
TOWARDS SEMANTIC INTEROPERABILTY
In-depth Comparison of Two Approaches to Solving Semantic Web Service

Challenge Mediation Tasks

Maciej Zaremba, Tomas Vitvar, Matthew Moran
Digital Enterprise Research Institute National University of Ireland, IDA Industrial Estate, Lower Dangan , Galway, Ireland

Marco Brambilla∗, Stefano Ceri∗, Dario Cerizza†,
Emanuele Della Valle†, Federico M. Facca∗, Christina Tziviskou∗
∗Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milano, Italy

†CEFRIEL, Milano, Italy

Keywords: Semantic Web, Web services, B2B integration, business process, workflow.

Abstract: This paper overviews and compares the DERI and DEI-Cefriel approaches to the SWS-Challenge workshop
mediation scenario in terms of the utilized underlying technologies and delivered solutions. In the mediation
scenario one partner uses RosettaNet to define its B2B protocol while the other one operates on a proprietary
solution. Goal of the workshop participants was to show how could these partners be semantically integrated.

1 INTRODUCTION

This paper compares two different approaches to
semantic integration of a RosettaNet-enabled client
with legacy systems in the context of the Semantic
Web Services Challenge (SWS-Challange) 1 work-
shop series. Here we compare the submissions of
the Digital Enterprise Research Institute2 and the joint
team DEI3 and Cefriel4 to the mediation problem.

The solutions of both groups differ quite sub-
stantially in terms of the underlying technologies.
The DERI team based its solution on WSMO con-
ceptual framework for Semantic Web services which
comes from the quite young Semantic Web research
area while DEI-Cefriel followed the path of well-
established Software Engineering methods. We com-
pare the similarities and differences of provided so-
lutions mainly with respect to the data and process
modeling, execution environments, tool support and
changes required in the solutions once the integration
requirements change.

The paper is structured as follows. First we
overview our approaches, in section 2 the DERI team

1http://www.sws-challenge.org
2http://www.deri.org
3http://www.elet.polimi.it
4http://www.cefriel.it

submission is described while in section 3 that of
DEI-Cefriel is described. Section 4 provides in-depth
comparison of our submissions. In section 5, we pro-
vide reference points to other works in the area of se-
mantic integration. Finally, in section 6 we describe
our further plans and conclude this paper.

2 SOLVING THE SERVICE
MEDIATION SCENARIO WITH
WSMX

In order to address the SWS-Challenge requirements,
DERI based its solution on the specifications of
WSMO (Roman et al., 2005), WSML (Roman et al.,
2005) and WSMX (Mocan et al., 2006b) providing a
conceptual framework, ontology language and archi-
tecture for Semantic Web services.

2.1 Environment

The following artefacts have to be created during the
design time phase to apply WSMX middleware to
the system integration: ontologies for both involved
parties (i.e. service requestors and providers), bidi-
rectional XML–WSML adapters and lifting/lowering
rules, WSMO Goals and Services, data mediation

413

Zaremba M., Vitvar T., Moran M., Brambilla M., Ceri S., Cerizza D., Della Valle E., M. Facca F. and Tziviskou C. (2007).
TOWARDS SEMANTIC INTEROPERABILTY - In-depth Comparison of Two Approaches to Solving Semantic Web Service Challenge Mediation Tasks.
In Proceedings of the Ninth International Conference on Enterprise Information Systems, pages 413-421
Copyright c© SciTePress

WSMX middleware

C
om

m
un

ic
at

io
n

M
an

ag
er

Pa
rs

er

D
is

co
ve

ry

D
at

a
M

ed
ia

to
r

C
ho

re
og

ra
ph

y
En

gi
ne

Pa
rs

er

Execution Semantics

Persistence Layer

Services Ontologies Mediators

Adapter

A
da

pt
er Web

Service
A

Web
Service

B

Service Requestor

Se
rv

ic
e

R
eq

ue
st

or
’s

A
da

pt
er

 (X
M

L<
->

W
SM

L
lif

in
g

an
d

lo
w

er
in

g)

Send msg
A

Receive
msg B

Adapter Provided
Services

WSMX-based integration

Service Requestor’s
System (e.g. RosettaNet)

A
da

pt
er

Service
Providers

Figure 1: WSMX Architecture.

mapping rules between heterogenous otologies. Each
artefact must be registered with WSMX in order to be
utilized during the runtime phase.

WSMO is defined on top of existing, well-
established Web service standards. In figure 2, the
relation between WSMO service definitions, ontolo-
gies and WSDL definitions is depicted. DERI mod-
elled and published Semantic Web services (SWS)
using WSMO which defines service semantics along
with non-functional properties, functional properties
and interfaces (behavior definition) as well as ontolo-
gies that define the information models on which ser-
vices operate. A service requestor in WSMO is rep-
resented by a Goal which specifies the requirements
on the service to be consumed. Service Providers
are represented by their SWS. WSMO Goals enable
goal-based service invocation which is the basis for
advanced semantic discovery and mediation provided
by the WSMX environment. In addition, grounding
from semantic descriptions to underlying WSDL and
XML Schema definitions must be defined in order
to perform invocation using underlying WSDL and
SOAP specifications.

The WSMO functional description (capability)
contains the formal specification of functionality that
the service can provide. Interfaces describe ser-
vice behavior, modeled in WSMO as (1) choreog-
raphy describing how service functionality can be
consumed by service requester and (2) orchestra-
tion describing how the same functionality is aggre-
gated out of other services. The interfaces in WSMO
are described using ontologized Abstract State Ma-
chines (ASM)(Roman and Scicluna, 2006) defining
rules modeling interactions performed by the service.
Modelling of WSMO elements can be performed us-

 WSMX Middleware

 WSDL Service

WSMO Service

Non-Functional

Functional

Interface

Ontologies
WSMO Ontology

(PIP 3A1, ...)

 WSDL Service

Operations

Messages XML Schema
(PIP 3A1, ...)

Grounding
(concepts to operations
and messages mapping)

Grounding
(Lifting mapping)

Grounding
(Lowering mapping)

Ontology import or use

Binding

WSDL Service Endpoint
(Adapter to CRM, OMS, ...)

WSDL Registry/Repository
(UDDI, …)

WSMO Repository
(ORDI, …)

Publish WSMO Service

Publish WSDL Service

Figure 2: WSMO and WSDL Services.

ing WSMT5 or WSMO Studio6.
Once the design time phase is completed and all

required artefacts have been defined, the run-time
phase can commence. The instance data is sent from
the service Requestor in their native data format (e.g.
XML) to the dedicated adapter where it is lifted to
the semantic level and from there it is sent to the
WSMX as a WSMO Goal. WSMX is a component-
based middleware following the Service Oriented Ar-
chitecture (SOA) principles of loose-coupling. Major
WSMX components include:

Data Mediation deals with heterogeneity problems
between the service requester and service provider
that can appear on the ontology level. All mes-
sages in WSMX are semantically described in

5http://wsmt.sourceforge.net
6http://www.wsmostudio.org

ICEIS 2007 - International Conference on Enterprise Information Systems

414

WSML, meaning that the data to be mediated con-
sists of ontology instances. This component ap-
plies mappings defined during the design time to
the run-time instance data.

Process Mediation deals with solving the interac-
tion mismatches. In cases where the Goal chore-
ography and the choreography of the Web Service
do not match, process mediation is required. The
role of the process mediator is to retain, postpone,
rebuild or create messages that would allow the
communication process to continue.

Discovery determines whether a Goal description
matches services descriptions using rich semantic
descriptions of services approach.

Choreography Engine is responsible for using the
choreography descriptions of both the service re-
quester and provider to drive the conversation be-
tween them. It maintains the state of a conversa-
tion and takes the correct action when that state is
updated.

2.2 Mediation Scenario Solution

The DERI solution to the SWS-Challenge mediation
scenario starts with creating ontologies, with existing
standards and systems as their basis, namely Roset-
taNet PIP 3A4 and CRM/OMS schemas. Next, Se-
mantic Web services for the CRM and OMS systems
of the Blue legacy system as well as Goal templates,
conforming to PIP3A4, for the service requestor are
created. In addition, a grounding must be defined
from the semantic (WSMO) descriptions to the syn-
tactic (WSDL) descriptions. Lifting and lowering has
to be defined between the syntactic and semantic data
models. WSDL descriptions are automatically gener-
ated by Axis and published on a Jetty server (inter-
nal to the WSMX). For the SWS-Challenge we pro-
vide two adapters: (1) PIP3A4-WSMX adapter and
(2) CRM/OMS-WSMX adapter incorporating lifting
and lowering between XML schema and ontologies.

Listing 1 shows a fragment of the choreography
for the CRM/OMS service. The choreography is
described from the service point of view thus the rule
says that in order to send SearchCustomerResponse
message, the SearchCustomerRequest message must
be available. By executing the action of the rule
(add(SearchCustomerResponse)), the underlying
operation with corresponding message is invoked
according to the grounding definition of the message
which in turn results in receiving instance data from
the Web service.

� �
choreography MoonChoreography

stateSignature

in moon#SearchCustomerRequest withGrounding { ...

}
out moon#SearchCustomerResponse withGrounding {

... }

transitionRules MoonChoreographyRules

forall {?request} with (

?request memberOf moon#SearchCustomerRequest

) do

add(# memberOf moon#SearchCustomerResponse)

endForall� �
Listing 1: CRM/OMS Choreography.

In listing 2, the mapping of searchString concept
of the CRM/OMS ontology to concepts cusomterId
of the PIP3A4 ontology is shown following the (Mo-
can et al., 2006a). The construct mediated(X ,C) rep-
resents the identifier of the newly created target in-
stance, where X is the source instance that is trans-
formed, and C is the target concept we map to.� �

axiom mapping001 definedBy

mediated(X, o2#searchString) memberOf o2#searchString

:−
X memberOf o1#customerId.� �

Listing 2: Mapping Rules in WSML.

During the runtime phase, first a RosettaNet
PIP3A4 PO message is sent from the Blue Company
to the entry point of the RosettaNet-WSMX adapter
where it is lifted to WSML according to the PIP3A4
ontology and rules for lifting using XSLT. A WSMO
Goal is created from this message and it is sent to
WSMX where the SWS matching the Goal request
can be discovered. Next, the Choreography Engine
(CE) is instantiated with the Goal’s and SWS chore-
ographes. The Process Mediator is used to decide
which data will be added to requester’s or provider’s
choreography – this decision is based on analysis
of both choreographies. Once the requester’s and
provider’s choreographies have been updated, the CE
processes each to evaluate if any transition rules could
be fired. During the communication between Blue
and Moon, all data heterogeneities between utilized
ontologies are handled by the Data Mediator while
process level heterogeneity is tackled by Process Me-
diation. Conversation ends when there are no addi-
tional rules to be evaluated from the requester’s or the
provider’s choreography.

TOWARDS SEMANTIC INTEROPERABILTY - In-depth Comparison of Two Approaches to Solving Semantic Web
Service Challenge Mediation Tasks

415

Figure 3: The WebML/Webratio framework.

3 SOLVING THE SERVICE
MEDIATION SCENARIO WITH
WEBML

The mixed team DEI-Cefriel adopted a solution based
on the WebML/Webratio framework (Ceri et al.,
2002; Web,) to solve the mediation problem.

3.1 Environment

WebML language is a high-level notation for data-
and process- centric Web applications. It allows
specifying the conceptual modeling of Web appli-
cations built on top of a data schema used to de-
scribe the application data, and composed of one
or more hypertexts used to publish the underly-
ing data. The WebML data model is the standard
Entity-Relationship (E-R) model extended with Ob-
ject Query Language (OQL) constraints. To describe
Web services interactions, WebML has been extended
with Web service units (Manolescu et al., 2005). In
particular the Request-Response and One-way op-
erations are used to consume external Web services,
while Solicit and Response unit are used to pub-
lish Web services. In (Brambilla et al., 2006b) the
language has been extended with operations support-
ing process specifications, and a further modeling
level was added to framework allowing to start work-
flows/orchestrations using a BPMN model that is later
automatically translated to a WebML skeleton to be
refined by designers.

Each WebML unit has its own well defined seman-
tic and its execution complies with its semantic. The
composition of different units lead to the description
of the semantic of hypertext or Web services. The
language is extensible, allowing for the definition of

customized operations and units. It has been imple-
mented in a prototype that extends the CASE tool We-
bRatio 7, a development environment for the visual
specification of Web applications and the automatic
generation of code for the J2EE platform. Among
the facilities provided, the design environment has a
mapping tool that allows to visually define mappings
between incoming soap messages and the WebML
data model. The design environment is equipped with
a code generator that deploys the specified applica-
tion and Web services in the J2EE platform, by auto-
matically generating all the necessary pieces of code,
including data extraction queries, Web service calls,
data mapping logics, page templates, and WSDL ser-
vice descriptors (see Figure 3 for the overall frame-
work).

3.2 Mediation Scenario Solution

The solution for the mediation problem starts by de-
signing the data model underlying the RosettaNet
messages with an extended E-R model. We iden-
tified three main entities: the Pip3APurchaseOrder,
the Partner and the ProductLineItem. Each
Pip3APurchaseOrder instance is related with one or
more ProductLineItem instances, one Partner repre-
senting the Buyer, one Partner representing the Seller
and one Partner representing the Receiver. Every Pro-
ductLineItem instance may have one Partner repre-
senting a Receiver for the single line. We modeled
only the essential data for the scenario.

After modeling the data structures, an high level
BPMN model is created representing the mediator
(see on the left-hand side on Figure 4 for the medi-
ation from Blue to Moon); this model formalize the
orchestration of the Moon Web services and define
states pertaining to the mediation process as by SWS-
Challenge specification. Then, the BPMN model is
used to automatically generate a WebML skeleton
that is manually refined to complete the design of the
mediator. The final model for the Blue to Moon me-
diator is reported on the right-hand side in Figure 4:

1. In the first line, as soon as the order is received
(Solicit unit), the Pip3APurchaseOrder is con-
verted to the Canonic XML (Adapter unit) and
stored in the database (XML-In unit), the status
of the current Pip3APurchaseOrder is set to “To
Be Processed” (Connect unit) and the Acknowl-
edge message is returned to the service invoker
(Response unit).

2. Next, the Buyer Partner is selected (Selector
Unit) and a message to query the CRM service

7http://www.webratio.com

ICEIS 2007 - International Conference on Enterprise Information Systems

416

BPMN-> WebML
transformation

Figure 4: The BPMN and WebML models of the Blue to Moon Mediator.

is created (Adapter unit) and sent to the Moon
Legacy System (Request-Response unit). Once
a reply has been received, the CustomerId is ex-
tracted from the reply message (Adapter unit)
and stored in the data model (Modify unit). The
status of the order is set to “CustomerId received”
(Connect unit).

3. For each Receiver Partner in the order (Selector
unit) a message for the createNewOrder opera-
tion is created (Adapter unit) and sent to the
Moon Legacy System (Request-Response unit).
Once a reply has been re-ceived, the OrderId is
extracted from the reply message (Adapter unit)
and stored in the data model (Modify unit). The
status of the order is set to “OrderId received”
(Connect unit).

4. Next, the ProductLineItem instances related to
current Pip3APurchaseOrder and Receiver Part-
ner are processed by a cycle: at every interaction a
message for a single line is created and sent to the
Moon Legacy System (Request-Response unit),
and the received LineId is stored (Modify unit).

5. Finally when all the lines have been processed the
message for the closeOrder operation is created
(Adapter unit) and sent to the Moon Legacy Sys-
tem (Request-Response unit) and the status of
the order is set to “Order closed” (Connect unit).
If there are still Receiver Partner to be processed,
they are processed the loop starts again.

The SOAP messages transformation to and from
the WebML data model are performed by proper
WebML units (Adapter units) that apply XSLT trans-
formations; XSLT stylesheets are designed with the

visual mapping tool (a fragment is reported in Listing
3).� �

<xsl:template match=”//po:Pip3A4PurchaseOrderRequest”

>

<xsl:variable name=”fromId” select=”./core:fromRole//

core:businessName/core:FreeFormText”/>

<xsl:variable name=”toId” select=”./core:toRole//core:

businessName/core:FreeFormText”/>� �
Listing 3: A fragment of the XSLT for mapping RosettaNet
messages to the WebML data model.

4 COMPARISON OF THE
MEDIATION APPROACHES

Both submissions have successfully addressed the
SWS-Challenge Moon mediation scenarios. In this
section we elaborate on the details of the similarites
and differences in how DERI and DEI-Cefriel ap-
proached the mediation tasks. We compare them with
respect to the following aspects:

Underlying Technologies. The DERI approach
follows the Web Services Modelling Ontology
(WSMO) framework reflecting four top elements,
viz. explicitly modelling Goals, Web services and
Ontologies. Ontology-to-ontology mediation is
reflected in the Data Mediation component while
goal-to-Web service mediation is handled by the
Process Mediation component. On the other hand,
WebML focuses more on the modeling of the ww-
Mediators and of the internal logics of the ser-
vices (if they need to be developed), that are de-
fined through visual diagrams representing the

TOWARDS SEMANTIC INTEROPERABILTY - In-depth Comparison of Two Approaches to Solving Semantic Web
Service Challenge Mediation Tasks

417

Table 1: Comparison of the presented solutions.

Feature WebML/WebRatio WSMO/WSMX
Data Model Design ER-model manually created from analyzing

the RosettaNet messages and adding sta-
tus information. Used to keep data persis-
tent.

Independent ontologies created both from
analyzing the Blue RosettaNet messages
and internal data requirements by Moon’s
legacy services.

Process Mediation De-
sign

WebML model structure with standard units
generated from BPMN model. Units are
then configured and other units are added
from the library manually (no need for any
implementation, no code generation, just
component configuration).

The process mediation is modeled explicitly
using ontologized ASM that represent the
orchestration of the mediation service or
the choreography of the invoked services.
The orchestration and the choreographies
are hence decoupled.

Data Mediation Design XSLT mapping designed within a visual en-
vironment to lift SOAP messages to the
WebML data model and lower the data se-
lected from the WebML data model to a
SOAP message.

Dedicated bidirectional XML–WSML
adapters handling ontology lifting and
lowering. Design time ontology-to-ontology
data mediation mappings.

Web service publishing Generic standard units for receiving SOAP
messages.

Generated WSs are internally published on
Axis running on the Jetty server hosted on
WSMX.

Web service invocation Generic standard units for calls to Web ser-
vices that are configured (at design time or
at runtime) to invoke the Web services.

Communication Manager based is han-
dling all communication with services using
grounding information provided in SWS de-
scriptions.

Process Mediation Exe-
cution

The designed mediator represents the pro-
cess that will be executed. The configura-
tion of the execution environment is auto-
matically obtained from the model.

WSMO Choreography and Orchestrations
modelled during the design time are directly
executable.

Data Mediation Execution Incoming and outgoing messages, accord-
ing to the modeled mediator are lowered to
the internal data model calling the precon-
figured XSLT mapping.

The data mediator solves heterogeneity
problems between the ontologies by apply-
ing design time mappings to instance level
data .

Execution Monitoring The Webratio runtime offers a default log-
ging facilities that store all the execution
threads.

Simple logging facilities. WSMX execution
is presented as components’ events flow on
the simple Java SWING-based panel.

execution chains, while gives little emphasis to
the design of the Goals and of the other seman-
tic aspects. Indeed, the approach provides semi-
automatic extraction of WSMO Goals and Web
service behaviour from the designed models, that
need to be refined later by the designer.

Data Model. Both teams provided expressive data
models reflecting domain specific knowledge and
exchanged messages on the data schema and in-
stance level. WebML allows to specify a data
model describing the domain data structure as
an Entity-Relationship (E-R) or, equivalently, a
UML class diagram. WebML E-R diagram pro-
vides rich notation for specifying structure and
relationships between concepts occurring in the
given domain and it allows to impose simple
constraints over modelled the domain by using
WebML-OQL. Logic rules are not explicitly sup-
ported, however the authors showed that the ex-
pressive power of the model is very close to
WSML-Flight. DERI used the WSML-Rule vari-

ant, a fully-fledged ontology language with rule
support. SWS-Challenge mediation scenario data
model did not require to utilize complex rules
while modelling the ontology. Thus, despite of us-
ing more expressive language by DERI, both un-
derlying data models were quite similar in terms
of their expressiveness. Both teams modelled
existing concepts, their attributes and relation-
ships between these concepts without imposing
additional constraints over the data models tak-
ing advantage of the expressiveness provided on
the level of UML class diagrams. In both cases,
mature tools exists to edit underlying data mod-
els, for WSMO there is and WSMT and WSMO
Studio, while for WebML one can use Webratio
CASE tool.

Process Model. Provided solutions differ quite
significantly with respect to the process mod-
elling. The joint team DEI-Cefriel followed a
modern Software Engineering approach to model
Moon orchestration, while DERI specified or-

ICEIS 2007 - International Conference on Enterprise Information Systems

418

chestration using ontologized Abstract State Ma-
chines(Roman and Scicluna, 2006) formalism
which falls into process execution based on un-
derlying rich knowledge base formalism. In the
utilized Abstract State Machines (ASM), an on-
tology constitutes the underlying knowledge rep-
resentation and transition rules are specified in
terms of logic formulas. ASM provide precise
and executable model for specifying processes al-
lowing simulation (e.g. deadlock, livelock free-
dom detection) and elaborate reasoning over the
model. DERI focused on the executable aspect of
the ASM, not utilizing process simulation since
there is currently no tool for WSML supporting
ASM simulation. Execution of the ontologized
ASM has been carried out by ASM Engine used
both in WSMX Choreography and Orchestration.
ASM-based modelling allows to model processes
in a more flexible way, supporting strong de-
coupling between service requester and service
provider where delivery of exchanged messages
do not have to be explicitly modelled, instead a
Knowledge Base (KB) can be populated with al-
lowed messages and it is up to the state of the KB
and transition rules to determine and evaluate the
usability of the available information.
In the WebML approach, RosettaNet, the Moon
CRM and ORM related messages are modelled
as a part of the same process tightly coupling
the Moon mediation process with the RosettaNet
client. This coupling is embedded within the de-
sign of the wwMediatior, specified as a WebML
operation chain triggered by a Web service call.
The DERI approach is more flexible being more
client independent where orchestrated service is
not aware of any incoming or outgoing Roset-
taNet messages. It simply specifies messages in
its native ontology and it is up to the Data Me-
diator to resolve and mediate data heterogeneities
between service requester and service provider.

Data Mediation. As mentioned before WSMX, has
a strong notion of the mediation what allows de-
coupling between the interacting participants so
that they do not need to directly comply with the
requirements of the other party. Due to techni-
cal issues with transition of runtime Data Me-
diation from Flora8 reasoner to MINS9 reasoner
DERI used a code-based Data Mediator for the
last workshop. In the meantime, this issue has
been resolved and generic Data Mediation is ex-
pected to be utilized for the next phase of the

8http://flora.sourceforge.net
9http://tools.deri.org/mins

SWS-Challenge. In the DEI-Cefriel submission
the notion of data mediation and data mapping
from one RosettaNet to Moon specific data model
is encoded in XSLT transformations.
In the WebML approach XSLT transformations
can be reused but they do not exploit ontologi-
cal information. They provide one-to-one map-
ping between XML documents. New transforma-
tions need to be devised for new message mod-
els. In short-term it is a faster solution; however
if number of the clients using different data for-
mat grows, then scalability becomes an issue for
the WebML approach. For each customer it is re-
quired to change and redefine orchestrated busi-
ness process. For instance, when considering cus-
tomers using other data formats and following dif-
ferent message exchange patterns, new ooMedia-
tors and wwMediators need to be designed. This
can be partially avoided when there is no need to
process the content of the messages, simply by not
checking the format of the incoming message and
lifting it to the internal model dynamically accord-
ing to the incoming message format.

Tool Support. It is also worth overviewing the ma-
turity of both solutions and tools availably for
them. Currently, there is a better tool support
for WebML modelling, especially on the process
modelling level. There is a basic support for edit-
ing ontologized ASM and no support for simula-
tion and model testing. On the other hand support
for editing WSMO elements is quite good. Tools
utilized throughout the lifecycle of development
of DERI submission are being actively developed
(WSMO editor, data mediation, WSMX, others).
Some of them are not yet as mature as the Webra-
tio CASE tool especially in terms of ontologized
ASM-based process modelling. However, other
aspects of the modelling involved in semantic in-
tegration like for instance WSMO ontology edit-
ing using WSMT provides already quite mature
and user-friendly functionality.

The comparison of the two solution is summarized
in the Table 1.

4.1 Coping with the Scenario Changes

Both solutions were able to comply with the changes
required by the second version of the mediation sce-
nario. In particular, as regards the WebML solu-
tion, the scenario changes required to update the data
model introducing the fact that there may be a receiver
for each single item lines. As regard the process me-
diation, the BPMN model was updated to consider the
new loop required to handle different receiver and to

TOWARDS SEMANTIC INTEROPERABILTY - In-depth Comparison of Two Approaches to Solving Semantic Web
Service Challenge Mediation Tasks

419

invoke the production Web service. Accordingly also
data mappings have been updated. The cost of copy-
ing with the changes was relatively low and it requires
less than one day of work.

For the WSMO based solution minor changes
were required in the ontology similarly like in the case
of WebML data model. Also the Choreography of the
Moon service had to be updated to model the loop
required in the changes introduced in the second ver-
sion of the scenario. Lack of process simulation and
graphical support for ontologized ASM modelling re-
quires good understanding of this technology and the
DERI team was able to incorporate required changes
also within less than one day. Nevertheless, it is ac-
knowledged that it would take longer for a person un-
familiar with this formalism while the WebML solu-
tion is more likely to be grasped and modified reason-
ably quickly even by a non-expert.

5 RELATED WORK

The most obvious related work can be identi-
fied among other submissions addressing the SWS-
Challenge mediation scenario. There is a signifi-
cant similarity between jABC approach and WebML
since both are based on Software Engineering meth-
ods with strong emphasis on graphical process mod-
elling. However, their underlying data model does
not support rules and has the expressivity on the level
of UML Class Diagrams. On the other hand WSML
comes with powerful rule and F-logic support, how-
ever the mediation task did not require to utilize its
full potential.

Another relation can be drawn to WebML exten-
sion(Brambilla et al., 2006a) which allows generation
of semantic descriptions of the modeled Web services.
The ontological language adopted is WSMO due to
his strong separation of the different concepts (i.e.,
Goals, Mediators, Web Services, and Ontologies) that
are at the basis of Semantic Web Services.

6 FUTURE WORK AND
CONCLUSIONS

In this paper we compared to different approaches to
the mediation scenario proposed in SWS-Challenge.
The scenario is very similar to real world scenario
and enough complex to stress both the two compared
solution and to evidence their advantages and disad-
vantages. While the WebML based solution exploits
well-established Software Engineering methods that

allows some de-coupling and reuse, the WSMO based
solution goes beyond standard way of system integra-
tion allowing for a better de-coupling and reusability
of the modelled elements. The WebML based solu-
tion offers a mature and easy to use design environ-
ment totally based on a visual paradigm, with a set of
automatic facilities for partial generation of semantic
descriptions and definitions, while the tool support of
the WSMO solution is less mature and is still miss-
ing for some parts (especially for ontologized ASM-
based process modeling) an easy visual paradigm to
facilitate modelling of the elements involved in the
semantic integration.

The next edition of the SWS challenge workshop
will be held during ESWC 2007 and will present a
new scenario that requires the combination of discov-
ery and composition. Both the teams, were able to
handle the two scenarios separately and hence we are
confident that both the technologies employed will be
able to propose an effective solution for the new sce-
nario. The WebML based solution will further ex-
ploit the integration with the Glue discovery engine
by exploiting it for the discovery phase and modeling
within WebML a solution to dynamically compose
and invoke the services according to the discovery re-
sults. On the other side the WSMO based solution
will incorporate service discovery via AchieveGoal
construct into its Orchestration allowing late-binding
and service composition.

ACKNOWLEDGEMENTS

This material is based upon works supported by
the Science Foundation Ireland under Grant No.
SFI/02/CE1/I131, the EU-funded projects Knowledge
Web (FP6 - 507482) and DIP (FP6 - 507483).

REFERENCES

Brambilla, M., Celino, I., Ceri, S., Cerizza, D., Della Valle,
E., and Facca, F. M. (2006a). A Software Engineering
Approach to Design and Development of Semantic
Web Service Applications. In Proceedings of the 5th
International Semantic Web Conference (ISWC 2006).

Brambilla, M., Ceri, S., Fraternali, P., and Manolescu, I.
(2006b). Process modeling in web applications. ACM
Trans. Softw. Eng. Methodol., 15(4):360–409.

Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai,
S., and Matera, M. (2002). Designing Data-Intensive
Web Applications. Morgan Kauffmann.

Manolescu, I., Brambilla, M., Ceri, S., Comai, S., and
Fraternali, P. (2005). Model-driven design and de-

ICEIS 2007 - International Conference on Enterprise Information Systems

420

ployment of service-enabled web applications. ACM
Trans. Internet Techn., 5(3):439–479.

Mocan, A., Cimpian, E., and Kerrigan, M. (2006a). Formal
model for ontology mapping creation. In Proceedings
of the International Semantic Web Conference (ISWC,
Athens, GA, USA.

Mocan, A., Moran, M., Cimpian, E., and Zaremba, M.
(2006b). Filling the gap - extending service oriented
architectures with semantics. In ICEBE, pages 594–
601. IEEE Computer Society.

Roman, D., Keller, U., Lausen, H., de Bruijn, J., Lara, R.,
Stollberg, M., Polleres, A., Feier, C., Bussler, C., and
Fensel, D. (2005). Web Service Modeling Ontology.
Applied Ontologies, 1(1):77 – 106.

Roman, D. and Scicluna, J. (2006). Ontology-based chore-
ography of wsmo services. Wsmo final draft v0.3,
DERI. Available at: http://www.wsmo.org/TR/
d14/v0.3/.

TOWARDS SEMANTIC INTEROPERABILTY - In-depth Comparison of Two Approaches to Solving Semantic Web
Service Challenge Mediation Tasks

421

