity (Noury, 2002). Of course, the more 
variables measured, the more accurate the detection 
can be, but also the more complicated and expensive 
the hardware will be. Many actual works propose 
just using accelerometers to carry out the full 
detection (Noury, 2002; Degen et al, 2005; Chen et 
al., 2005). Main reasons are their low power 
consumption, reduced cost and versatility detecting 
different events -shocks, inclination and activity-. 
The devices presented in these works perform 
satisfactory fall detection: more of 80% of falls are 
correctly detected (Noury, 2002). 
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2 SYSTEM DESCRIPTION 

Users must find fall detection systems trust-worthy 
and efficient in order to use them. Systems which 
detect all falls but generate many false alarms make 
users unconfident about it. Moreover, if we consider 
the difficulty of distinguishing between some kind of 
falls and ordinary movements in elderly people’s 
life, threshold systems (those that generate an alert 
when acceleration rise above a fixed value) become 
not be reliable enough (Noury, 2002). 

Figure 1.a. shows tri-axial acceleration when a 
person has a sideward fall. On the other hand, Figure 
1.b. shows accelerations when a person sits down on 
a sofa abruptly. Both figures were obtained with a 
device which measures triaxial accelerations, hanged 
around the neck. 

Figure 1a: Acceleration in three axes in a sideward fall. 

 
Figure 1b: Acceleration in three axes while sitting abruptly 
in a sofa.  

As we can see, both figures have similar 
acceleration peaks being also the shapes pretty 
similar.  

Our solution aims to distinguish falls from 
movements that have similar acceleration patterns 
not being falls using neural networks; that is to say, 
separate occurrences into true and false falls. 

2.1 Blocks Diagram 

The fall detector consists of a mobile device with an 
inertial sensor which is able to communicate through 
a ZigBee network. The system also needs a 
computer that analyzes data using a neural network. 
Figure 2 shows the portable device blocks: battery, 
sensor, microcontroller (µC), interface and Zigbee 
transceiver. Reduced size and low power 
consumption had been considered in the design 
process of every block. 
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Figure 2: Blocks of the portable device. 

The chosen sensor is MMA7260Q Freescale 
accelerometer because of its wide input voltage 
range (2,2 V - 3,6 V), current consumption (typically 
less than 500 µA and 3 µA in sleep mode) and 
reduced size (6x6x1,45mm). It also has three analog 
outputs that give the acceleration value in axis X, Y 
and Z. Its sensitivity is configured digitally into 
some ranges (1,5 g; 2 g; 4 g or 6 g). As some falls 
are above 4 g, our application uses the maximum 
range (6 g) and minimum sensitivity (200 mV/g). 

The chosen microcontroller is Microchip’s 
PIC16F688. It has eight A/D channels that can be 
configured to 10 bits. As well as working within a 
wide voltage supply range (2 V - 5,5 V), it also has 
very low current consumption (800 µA in active 
mode and 1 nA while sleeping). 

Regarding communications, we discarded the 
development of a proprietary network for 
interoperability reasons. Other standard wireless 
protocols such as Bluetooth or WiFi consume too 
much energy as they are intended for higher data 
rates. We decided to use ZigBee because its 
adequate data rate (250 kbps), security (128 bits 
AES encryption), low latency (30 ms to join and 15 
ms to access the network) and energy efficiency. Its 
interoperability with other potential applications 
(home control and automation), future projection of 
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the protocol, and its consequent cost reduction were 
other strategic reasons behind our decision (Geer, 
2005). 

The chosen ZigBee chip is ETRX2 from 
Telegesis. This is a ZigBee module on the  2,4 GHz 
ISM band based upon the Ember’s EM250 chip. We 
used the development environment proposed by 
Ember to develop a ZigBee-compliant network 
following mesh topology (ZigBee Alliance, 2007). 
The chip consumes 30 mA when receiving or 
transmitting data and 10 µA in sleep mode. As we 
will use the radio exceptionally, just when are 
reasonable indications about a fall (when a threshold 
is exceeded), average power consumption due to 
communication is reduced. 

The user interface consists of a single button and 
a buzzer for user interaction. Figure 3 shows the 
mobile device prototype. Its size, including battery, 
is 58x36x16 mm and it weights 30 gr. 

 

 
Figure 3: Mobile device prototype. 

In order to make the device useful is extremely 
important to keep it on working long time using the 
same set of batteries. That is why we gave 
preference to power-conservative and size of 
batteries among other designing requirements like 
transmission rate or processing time. Precise battery 
life estimation is very difficult because it will 
depende on the number of false alarms generated; 
every time the threshold is exceeded it sends data via 
ZigBee. Anycase, with the battery used (3 V, 1000 
mA·h), it can last for several months daily sending 
several false falls to analize.  

2.2 Software 

As we said before, we designed a neural net to detect 
falls also aiming to minimize the number of false-
falls compared to simple threshold based detectors. 

 
 
 

Figure 4: System’s simplified flow diagram. 

In our case, we use an acceleration threshold to 
get the “acceleration pattern” of the possible fall to 
be studied. Every 32 ms the device stores the current 
acceleration measurements. It keeps a buffer with 
the last 5 samples (t1 ≈ 160 ms). If the threshold is 
exceeded, a possible fall might have happened. Then 
we gather 25 samples more (t2 ≈ 800 ms) and all the 
data (960 ms) is sent via ZigBee to the PC. As we 
will see in section 3.2, those times and the threshold 
have been empirically set through acceleration 
pattern analysis of many falls and false-falls.  

The “window time” (tw=t1+t2) represents the time 
that the neural net analyzes the data in order to 
relation the detected event to a true fall. 
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Figure 5: Window time. 

In case the neural network detects a real fall, the 
PC asks the mobile device to buzz for one minute. 
During this time, the user can cancel the fall 
situation pressing the button; the user is okay and 
does not need assistance. In other case, an alert is 
sent to an assistance center asking for help. 

3 NEURAL NETWORK DESIGN 

We have chosen MLP (MultiLayer Perceptron) 
architecture because is the best neural network for 
pattern classification (Del Hoyo Alonso, 2003). 
MLPs are feedforward neural networks trained with 
the standard backpropagation algorithm. They are 
networks that learn how to transform input data into 
a desired response. As they are supervised, they 
require a set of known patterns with known 
responses to get trained. With one or two hidden 
layers, they can approximate virtually any input-
output map. They have been shown to approximate 
the performance of optimal statistical classifiers in 
difficult problems (Neurosolution web, 2007). 

Every acceleration point, within window time, is 
considered as input data to train neural network to 
distinguish between true and false falls (figures 1a 
and 1b). That is to say, if an event is represented by 
30 samples for each axis (X, Y and Z), the number 
of inputs will be 90 (30x3). Consequently, it is the 
same as we give the net the whole graph to compare 
and classify.   

We have decided to train the net with one hidden 
layer. To check if our choice is convenient or not, 
we have designed a test bench with different 
numbers of neurons, studying the absolute error in 
each case. To accelerate the training, we have 
chosen a bipolar sigmoid activation function for 
neurons of the hidden layer. The activation function 
of the output neuron is unipolar sigmoid so the 

output looks like a binary signal (1 = TRUE FALL; 
0 = FALSE FALL).  

The suitable number of neurons of the hidden 
layer is obtained doing simulations of different 
neural nets. Finally, we choose the one which 
produces the minimum absolute error. To reduce the 
number of simulations and to get patterns from the 
inputs able to generalize the results, we have defined 
a requirement: the number of inputs is greater than 
the number of neurons of the hidden layer.  

3.1 Input Data Harvesting 

Ten people of different ages, weight, height and sex 
imitated the movements of elderly people to create a 
data base of falls.  

Table 1: Volunteers’ characteristics. 

Age range 25-40 years 
Weight range 44-105 kg 
Height range 1.58-1.90 m 

 
To get the data as close to reality as possible, the 

volunteers had the acceleration detector hanged 
around the neck. Volunteers were asked to simulate 
true and false falls situations.   

 
TRUE falls: 

Every volunteer falls down 10 times on a 
straw mat. The fall intensity changed (rough 
and soft) and the way of falling down too 
(side, front, backwards), hitting the ground 
with their back, hip, knees, etc.  

 
FALSE falls: 

Every volunteer flings himself down 5 times 
on the center and 5 times on the side of a sofa.  
Every volunteer stumbles and hits a wall 
without falling down 5 times.  
Every volunteer walks around for 2 minutes 
doing normal movements like sitting up and 
down in chairs, picking up things, etc. 

 
During the test, the fall detector continuously 

samples the three acceleration axes each 32 ms 
sending them to a PC working as a data logger. In 
the end, we get a file with all the acceleration 
samples in axis X, Y and Z for every volunteer. The 
resulting data base consists of 99 samples of true 
falls (we had one error while collecting data) and 
150 of false falls.  
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3.2 Input Data Analysis 

First of all, data analysis has determined the window 
time length. After studying all the falls, we decided 
that an event could be represented with 30 samples 
(tv = 960 ms; t1 = 160 ms; t2 = 800 ms). This means 
that the microcontroller has to store always in 
memory the last five samples to send, in case the 
acceleration threshold is exceeded, the event to the 
PC to be analyzed.  

With the window time selected, the number of 
inputs to the neuronal network is set to 90. In order 
to reduce the number of network entries -and 
consequently the network size- we have done a PCA 
(Principal Component Analysis). This method lies in 
referencing input data to a new origin and coordinate 
base.  

In the new reference, the main components are 
chosen to be those with the maximum variance 
among samples (those with the highest covariance).  

Therefore, if we take the samples representing 
more than 95% of covariance, the number of input 
will be reduced without losing significant 
information. This leads to suppose that the greater is 
the variance of an input, the more information it 
gives. 

The acceleration threshold was decided 
experimentally. At first, guided by most of the 
bibliography (Chen et al., 2005), we chose a 3 g 
value. Then 97 out of 99 true falls and 121 out of 
150 false falls surpassed the selected threshold. 

Missing true falls is far worse than over-
detecting false falls, thus we reduced the threshold to 
2 g to prevent losing any fall. As expected, we got 
all the falls, but the number of false falls which 
surpassed the threshold, increased to 241 because 
even normal movements triggered the detection 
process. 

After using PCA analysis with the 340 events (99 
falls plus 241 false-falls), the number of inputs was 
reduced from 90 to 55, keeping the 95% of the 
covariance of the original data.  

3.3 Network Performance 

The network was trained used Levenberg-Marquardt 
algorithm (Neural-toolbox in Matlab).  
 We trained different MLP architectures 55xMx1 
(being M the number of neurons in the hidden layer, 
5≤M≤35). We repeated this process ten times in 
order to ensure the network design and its 
performance. Each test randomly selected 80% of 
the events for training and 20% for validating. That 
is to say, from the whole 340 events (99 falls plus 

241 false-falls), the validation group had 20 true 
falls and 48 events that could be confused with falls.  
In the end, a neural net with 22 hidden neurons was 
able to classify falls correctly. 
 When interpreting the neural net output give 
precedence to the fall detection. Thus, we decided 
that if the output is above or equal to 0.3, a fall is 
detected. On the other hand, if the output is below 
0.3, the analyzed event was not a true fall.  
In table 2 we can see the network performance for 
the ten tests. 

Table 2:  Validation group detection results. 

  

Network fall 
detection / 
Fall events 

Network fall 
detection / 

False-fall events

Test 1 20 / 20 0 / 48 

Test 2 20 / 20 0 / 48 

Test 3 20 / 20 1 / 48 

Test 4 20 / 20 0 / 48 

Test 5 18 / 20 1 / 48 

Test 6 20 / 20 1 / 48 

Test 7 16 / 20 1 / 48 

Test 8 18 / 20 0 / 48 

Test 9 17 / 20 1 / 48 

Test 10 15 / 20 0 / 48 
 
 We can see how the network is able to detect 
92% of all the falls and filter up 99% of the events 
that can be confused with falls.  
 In figure 6, we show the network output we got 
for the validating group in third test. 

 
Figure 6: Network output for the third validation group. 
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4 CONCLUSIONS 

The final results using MLP neural networks for fall 
detection have been quite satisfactory. The 
application classifies correctly 92% of the validation 
group falls, better performance than other detection 
methods: 80% in (Chen et al., 2005). Moreover, the 
number of false alarms is drastically reduced to 1%, 
which leads to enhance users trust on the fall 
detector. Nevertheless, a more extensive study with 
more users being also elderly has to be developed in 
order to gather more data and confirm the results.  

Although the portable device can run for months 
with the same battery, the system needs a computer 
to analyze all the data. In order to reduce costs, it is 
possible to analyze the pattern remotely. As the 
amount of exchanged data is reduced, it could be 
sent via ADSL (if the person is at home), GPRS or 
even SMS to a service center. Anyhow our 
application gets better performance than others 
embedded in a microcontroller but a higher cost and 
complexity. To overcome this, we are currently 
minimizing the neural network size so it can run in a 
microcontroller or FPGA.  
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