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Abstract: In this paper, we propose a novel classification system for ECG signals based on particle swarm 
optimization (PSO). The main objective of this system is to optimize the performance of the support vector 
machine (SVM) classifier in terms of accuracy by automatically: i) searching for the best subset of features 
where to carry out the classification task; and ii) solving the SVM model selection issue. Experiments 
conducted on the basis of ECG data from the MIT-BIH arrhythmia database to classify five kinds of 
abnormal waveforms and normal beats confirm the effectiveness of the proposed PSO-SVM classification 
system. 

1 INTRODUCTION 

The recent literature reports different and interesting 
methodologies for the automatic classification of 
electrocardiogram (ECG) signals (e.g., de Chazal et 
Reilly, 2006, and Inan et Giovangrandi, 2006). 
However, in the design of an ECG classification 
system, there are still some open issues, which if 
suitably addressed may lead to the development of 
more robust and efficient classifiers. One of these 
issues is related to the choice of the classification 
approach to be adopted. In particular, we think that, 
despite its great potential, the SVM approach has not 
received the attention it deserves in the ECG 
classification literature compared to other research 
fields. Indeed, the SVM classifier exhibits a 
promising generalization capability thanks to the 
maximal margin principle (MMP) it is based on 
(Vapnik, 1998). Another important property is its 
lower sensitivity to the curse of dimensionality 
compared to traditional classification approaches. 
This is explained by the fact that the MMP makes 
unnecessary to estimate explicitly the statistical 
distributions of classes in the hyperdimensional 
feature space in order to carry out the classification 
task. Thanks to these interesting properties, the SVM 
classifier proved successful in numerous and 

different application fields, such as 3D object 
recognition (Pontil et Verri, 1998), biomedical 
imaging (El-Naqa et al., 2002), remote sensing 
(Melgani et Bruzzone, 2004 and Bazi et Melgani, 
2006). Turning back to ECG classification, other 
issues which can be identified are: 1) feature 
selection is not performed in a completely automatic 
way; and 2) the selection of the best free parameters 
of the adopted classifier is generally performed 
empirically (model selection issue). 

In this paper, we present in a first step a thorough 
experimental exploration of the SVM capabilities for 
ECG classification. In a second step, in order to 
address the aforementioned issues, we propose to 
optimize further the performances of the SVM 
approach in terms of classification accuracy by 1) 
automatically detecting the best discriminating 
features from the whole considered feature space 
and 2) solving the model selection issue. The 
detection process is implemented through a particle 
swarm optimization (PSO) framework that exploits a 
criterion intrinsically related to the SVM classifier 
properties, namely the number of support vectors 
(#SV). 
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2 PROPOSED APPROACH  

2.1 Support Vector Machine (SVM) 

Let us first for simplicity consider a supervised 
binary classification problem. Let us assume that the 
training set consists of N vectors xi ∈ ℜ d (i =   1, 2, 
…, N) from the d-dimensional feature space X. To 
each vector xi, we associate a target yi ∈ {-1, +1}. 
The linear SVM classification approach consists of 
looking for a separation between the two classes in 
X by means of an optimal hyperplane that 
maximizes the separating margin (Vapnik, 1998). In 
the nonlinear case, which is the most commonly 
used as data are often linearly nonseparable, they are 
first mapped with a kernel method in a higher 
dimensional feature space, i.e., Φ(X) ∈ ℜd’ (d’> d). 
The membership decision rule is based on the 
function sign[f(x)], where f(x) represents the 
discriminant function associated with the hyperplane 
in the transformed space and is defined as: 

f(x) = w*⋅Φ(x) + b*  (1) 
The optimal hyperplane defined by the weight 

vector w* ∈ ℜd’ and the bias b* ∈ ℜ is the one that 
minimizes a cost function that expresses a 
combination of two criteria: margin maximization 
and error minimization. It is expressed as: 
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This cost function minimization is subject to the 

following constraints: 
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and 
 

0≥iξ ,   i = 1, 2, …, N  (4) 
 
where the ξi’s are slack variables introduced to 
account for non-separable data. The constant C 
represents a regularization parameter that allows to 
control the shape of the discriminant function. The 
above optimization problem can be reformulated 
through a Lagrange functional, for which the 
Lagrange multipliers can be found by means of a 
dual optimization leading to a Quadratic 
Programming (QP) solution, i.e., 
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under the constraints: 

0≥iα  for i = 1, 2, …, N (6) 

and 
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where α=[α1, α2,…, αN] is the vector of Lagrange 
multipliers and )( ⋅⋅,K  is a kernel function. The final 
result is a discriminant function conveniently 
expressed as a function of the data in the original 
(lower) dimensional feature space X: 
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The set S is a subset of the indices {1, 2, …, N} 
corresponding to the non-zero Lagrange multipliers 
αi’s, which define the so-called support vectors.  

As described above, SVMs are intrinsically binary 
classifiers. But the classification of ECG signals 
often involves the simultaneous discrimination of 
numerous information classes. In order to face this 
issue, different multiclass classification strategies 
can be adopted (Melgani et Bruzzone, 2004). In this 
paper, we shall consider the commonly used one-
against-all strategy.  

2.2 PSO Principles 

Particle swarm optimization (PSO) is a stochastic 
optimization technique introduced recently by 
Kennedy and Eberhart, which is inspired by social 
behavior of bird flocking and fish schooling 
(Kennedy et Eberhart, 2001). Similarly to other 
evolutionary computation algorithms such as genetic 
algorithms (GAs) (Bazi et Melgani, 2006), PSO is a 
population-based search method, which exploits the 
concept of social sharing of information. This means 
that each individual (called particle) of a given 
population (called swarm) can profit from the 
previous experiences of all other individuals from 
the same population. During the iterative search 
process in the d-dimensional solution space, each 
particle (i.e., candidate solution) will adjust its flying 
velocity and position according to its own flying 
experience as well as the experiences of the other 
companion particles of the swarm.  

Let us consider a swarm of size S. Each 
particle ) ,...,2 ,1(  SiPi =  from the swarm is 
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characterized by: 1) its current position d
i t ℜ∈)(p , 

which refers to a candidate solution of the 
optimization problem at iteration t; 2) its velocity 

d
i t ℜ∈)(v ; and 3) the best position d

bi t ℜ∈)(p  
identified during its past trajectory. Let d

g t ℜ∈)(p  
be the best global position found over all trajectories 
traveled by the particles of the swarm. The position 
optimality is measured by means of one or more 
fitness functions defined in relation to the considered 
optimization problem. During the search process, the 
particles move according to the following equations: 
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(10) 
where r1(⋅) and r2(⋅) are random variables drawn 

from a uniform distribution in the range [0, 1] so that 
to provide a stochastic weighting of the different 
components participating in the particle velocity 
definition. c1 and c2 are two acceleration constants 
regulating the relative velocities with respect to the 
best global and local positions, respectively. The 
inertia weight w is used as a tradeoff between global 
and local exploration capabilities of the swarm.  

2.3 PSO Setup 

The position 2+ℜ∈ d
ip  of each particle Pi from the 

swarm is viewed as a vector encoding: 1) a 
candidate subset F of features among the d available 
input features, and 2) the value of the two SVM 
classifier parameters, which are the regularization 
and the kernel parameters C and γ, respectively. 
Since the first part of the position vector implements 
a feature detection task, each component 
(coordinate) of this part will assume either a “0” 
(feature discarded) or a “1” (feature selected) value. 
The conversion from real to binary values will be 
done by a simple thresholding operation at the 0.5 
value. 

Let f(i) be the fitness function value associated 
with the ith particle Pi. The choice of the fitness 
function is important since, on its basis, the PSO 
evaluates the goodness of each candidate solution pi 
for designing our SVM classification system. A 
possible choice is to adopt the class of criteria that 
estimates the leave-one-out error bound, which 
exhibits the interesting property of representing an 
unbiased estimation of the generalization 
performance of classifiers. In particular, for SVM 
classifiers, different measures of this error bound 
have been derived, such as the radius-margin bound 
and the simple support vector (SV) count (Vapnik, 

1998). In this paper, we will explore the simple SV 
count as fitness criterion in the PSO optimization 
framework because of its simplicity and 
effectiveness as shown in the context of the 
classification of hyperspectral remote sensing 
images (Bazi et Melgani, 2006). 

2.4 SVM Classification with PSO 

• Initialization 
Step 1: Generate randomly an initial swarm of size 
S. 
Step 2: Set to zero the velocity vectors vi (i= 1, 2,..., 
S) associated with the S particles. 
Step 3: For each position 2+ℜ∈ d

ip  of the particle 
) ,...,2 ,1(  SiPi =  from the swarm, train an SVM 

classifier and compute the corresponding fitness 
function f(i) (i.e., the #SV measure). 
Step 4: Set the best position of each particle with its 
initial position, i.e., 

ibi pp = , (i=1, 2,.., S) (11) 

• Search process 
Step 5:  Detect the best global position gp  in the 
swarm exhibiting the minimal value of the 
considered fitness function over all explored 
trajectories. 
Step 6: Update the speed of each particle using 
Equation (9). 
Step 7: Update the position of each particle using 
Equation (10). If a particle goes beyond the 
predefined boundaries of the search space, truncate 
the updating by setting the position of the particle at 
the space boundary and reverse its search direction 
(i.e., multiply its speed vector by -1). This will 
permit to forbid the particles from further attempting 
to go outside the allowed search space. 
Step 8: For each candidate particle pi (i= 1, 2,..., S), 
train an SVM classifier and compute the 
corresponding fitness function. 
Step 9: Update the best position bip  of each particle 
if its new current position ip  (i= 1, 2,..., S) has a 
smaller fitness function. 

• Convergence 
Step 10: If the maximal number of iterations is not 
yet reached, return to Step 5. 

• Classification 
Step 11: Select the best global position *

gp  in the 
swarm and train an SVM classifier fed with the 
subset of detected features mapped by *

gp  and 
modeled with the values of the two parameters C 
and γ encoded in the same position. 
Step 12: Classify the ECG signals with the trained 
SVM classifier. 
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3 EXPERIMENTAL RESULTS 

Our experiments were conducted on the basis of 
ECG data from the MIT-BIH arrhythmia database 
(Mark et Moody, 1997). In particular, the considered 
beats make reference to the following classes: 
normal sinus rhythm (N), atrial premature beat (A), 
ventricular premature beat (V), right bundle branch 
block (RB), left bundle branch block (LB), and 
paced beat (/). Similarly to (Inan et al., 2006), the 
beats were selected from the recordings of 18 
patients, which correspond to the following files: 
100, 102, 104, 105, 106, 107, 118, 119, 200, 201, 
203, 205, 208, 212, 213, 214, 215, and 217. For 
feeding the classification process, we adopted in this 
study the two following kinds of features: i) ECG 
morphology features; and ii) three ECG temporal 
features that are the QRS complex duration, the RR 
interval (i.e., time span between two consecutive R 
points representing the distance between the QRS 
peaks of the present and previous beats), and the RR 
interval averaged over the ten last beats (de Chazal 
et Reilly, 2006). The total number of morphology 
and temporal features is equal to 303 for each beat. 
In order to train the classification process and to 
assess its accuracy, we selected randomly from the 
considered recordings 500 beats for the training set, 
whereas 42185 beats were used as test set (thus, the 
training set represents just 1.18% of the test set). The 
detailed numbers of training and test beats are 
reported for each class in Table 1. Classification 
performance was evaluated in terms of three 
accuracy measures, which are: 1) the overall 
accuracy (OA); 2) the accuracy of each class; and 3) 
the average accuracy (AA). 

Due to the good performances generally 
achieved by the nonlinear SVM classifier based on 
the Gaussian kernel [6], we adopted this kernel in all 
experiments. The parameters C and γ were varied in 
the ranges [10-3, 200] and [10-3, 2], respectively. The 
k value and the number of hidden nodes (h) of the 
kNN and the RBF classifiers were tuned in the 
intervals [1, 15] and [10, 60], respectively. 
Concerning the PSO algorithm, we considered the 
following standard parameters: swarm size S=40, 
inertia weight w=0.4, acceleration constants c1 and 
c2 equal to the unity, and maximum number of 
iterations fixed to 40. 

3.1 Experiment 1: Classification in the 
Original Feature Space 

In this experiment, we applied the SVM classifier 
directly on the whole original hyperdimensional 

feature space which is composed of 303 features. 
During the training phase, the SVM parameters (i.e., 
C and γ) were selected according to a m-fold cross-
validation (CV) procedure. In all experiments 
reported in this paper, we adopted a 5-fold CV. The 
same procedure was adopted to find the best 
parameters for the kNN and the RBF classifiers. The 
best values obtained for the three investigated 
classifiers are C=25, γ=0.5, k=3 and h=20. As 
reported in Table 2, the OA and AA accuracies 
achieved by the SVM classifier on the test set are 
equal to 87.95% and 87.60%, respectively. These 
results are much better than those achieved by the 
RBF and the kNN classifiers. Indeed, the OA and 
AA accuracies are equal to 82.78% and 82.34% for 
the RBF classifier, and 78.21% and 79.34% for the 
kNN classifier, respectively. This experiment 
appears to confirm what observed in other 
application fields, i.e., the superiority of SVM with 
respect to traditional classifiers when dealing with 
feature spaces of very high dimensionality.  

3.2 Experiment 2: Classification based 
on Feature Reduction 

In this experiment, we trained the SVM classifier in 
feature subspaces of various dimensionalities. The 
desired number of features was varied from 10 to 50 
with a step of 10, namely from small to high 
dimensional feature subspaces. Feature reduction 
was achieved by means of the traditional Principal 
Component Analysis (PCA) algorithm. Figure 1-a 
depicts the results obtained in terms of OA by the 
three considered classifiers combined with the PCA 
algorithm, namely the PCA-SVM, the PCA-RBF 
and the PCA-kNN classifiers. In particular, it can be 
seen that, for all feature subspace dimensionalities 
except the lowest one (i.e., 10 features), the PCA-
SVM classifier maintains a clear superiority over the 
two other classifiers. Its best accuracy was found by 
using a feature subspace composed of the first 40 
components. The corresponding OA and AA 
accuracies are equal to 88.98% and 88%, 
respectively. Comparing these results with those 
obtained by the SVM classifier in the original 
feature space (i.e., without feature reduction), a 
slight increase of 1.03% and 0.4% in terms of OA 
and AA, respectively, was achieved (see Table 2).  

3.3 Experiment 3: Classification with 
PSO-SVM 

In this experiment, we applied the PSO-SVM 
classifier on the available training beats. At 
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convergence of the optimization process, we 
assessed the PSO-SVM classifier accuracy on the 
test samples. The achieved overall and average 
accuracies are equal to 91.44% and 91.19% 
corresponding to substantial accuracy gains with 
respect to what yielded either by the SVM classifier 
applied on all available features (+3.49% and 
+3.59%, respectively) or by the PCA-SVM classifier 
(+2.46% and +3.19%, respectively) (see Table 2 and 
Figure 1). Its worst class accuracy was obtained for 
atrial premature beats (A) (88.16%) while that of the 
SVM and the PCA-SVM classifiers corresponded to 
paced beats (/) (73.43%) and ventricular premature 
beats (V) (78.06%), respectively. This shows the 
capability of the PSO-SVM classifier to reduce 
significantly the gap between the worst and best 
class accuracies (8.25% against 15.43% and 20.21% 
for the PCA-SVM and the SVM classifiers, 
respectively) while keeping the overall accuracy to a 
high level. 

4 CONCLUSIONS 

The main novelty of this paper is to be found in the 
proposed PSO-based approach that aims at 
optimizing the performances of SVM classifiers in 
terms of classification accuracy by detecting the best 
subset of available features and by solving the tricky 
model selection issue. Its completely automatic 
nature renders it particularly useful and attractive. 
The results confirm that the PSO-SVM classification 
system boosts up significantly the generalization 
capability achievable with the SVM classifier. 
Finally, it is noteworthy that the general nature of 
the proposed PSO-SVM system makes it applicable 
not just to morphology and temporal features but to 
other kinds of features such as those based on 
wavelets and high-order statistics. Finally, other 
optimization criteria could be considered as well 
individually or jointly depending on the application 
requirements. 

REFERENCES 

Bazi Y., Melgani F., (2006). Toward an Optimal SVM 
Classification System for Hyperspectral Remote 
Sensing Images. IEEE Trans. Geosci. Remote Sens., 
44, 3374-3385. 

De Chazal F., Reilly R.B., (2006). A patient adapting heart 
beat classifier using ECG morphology and heartbeat 
interval features. IEEE Trans. Biomedical 
Engineering, 43, 2535-2543. 

El-Naqa I., Yongyi Y., Wernick M.N., Galatsanos N.P.,  
Nishikawa R.M., (2002). A support vector machine 
approach for detection of microcalcifications. IEEE 
Trans. on Medical Imaging, 21, 1552-1563. 

Inan O.T., Giovangrandi L., Kovacs J.T.A., (2006). 
Robust neural network based classification of 
premature ventricular contractions using wavelet 
transform and timing interval features. IEEE Trans. 
Biomedical Engineering, 53, 2507-2515. 

Kennedy J., Eberhart R.C., (2001). Swarm Intelligence. 
San Mateo, CA: Morgan Kaufmann. 

Mark R., Moody G., (1997). MIT-BIH Arrhythmia 
Database 1997 [Online]. Available: 
http://ecg.mit.edu/dbinfo.html. 

Melgani F., Bruzzone L., (2004). Classification of 
hyperspectral remote sensing images with support 
vector machine. IEEE Trans. on Geosci. Remote Sens., 
42, 1778-1790. 

Pontil M., Verri A., (1998). Support vector machines for 
3D object recognition”, IEEE Trans. on Pattern 
Analysis and Machine Intelligence, 20, 637-646. 

Vapnik V., (1998). Statistical Learning Theory. New 
York: Wiley. 

 

75,00

80,00

85,00

90,00

95,00

10 20 30 40 50
# Selected Features

O
A

 [%
]

PCA-SVM
PCA-RBF
PCA-KNN
PSO-SVM

 
Figure 1: Overall percentage accuracy (OA) versus 
number of selected features (first principal components) 
achieved on the test beats by the different classifiers. 

Table 1: Numbers of training and test beats used in the experiments. 

Class N A V RB / LB Total 

Training beats 150 100 100 50 50 50 500 
Test beats 24966 119 4239 3939 6971 1951 42185 
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Table 2: Overall (OA), average (AA), and class percentage accuracies achieved on the test beats by the different 
investigated classifiers.  

Method OA AA N A V RB / LB 
SVM 87.95 87.60 90.05 83.19 92.12 93.15 73.43 93.64 
RBF 82.78 82.34 85.14 78.99 90.39 86.74 66.53 86.26 
kNN 78.21 79.34 76.50 66.38 71.99 93.27 75.92 92.00 
PCA-SVM 88.98 88.00 89.36 83.19 78.06 93.50 90.60 93.28 
PCA-RBF 83.04 82.11 85.86 80.67 87.85 83.87 68.85 85.54 
PCA-kNN 83.91 82.02 85.62 69.74 79.05 93.04 73.89 90.77 
PSO-SVM 91.44 91.19 91.12 88.16 93.70 93.70 92.01 96.41 
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