
Formal Semantics for Property-Property Relations in
SEAM Visual Language: Towards Simulation and

Analysis of Visual Specifications

Irina Rychkova and Alain Wegmann

School of Communication and Computer Science
École Polytechnique F́ed́erale de Lausanne (EPFL)

CH-1015 Lausanne, Switzerland

Abstract. SEAM is an enterprise architecture method that defines a visual lan-
guage for modeling. Our goal is to provide formal semantics for SEAM. Model
simulation, model comparison, and refinement verification are practical benefits
we expect from this formalization. This paper complements the existing SEAM
semantics by formalizingproperty-property relations. This formalization is based
on the theory of multi-relations and Relation Partition Algebra (RPA).

1 Introduction

In enterprise architecture projects, an enterprise, its environment, and its information
systems are analyzed and designed. In general, the EA frameworks such as ISA [1],
TOGAF [2] (for a more exhaustive list, see also [3]) do not propose a visual modeling
notation. SEAM (Systemic Enterprise Architecture Methodology)[4] is a visual EA

S
S2

S1

P1 P2

A B H
AC

C

Property

Activity

Action

Property -property relation

Action-Action relation

Action-property
relation

System (Working Object)

Collaboration

Fig. 1.SEAM visual notation.

method, based on Systems Thinking principles [5]. SEAM represents an enterprise and
its environment as a hierarchy of systems (e.g. market, company, IT system, etc.)[4].
Figure 1 illustrates the SEAM visual notation: SystemSis modeled as a collaboration of
two systemsS1 andS2. SystemS1 is described by its observablepropertiesP1,P2, and
a behavior. The latter is represented by a set ofactionsA,B organized withinactivity
AC. SEAM specifies three types of relations between its elements:property-property
relations, action-action relations, andaction-property relations.

Our current research focuses on the definition of formal semantics for the SEAM
visual language. In software engineering, formal methods have been successfully used

Rychkova I. and Wegmann A. (2007).
Formal Semantics for Property-Property Relations in SEAM Visual Language: Towards Simulation and Analysis of Visual Specifications.
In Proceedings of the 5th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages
138-147
DOI: 10.5220/0002435501380147
Copyright c© SciTePress

in combination with UML[6] to formalize its visual notation, and to provide means for
model analysis [7],[8]. However, to our knowledge, no such experience in the domain
of EA is reported in literature. Model simulation [9], refinement verification [10], and
model comparison for SEAM specifications are the main benefits we expect from this
formalization.

In our previous work [10], formal semantics for SEAM properties, actions, activi-
ties, and action-property relations (Fig. 1) have been defined using higher-order logic
and Refinement Calculus [11]. To complete the formalizationof SEAM, the semantics
for property-property relations and action-action relations has to be provided. This pa-
per introduces a formal semantics for property-property relations, based on the Relation
Partition Algebra (RPA)[13] and on the theory of multi-relations [12]. This semantics is
especially useful for refinement propagation technique, explained in [10]: introduction,
elimination, or modification of model elements (including property-property relations)
affects the model correctness and consistency and requiresmodel adjustments. Refine-
ment propagation technique is based on the formal semanticsof model elements. It
defines the set of rules to enforce model consistency and correctness and allows to au-
tomate aforementioned adjustments.

This paper is organized as follows. In Section 2 we introducethe SEAM visual
language and define its main modeling concepts. In Section 3 we present in more de-
tails the three types of relations defined in SEAM. In Section4 we provide an exten-
sion of Relation Partition Algebra and the theory of multi-relations that formalizes the
property-property relations in SEAM. Based on this formalization, we specify the con-
sistency criteria for SEAM specifications. In Section 5 we discuss the related work.
Section 6 presents our conclusions.

2 The SEAM Visual Modeling Language

The SEAM ontology is based on the second part of the RM-ODP [14] specification.
Based on this standard, the main modeling concepts such as property, state, action are
defined. We briefly introduce these concepts below. For a detailed explanation, see [15].

Any system or system component in SEAM is modeled as aworking object. We
distinguish between the following views of a working object:
- Working object as a whole - a black box system specification;
- Working object as a composite - a white box system specification.

A working object as a whole1 describes a system by a number ofproperties
P1 . . .Pm that specify data types, andbehavior B .

We distinguish betweenprimitiveandcompoundproperties. The former can be con-
sidered as an alias for an operational data type (e.g.Int, String, Boolean,etc.); the latter
is defined by a set ofcomponent propertiesandreferencesto properties usingproperty-
property relations.

A stateof the primitive property denotes a value of the corresponding operational
type (e.g. 1, ”ABC” , true); a state of the compound property is defined by the states of
its components and references.

1 in this paper, we focus on modeling the working object as a whole and do not consider the
working object as a composite, therefore the identifier ’as a whole’ can be omitted

139

A tuple of property instances and their corresponding values defines asystem state
σ∈Σ, whereΣ specifies astate space- a set of all possible states of the modeled system.
A system state can be changed by a system behavior.
Behavior B of a working object can be seen as an action or as an activity.
Action A is defined by a three-tuple{Pre,U,Post}. PreconditionPre specifies a set of
system statesσ ∈ Σ whereA is applicable. PostconditionPostspecifies a set of system
statesσ′ ∈ Σ after the application ofA.U specifies a state transition and is calledupdate.
Pre-, post- conditions, and updates are modeled as annotated action-property relations.
Activity Ac can be considered as a detailed specification of actionA: it describeshow
the transition from pre- state to post- state is performed.Ac defines a set of component
actions and the way they are composed to carry out the transition:

Ac=̂ A1©A2© . . .©At

where© stands for component action ordering. This ordering is defined by action-
action relations.

3 The Three Types of Relations in SEAM

Action-Action(AA) Relations. SEAM specifies AA-relations using the BPMN [16]
notation. Figure 2 illustrates activityAC1 composed of four actions:A,B,C, andD.

AH HB

C

D

AC1

Start End

and-split or- joint

Fig. 2.Action-action relations.

An activity starts with a control action, called ’Start’ andfinishes with a control action
’End’. Actions A andB are connected by atransition relation that specifies a sequen-
tial invocation ofB afterA terminates. ActionB is connected with its successors by an
and-splitrelation, which specifies that actionsC andD are performed in parallel. Based
on a joint-type (or-joint) of the last AA-relation towards the End symbol, the activity
will terminate after at least one of the actions -C or D - terminates. We will address the
formalization of AA-relations in our future work.

Action-Property(AP) Relations. Contrary to languages like UML [6], in which di-
agrams are specialized (e.g. class diagram, state diagram,activity diagram), SEAM
describes system behavior and data structure within one diagram and provides explicit
relations between them (Fig. 3). A group of expressions on the destination end speci-
fies an information, useful for specification simulation.Target expressionsspecify the
relation type: Pre-, Post- conditions, or Updates;instance expressionsspecify the in-
stance names to be used by the corresponding target expressions; select expressions
(optional) specify the instance choice providing multipleinstances available. In UML,
this information is usually provided by annotated OCL[22] expressions.

Action GDiv in Fig. 3 specifies a division operation and selects the greatest devisor
if more then one is available.

140

S

GDiv

Divisor
{Int}

Dividend
{Int}

*

Target
Expression

Instance
Expression

Selection
Expression

y
Let y | forAll i instOf (D ivisor) i<=y;

Pre: y
�

0

x
U:
x:=x/y

…. ….

*

D
a

ta

S
tr

u
ct

u
re

B
eh

a
vi

o
r

Fig. 3.Action-property relations annotated with instance, selection, and target expressions.

Property-Property (PP) Relations.Relation Partition Algebra (RPA) [13] defines ’part-
of’ and ’use’ relations as a special type of binary relations. These terms can be used to
represent PP-relations in SEAM. Consider a system data structure defined by a number
of data types (properties). The modularization of the data types (definition of compound
properties) gives rise to thepart-of relations(Fig. 4-b, 5-a). Mechanism, when one prop-
erty references (uses) another, can be modeled byuse relations(Fig. 4-c)Fig. 5-b).

In SEAM, part-of relations are used to designate the context, in which a property
exists. These relations are depicted by a line with a ’black diamond’ at its destination
end and an expression at its source end, to be read”[source] is a part of [destination]”.
Use relations are depicted by a line with an expression at itsdestination end, to be
read[source] references (uses) [destination]. Expressions specify relationmultiplicity
(usually, an integer-valued interval with a possibly infinite upper bound) and a list of
instance names. The multiplicity constrains the minimum and the maximum allowable
number of instances of a given property in the system. The multiplicity of the opposite
relation end is constant and equal to 1in the SEAM specifications (usually omitted).

4 Formalization of Property-Property Relations Using RPA

The Relation Partition Algebra (RPA) by Feijs and van Ommering [13] definespart-
of anduserelations as special types of binary relations. The theory of multi-relations
by Feijs and Krikhaar [12] defines a formalism, suitable for reasoning about relation
multiplicities. We combine these theories and formalize PP-relations in SEAM aspart-
of anduse relations with multiplicities that can be also calledSEAM multi-relations.

4.1 SEAM Multi-Relations

Multi-relation m(x,y) = n (Fig. 4-a), defined in [12], specifiesn occurrences of the
binary relation(x,y). Wherex∈ X,y∈Y - are elements of corresponding sets.

SEAM multi-relationspart anduse(Fig. 4-b,c) between propertiesP andQ, and
P and T, whereP,Q,T ∈ P, specify ’relations with multiplicities’ between instances
x : P, y : Q, z : T of corresponding properties.
SEAM multi-relationspart anduseonP are defined by pairs of total functions:

partinf , useinf : P×P → N∪{∞}, partsup, usesup : P×P → N∪{∞} (1)

0≤ partinf ≤ partsup≤ ∞, 0≤ useinf ≤ usesup≤ ∞

141

yx
1

n
...

m(x,y) = n

xn1

Q...P
y

part inf(P,Q) = n1

part sup(P,Q) = n2

xn

n1 � n � n2

z r1

T

zr

...P
x

use inf(P,T) = r1

usesup(P,T) = r2

r1 � r � r2

(a) (b) (c)
yx n

n1..n2| xn1,..,xn2
QP

r1..r2|z r1..z r2
TP

Fig. 4.SEAM multi-relations. a) binary multi-relation; b) SEAM ’part-of’ relation: ’P is a part of
Q’; c) SEAM ’use’ relation: ’P usesT ’. Above: short notation, below: detailed notation.

There areat least n1 andat most n2 instances of propertyP for each instance ofQ:

partinf(P,Q) = n1, partsup(P,Q) = n2 ⇔ ∀ y : Q ∃ x1, ..,xn : P | n1 ≤ n ≤ n2 (2)

There areat least r1 andat most r2 instances of propertyT used (or referenced) by each
instance of propertyP:

useinf(P,T) = r1, usesup(P,T) = r2 ⇔ ∀ x : P ∃ z1, ..,zr : T | r1 ≤ r ≤ r2 (3)

Above,n andr are the correspondingactualnumber of instances.

Example 1.Figure 5-a illustrates the part-of relation between propertiesP andQ:
partsup(P,Q) = M1; partinf(P,Q) = 0 , where’P is a part ofQ’ and there exist at most
M1 instances ofP for each instance ofQ. x1, ..,xM1 - is a list of available instance names.
�

Spec 1

Q1..M|y1..yM
P

0..M1|x1..xM1

(a) (b)

Spec 2

P1..M|x1..xM
T

0..M1|t1..tM1

0..M2|y1..yM2

QX

P1..M|x1..xM

T

W
0 ..M 3|z1..zM3

0..M4|y1.. yM4

Spec3

(c)

Fig. 5. Property-property relations annotated with multiplicity and instance expressions. a)part-
of relations; b)userelation; c)Well-formedness of PP-relations.

Example 2.Figure 5-b illustrates the use relation between propertiesP andT:
partsup(P,T) = M2; partinf(P,T) = 0 , where’P references (uses)Q’ and there exist
at mostM2 references onT for each instance ofP. y1, ..,yM2 - is a list of available
reference names.�

Similarly to [13], we define a relation composition◦ of SEAM multi-relations (Fig. 6:
sm1◦sm2 = {(P,R) | ∃Q∈ P • sm1(P,Q) ∧ sm2(Q,R)} (4)

Identity relationI is a neutral element:I ◦sm= sm◦ I = sm.

For propertiesP,Q,R∈ P we write:

(sm1◦sm2)inf(P,R) = ∑
Q∈P

sm1inf(P,Q) ·sm2inf(Q,R)

(sm1◦sm2)sup(P,R) = ∑
Q∈P

sm1sup(P,Q) ·sm2sup(Q,R)

Isup(P,Q) = Iinf(P,Q) = 0 if P 6= Q

142

where the following holds:

(sm1◦sm2)◦sm3 = sm1◦ (sm2◦sm3) = sm1◦sm2◦sm3

We define the exponentiation for SEAM multi-relations onP assmn = sm◦ sm.. ◦ sm
(n-times), puttingsm0 = I - identity relation.

n3..n4

QBP k3..k4 R

sm1

sm2

(sm1 � sm2) inf(P,R) = (n1 k1) + (n3 k3) + (n5 k5)

QC

QA
n1..n2

n5..n6

k1..k2

k5..k6

sm1

sm1

sm2

sm2
sm1 = sm(P, _) sm2 = sm(_ , R)

(sm1 � sm2)sup(P,R) = (n2 k2) + (n4 k4) + (n6 k5)

P

0..n

I inf(P,P) = 0

I sup(P,P) = n

I(a) (b)

Fig. 6.a) SEAM multi-relation composition.sm1 - a relation with sourceP, sm2 - a relation with
destinationR; b) Identity relation.

We define a transitive closuresm+(P1,P2) on P iff there exists a sequence of ele-
mentsQi ∈ P, i = 1..n such thatP1 = Q1 and

sm(Q1,Q2)◦ . . .◦sm(Qn−1,Qn)◦sm(Qn,P2) = smn(P1,P2).

sm+
inf =

∞[
n=1

smn
inf and sm+

sup=
∞[

n=1

smn
sup (5)

Heresmn(P1,P2) is an n-step path fromP1 to P2.

4.2 ’Part-Of’

A part-of relation between propertiesP andQ (Fig. 4-b) specifies the fact that property
P is a part of a data type, defined by propertyQ (see Example 1). PropertyP can be a
part of one and only one compound property, i.e. part-of relations is functional:

∀ P,Q,R ∈ Ppartsup(P,Q) > 0 ∧ partsup(P,R) > 0 ⇔ Q = R (6)

PropertyP cannot be a part of itself, and there is no path of one or more legs that starts
atP and leads back toP, i.e. part-of relations is cycle-free, as defined in [13]:

∀P∈ P part+(P,P) = /0 (7)

We define a part-of relation between a property and a system (aworking object):

partsup : P → N∪{∞}, partinf : P → N∪{∞} (8)

Here, part-of relation specifies a collection of instances of P provided by the system.
These instances can be identified with the global variables of the system.

Example 3.Figure 5-a illustrates the part-of relation where’Q is a part ofSpec1’ and
there exist at mostM instances ofQ in Spec1: partsup(Q) = M; partinf(Q) = 1, and
y1, ..,yM - is a list of available instance names.�

Dynamic creation and deletion of property instances is an important issue that can be
specified on the diagram, using part-of relations, prior to model simulation.

143

Example 4.In Fig.5-a, consider some actionCreateQthat creates instances of property
Q, actionDeleteQthat deletes them, andMact - the actual number of instances ofQ in
the system (i.e. a number ofyi at a given moment of simulation), where 1≤ Mact ≤ M.

Using multiplicities, the effect of creation of an instanceyi can be expressed by the
following statement:Mact := Mact +1. For instance deletion we can write:Mact := Mact −1.

This can be interpreted as follows:
1)If M ∈ N is a constant - every time, after a new instance ofQ is dynamically created,
one more nameyi is taken from the list of available instance namesy1..yM. WhenMact =
M - CeateQmust not be available any more.
2)If M = ∞ - CreateQis not restricted.
3) Every time one instance ofQ is deleted, one nameyi is put back to the listy1..yM.
WhenMact = 1 - DeleteQmust not be available any more.�

We generalize the assertion that part-of relation is functional eq.(6) for the part-of rela-
tion compositions:

Lemma 1. For each ordered pair of properties< P1,P2 > there exists at most 1 se-
quence of properties Q1, ..,Qn ∈ P with P1 = Q1 and a corresponding sequence of part-
of relations

part(Q1,Q2)◦ . . .◦ part(Qn−1,Qn)◦ part(Qn,P2) = partn(P1,P2)

such that partn(P1,P2) ≡ part+(P1,P2).
Here partn(P1,P2) is a path from P1 to P2 of the length n, where ’P1 is a part of Q2, and
Q2 is a part of Q3, and .. and Qn is a part of P2’.

This lemma stipulates that between two properties can be found at most one sequence
of ’part-of’ relations of an arbitrary length and this sequence is linear.

We can generalize the definition of part-of relations for relation composition:

Definition 1. If for two properties P and Q there exists some n> 0such that partn(P,Q)
6= /0 then Q contains P as a part.

Corollary 1. For each property P there exists at most one property Q∈ P such that Q
contains P as a part, and partnmax(P,Q) = part+(P,Q) 6= /0 Here nmax - is the longest
path that starts at P and finishes at Q.

By Lemma 1 and Corollary 1 we can calculate themaximum and minimum number of
instancesof propertyP in the systemS:

Instmax(P) = partsup(P)+ ∑
Q∈P

part+sup(P,Q) · partsup(Q) (9)

Instmin(P) = partinf(P)+ ∑
Q∈P

part+inf(P,Q) · partinf(Q) (10)

4.3 ’Use’

A use relation between propertiesP andT (Fig. 4 -c) specifies the fact that property
P references propertyT (see Example 2). PropertyT can be referenced by multiple
compound properties, i.e. use relations is non-functional:

∃ T,P,P′ ∈ P | P 6= P′ • usesup(P,T) > 0 ∧ usesup(P
′
,T) > 0 (11)

144

PropertyT can be referenced by itself, i.e. use relations can be cyclicas defined in [13]:
∃ T ∈ P | use+(T,T) 6= /0

We can calculate the number of references toT in the system:
∀ Pi | usesup(Pi ,T) > 0, Re f(Pi ,T) = Instmax(Pi) · usesup(Pi ,T) (12)

and the maximum number of references:
Re fmax(T) = max

Pi
(Instmax(Pi) ·usesup(Pi ,T)) (13)

4.4 From Property-Property Relations to Specification Well-Formedness and
Consistency

PP-relations define a data structure in SEAM specifications.To obtain the well-formed
data structure, the following must be ensured for each system propertyP:
-Property P can be a part of one and only one compound propertyor a working object;
-Property P cannot be a part of itself, and there is no path of two or more legs that starts
at P and leads back to P.
Formalization of PP-relations enables us to detect errors concerned with data structure
inconsistency. For example, aninstantiation deficiency, when for some propertyP the
number of declared instances in the specificationInstmax(P) is less then required by the
system (specified by references from other properties):

∃ Q∈ P | Re fmax(Q,P) > Instmax(P)

Example 5.In Fig. 5-c, propertyP is referenced by two propertiesT andW. To avoid
instantiation deficiency, the specification must guaranteethat max{M4,M3} ≤ M, i.e.
the number of references onP from eitherW or T must not exceed the number of
instancesM of P, defined by the specification. �

A free-floating propertyis a data type that is not instantiated in the system.

Definition 2. Property P is free-floating iff Instmax(P) = 0.

Example 6.In Fig. 5-c, propertiesT,W,Q are free-floating:
Instmax(T) = Instmax(W) = Instmax(Q) = 0. �

A propertycanbe specified as a free-floating, when the number of instances is not
important at a given level of abstraction. For example, a number of ’items for sale’
might be omitted in an abstract specification of a vending machine, since a behavior of
this machine is the same for each item.
If free-floating propertyP is referencedby some propertyQ, i.e.

∃ Q∈ P | Re fmax(Q,P) > 0
this causes an instantiation deficiency in the specification: Re fmax(Q,P)> 0= Instmax(P).
We summarize with the following criteria of consistency:
System data structure defined by SEAM specification is consistent if:

1. all part-of relations in the specification are functionaland cycle-free (i.e. eq.(6)
and eq.(7) hold),

2. instance declaration is sufficient:
∀P∈ P Re fmax(P) ≤ Instmax(P) (14)

3. no reference on a free-floating property exists:
∀P∈ P | Instmax(P) = 0 ⇒ use(Pi ,P) = /0 ∀ Pi ∈ P (15)

145

5 Related Work

The scientific publications, listed below, report some practical applications in the area
of visual model analysis based on a combination of visual andformal methods:

Pons [8] presents the OCL-based technique and a tool supportfor UML and OCL
model refinement. Object-Z is an underlying theory for refinement verification. The au-
thors discuss the refinement patterns and formulate the refinement conditions for these
patterns in OCL [22].

Muskens et al. [23] focuse on the problem of consistency checking between soft-
ware views, expressed as UML diagrams. The approach in [23] is based on verification
of obligations and constraint rules using relation partition algebra.

Modeling languages, listed below, consider formalizationof their visual notation as
a bridge to model simulation.

OPM (Object-Process Methodology)[17] proposes a method for the complete inte-
gration of the system’ states and behaviors within a single graphical model. OPM dis-
tinguishes different types of relations between its model elements, similarly to SEAM.
An Object-Process Language (OPL) serves as a basis for generation an executable code
and a database schema and represents a formal semantics for OPM.

DEMO (Design & Engineering Methodology for Organizations)[18] is a method
for (re)designing organizations. DEMO provides a semantics for model simulation.

BPMN (Business Process Modeling Notation)[16] provides a visual notation for
business process modeling (BPM). SEAM action-action relations are defined based
on BPMN. Explicit bindings between a BPMN process and the data this process op-
erates on (represented by action-property relations in SEAM) is made by annotation
with BPEL constraints. BPEL (Business Process Executable Language)[19] was devel-
oped for business process model simulation and verification. An automated mapping of
BPMN diagrams to BPEL for further execution is supported by many commercial tools
(e.g. iGrafx, IBM WBI Modeler, etc - seehttp://www.bpmn.org/
BPMN_Supporters.htm#current for an exhaustive list). Formal semantics for business
process modeling was provided using Petri Net [20].

UML (Unified Modeling Language) [21], [6] defines a set of specialized diagrams
for its models. System behavior is addressed in UML by activity diagrams. The data
structure of a system is captured by UML class diagrams. A class diagram defines
classes, organized within a model using association, aggregation, composition, and in-
heritance relations. Part-of relation in SEAM can be identified with UML composition,
whereas SEAM use relation is defined by analogy with UML association. The semantics
of activity diagrams in UML 2.0 is based on Petri Nets[7]. However, there were many
attempts to define this semantics based on other formal languages: LOTOS, ASM, CSP,
LTS (see [7] for details).

6 Conclusion

In this work, we introduce the formal semantics of property-property (PP) relations in
SEAM visual language. This formalization enables us reasoning about consistency of
data structure.

146

In our previous work [10], the refinement propagation technique for SEAM visual
specifications has been introduced. The proposed algorithmexplores the possible con-
flicts between model elements, caused by refinement, and applies specific rules of re-
finement propagation to enforce the model correctness.

Model refinement where property-property relations are eliminated, introduced, or
modified is not considered in [10] and can be captured using the theory proposed
in this work. Refinement propagation rules that enforce model consistency and well-
formedness, as defined at the end of section 4, can be introduced. For instance, such a
rule may forbid the user from deleting a part-of relation because it will lead to an instan-
tiation deficiency. Alternatively, an alert can be generated in the case of a creation of a
part-of relation if it leads to a cycle. Automated model refinement is the main practical
benefit expected from the proposed formal semantics.

References
1. Zachman J. A.: A Framework for Information Systems Architecture, IBM Systems Journal

(1987)
2. The Open Group Architecture Framework (TOGAF), The Open Group,(2006)
3. Schekkerman, J.: How to Survive in the Jungle of Enterprise Architecture Frameworks: Cre-

ating or Choosing an Enterprise Architecture Framework, Trafford, (2003).
4. Wegmann, A.: On the systemic enterprise architecture methodology (SEAM). In proceedings

of International Conference on Enterprise Information Systems (ICEIS) (2003)
5. Weinberg, G.M.: An Introduction to General Systems Thinking. Wisley& Sons (1975)
6. Unified Modeling Language (UML), v. 2.1.1. OMG (2007)
7. Sẗorrle, H.: Semantics of UML 2.0 Activities, Proceedings of the IEEE Symposium on Visual

Languages and Human-Centric Computing (VL/HCC) (2004).
8. Pons, C.: Heuristics on the definition of UML refinement patterns. SOFSEM, (2006).
9. Rychkova, I., Wegmann, A.: A Method for Functional Alignment Verification in Hierarchical

Enterprise models. BUSITAL workshop in CAiSE (2006)
10. Rychkova, I., Wegmann, A.: Refinement propagation. Towards automated construction of

visual specifications. International Conference on Enterprise Information Systems (ICEIS)
(2007)

11. Back, R.-J., von Wright, J.: Refinement Calculus: A Systematic Introduction. Springer
(1998)

12. Feijs, L.M.G., Krikhaar R.L.: Relation algebra with multi-relations. International Journal of
Computer Mathematics.(1998)

13. Feijs, L.M.G., van Ommering, R.C: Relation partition algebra - mathematical aspects of uses
and part-of relations. Science of Computer Programming (1999)

14. Reference model of open distributed processing. Draft International Standard (DIS)(1995)
15. Wegmann, A., Naumenko, A.: Conceptual Modeling of Complex Systems Using an RM-

ODP Based Ontology. 5-th IEEE International Enterprise Distributed Object Computing
Conference (EDOC) (2001)

16. BPMN 1.0: Final Adopted Specification. OMG. (2006)
17. Dori, D., Object-Process Methodology, A Holistic Systems Paradigm.Springer (2002).
18. Dietz, J. L. G.: Enterprise Ontology Theory and Methodology. Springer (2006)
19. Business Process Execution Language for Web Services Version1.1. The IBM. (2004)
20. van der Aalst, W.: Challenges in business process management: Verification of business pro-

cesses using petri nets. Bulletin of the EATCS.(2003)
21. Rumbaugh, J., Jacobson, I., and Booch, G.: The Unified Modeling Language Reference Man-

ual, Second Edition. Addison-Wesley. (2005)
22. OCL 2.0 Final Adopted Specification. OMG (2003)
23. Muskens, J., Bril, R.J., Chaudron, M.R.V.: Generalizing consistency checking between soft-

ware views. Conference on Software Architecture (WICSA), IEEE (2005)

147

