
Applying a Model-driven Approach to Model
Transformation Development

E. Victor Śanchez Rebull1, Orlando Avila-Garćıa1, Jośe Luis Roda Garćıa2

and Antonio Est́evez Garćıa1

1 Open Canarias, S.L., C/. Elı́as Ramos González, 4 - Oficina 304
38001 Santa Cruz de Tenerife, Spain

2 Universidad de La Laguna
La Laguna, Spain

Abstract. One of the cornerstones of MDA is the specification and execution of
model transformations. This paper proposes a practical application of MDA to
the development of model transformations. This approach involves transforming
instances of different transformation languages with differing levels of abstrac-
tion in a PIM-PSM style. By means of two case studies, we discuss technical
details and assess what possible gains it can offer in terms of productivity and
maintainability.

1 Introduction

MDA (Model-Driven Architecture) [13] proposes a scheme of successive transforma-
tions between formal models describing software. These models represent the software
at different levels of abstraction and degrees of platform independence, as in the clas-
sic Platform Independent vs Platform Specific Model (PIM-PSM) separation. A set
of standards such as MOF (Meta-Object Facility) [14] for metamodeling and QVT
(Query/Views/Transformations) [15] for model transformation specification, exists in
MDA to sustain the application development cycle centered on these models as first-
class artifacts. Thus, creation and execution of model transformations play a central
role in MDA. This implies the need to designing model transformation languages (such
as QVT) and facilities to create, manipulate and execute their instances.

This paper presents a practical MDA approach to model transformation develop-
ment, which is the application of the MDA paradigm to the development of model
transformations (Sect. 2). We discuss two case studies (Sect. 4) to reflect its advantages,
after introducing a platform specific transformation language in Sect. 3. The first one
shows one solution approach to execute instances of QVT, as a general purpose model
transformation language; the second one shows the execution of instances of MTTL
(Model Template Transformation Language) [2], a domain specific transformation lan-
guage. Related work and other approaches are presented in Sect. 5 and conclusions in
Sect. 6.

Victor Sánchez Rebull E., Avila-García O., Luis Roda García J. and Estévez García A. (2007).
Applying a Model-driven Approach to Model Transformation Development.
In Proceedings of the 3rd International Workshop on Model-Driven Enterprise Information Systems, pages 53-62
DOI: 10.5220/0002430200530062
Copyright c© SciTePress



2 MDA Approach to Model Transformation Development

By applying a MDA approach to model transformation development we mean splitting
up the process of specifying executable transformations indifferent levels of abstraction
(as explained in [4]). This implies considering model instances of model transformation
languages as PITs (Platform Independent Transformations)which are then transformed
onto lower level transformation languages; which in our case is ATC (Atomic Trans-
formation Code) [9]. Transformation models expressed in ATC are tied to a specific
runtime platform (which executes them) named VTE (Virtual Transformation Engine),
hence they can be considered PSTs (Platform Specific Transformations). This approach
allows us to bring support to the execution of other model transformation languages’
instances in VTE indirectly through ATC.

3 ATC as Platform Specific Transformation Language

ATC (see above and [9]) is a general purpose low-level ATC transformation language.
Its instances take the shape of models conforming to the ATC metamodel, the most
recent version of which can be found at [7].

ATC models are executed by the VTE model transformation engine, a virtual ma-
chine created with this sole purpose. VTE is implemented as athin software layer built
on top of EMF [5], which is considered to be a MOF implementation. VTE abstracts
from its API those EMF fundamental components that thoroughly combined represent
each of a set of low-level model transformation primitives called atom types in the ATC
jargon. These primitives form up the ATC instruction set. Although ATC models are
easily manipulated by hand with the default EMF tree editor,they are usually obtained
as the result of an (automated) transformation developmentprocess.

It is expected that ATC contains all the necessary model transformation mechanics
so it is feasible to map (translate) complete model transformation languages’ semantics
to equivalent ATC constructs. This includes general purpose languages such as QVT,
and any languages that may cover a wide range of specific or particular domains of
application, like the MTTL explained in Sect. 4.2. This translation will be discussed in
Sect. 4.

3.1 How Much PST is ATC

We claim that ATC models are platform-specific. Indeed ATC istied to VTE, as its
target runtime platform. This PST condition will remain unconditionally true for the
purpose of this work (and according to [4]) even with the possibility of unfolding the
virtual engine into native java code specific to each ATC instance (see [9]), or if other
engine implementations are constructed that support the ATC language, over the same
EMF or (porting VTE to) other metamodeling facilities such as NetBeans MDR [12],
for which the ATC language should not suffer almost any modifications to its design.

The ATC’s PST nature helps us emphasize its low-level orientation and put it in
contrast alongside other model transformation languages,which in their majority can
be considered of a higher abstraction level, and which in general preserve a complete

54



neutrality from any known technology or platform. As alternatives to ATC as low-level
model transformation languages we will mention ATL-VM [10], which has implemen-
tations based on at least two different metamodeling infrastructures (the both aforemen-
tioned EMF and MDR).

4 Platform Independent Transformation Languages

For transformation languages whose instances can have a model representation, nothing
prevents us from formalizing a (collection of related) transformation(s) that translate
them to semantically equivalent ATC models, much in the sense of the MDA’s PIM
to PSM transformation paradigm. Thus, regardless of which Platform-Specific model
transformation language is finally chosen for our execution, if any, PITs fulfill their goal
of being static artifacts reusable through different underlying transformation engines or
tools.

Fig. 1. Instances of MTTL, a domain specific transformation language, are treated as PITs. Tex-
tual instances of QVT, a standard and general purpose transformation language, are converted to
models (conforming to the QVT metamodel or abstract syntax) which in turn may be considered
PITs.

In this section we show the benefits coming from taking a MDA approach to model
transformation development by means of two case studies (see Figure 1). The first case
shows a solution to indirectly execute instances of QVT, a general purpose and stan-
dard model transformation language (Sect. 4.1), in the VTE engine; likewise, the sec-
ond one shows the execution of instances of MTTL (Model Template Transformation
Language), a domain specific transformation language (Sect. 4.2).

4.1 The General-purpose QVT

As already mentioned, notation to express model transformation semantics in MDA is
specified in the QVT standard. This specification details an architecture composed by
three languages. Relations is a declarative language wheremappings can be expressed
between related domains. Also declarative, Core is a lower-level language that offers
the same semantic capabilities as Relations.

Finally, Operational Mappings (OM) is the only imperative QVT language. It serves
two purposes. Firstly it assists Relations to complement certain rules by providing pro-
cedural implementations that guide QVT engines on how theserules must be resolved.
This is particularly useful whenever it is difficult, if not impossible, to properly express

55



those declarative rules in Relations. Secondly it can be used as a standalone imperative
model transformation language

This case study addresses ways to support QVT in VTE in terms of OM, although
the discussion is applicable to any other textual model transformation language, as long
as it has a well defined metamodel for which conforming executable models can be
formalized.

Fig. 2. A model conforming to the OM’s metamodel as PIT to the left and its transformed ATC
semantically equivalent PST model to the right.

Model transformation languages can be supported in VTE by, first, parsing the tex-
tual instances into an AST (abstract syntax tree) and, second, traversing the tree to
generate the equivalent atoms that composed one or more ATC transformations, basi-
cally using an automatically generated parser [9]. An alternative translates the AST to
a model conforming to the metamodel of the transformation language (an example of
such model is shown in Fig. 2). This model (which represents atransformation!) can
then be checked and optimized before it is finally transformed onto ATC. It can also be
stored within model repositories and even shared among tools, as if it were an ordinary
model.

In this scenario we are rightfully applying the MDA principles in terms of PIT to
PST transformations. Moreover, if the AST created by the textual syntax parser comes
also to be a model conforming to certain metamodel (for instance, GASTM [16]), then
we have another model in the transformation chain to obtain ATC instances. This is a
clear example of a practical PIM to PSM MDA transformation development process in

56



the context of MDA. Here the model paradigm is applied in two stages. First, to the
process of obtaining the model of the source language from the AST model, once it is
automatically produced from the source text. Second, to thetranslation from this trans-
formed model to the ATC model that is the output target artifact for the whole process,
and which represents an executable transformation suitable for the VTE environment.
Both transformation steps supersede the traditional semantic parsing execution stage
that analyses the inferred AST to generate output.

By specifically taking advantage of model transformation tools and languages and
exploiting their model-orientation characteristics, we can get abstracted from a signifi-
cant amount of functionality and increase the overall productivity. Also, efforts invested
towards this goal are expected to be paid off by succeeding insomehow reusing these
transformatons to support other languages.

Operational Mappings vs. ATC. ATC is (at least almost) as low level as it can be, so
it may be considered a reference point in an absolute scale that measures a transforma-
tion language’s level of abstraction. Making an estimationabout how distant from ATC
is OM in this scale, or starting a study to obtain metrics about its level compared to
other high-level languages, could be interesting to calibrate OM’s absolute abstraction
level. While such a study is beyond the scope of this work, it iseasy to infer that subtle
mechanisms involved in an OM’s transformation execution such as trace instance man-
agement, and instantiation sections in mapping operations, put the language on a rather
high level starting point. As per a sentence by sentence comparison, there is much com-
plexity involved to give an approximate rate of sentence versus number of combined
ATC atoms representing the same semantics, but they often comprise two or three of
them (worst cases can raise this figure above twenty). However, to be fair we should not
be counting sentences in OM against ATC atoms, since each of them usually comprises
several model elements. To present some figures regarding model element count, a typ-
ical Encapsulation transformation example gives about 115elements in OM vs. about
220 in ATC, which increases over 260 if we include the OM’s implicit execution trace
information tracking.

4.2 The Domain-specific MTTL

As explained before, QVT [15] is a standard transformation language that is expected
to be used across companies and projects. Its general-purpose nature allows us to spec-
ify different types of transformations. Although the benefits coming from using such a
language are clear, many studies exist showing the advantages of rising the level of ab-
straction by introducing Domain-Specific Transformation Languages (DSTL), as when
using any other domain specific language (DSL) [2]. In this case study we show MTTL
(Model Template Transformation Language), a domain-specific language to create soft-
ware product lines of models [2], and a MDA approach to execute its instances.

Software product lines of models are an effective solution to maintain model fami-
lies in Model Driven Engineering. An approach to implement this kind of product lines
is based on the use of model templates containing all model variants of the family in
a superimposed form [6]. In order to obtain a concrete familymember, a model trans-
formation automatically specializes the model template bypurging relations between

57



model elements. The specialization is carried out following a set of selected features
that are specified aside, in a feature model which characterizes the model family.

Fig. 3. Feature Model in Cardinality-Based Feature Model notation [8] for a family of Request
Management Systems (RMS).Request ValidationandRequest Evaluationare optional features
in this family; featureRequest Realizationis mandatory, whileSupervised RealizationandDirect
Realizationare alternative features. By selecting optional and alternative featuresfrom the feature
model we are able to identify up to eight different variants of RMS.

Model Template Transformation Language (MTTL) is a DSTL that has been de-
veloped to ease the engineering of product lines of models using a template approach.
MTTL is an imperative language with four basic operations tomanipulate object rela-
tions within model templates: REMOVE, SELECT, CLEAR and INSERT.

In this case study, we are to create a software product line ofuse case models in
the domain of request management systems (RMS). In our experience, those systems
share many commonalities while vary along well defined characteristics. Therefore, the
development of such systems may greatly benefit from the use of a software product
line approach. In this example we are to create a software product line that automates
the analysis phase in the development of a family of RMS systems. This product line
will maintain a family of UML Use Case models that represent the analysis solution
to those systems. Fig. 3 shows a feature model describing thecommon and variable
features of the family.

Following [6], we use a template approach to implement this software product line.
First, we create a model template containing all variants ofuse case models in a su-
perimposed form (see Fig. 4). Each use case model, solution to the analysis of a sin-
gle RMS, is obtained by deleting object relations from the model template. Secondly,
we define the transformation that shall specialize this model template when optional
and alternative features from the feature model are selected. It is here where we take
advantage of using a DSTL in combination with a MDA approach to transformation
development: we specify such a transformation in MTTL (see Fig. 5) and transform it
onto ATC in order to execute it.

Figure 5 shows the MTTL model we have created to solve the problem and its corre-
sponding ATC model. While the former is made of six objects, the latter contains more
than three hundred. Moreover, the use of MTTL, a DSTL, is straight and easy, abstract-
ing us from implementation details such as the metamodelingframework. This is a clear

58



Realize Request

Evaluate RequestValidate Request

Recover Request

Generate Reports

Staff Member

Technician

Requester

<<include>>
<<include>>

Fig. 4. Template for a family of use case models. It is a use case model itself, containing all the
family members in a superimposed form, so it contains all objects and relations belonging to
any of the model variants. By purging a subset of these objects and relations it is transformed
(specialized) to generate those family members.

example of time savings when using domain specific languagesto specify transforma-
tions, which in this case builds on top of benefiting from using transformation models,
as discussed in Sect. 4.1. Another important point is that the transformation between
MTTL and ATC was developed once, when MTTL itself was created, and took much
less effort than building up a compiler or a transformation engine exclusively for it (see
[2]).

5 Related Work and Other Approaches

There have been some other examples of applying a MDA approach to model trans-
formation development. For example, [3] proposes an extensible weaving metamodel
and its transformation onto general purpose transformation languages. This metamodel
may be extended to become a domain-specific language tailored to specify mappings or
relations between model objects in different domains3. For example, [11] proposes an
extension to specify model transformations at a higher level of abstraction as mappings
between metamodel elements. In that particular study, the instances of the extension
where transformed onto ATL [10]. That mapping language differs from our MTTL in
two respects: first, the former links objects at the metamodeling level (M2) while the
latter does it at the modeling level (M1); and secondly, MTTLis suitable for the domain
of transformations of model templates following feature models, a domain much more
specific that the former’s.

There exist other approaches to solve the problem of model transformation pro-
duction in QVT or in DSTLs such as MTTL. For example, textual instances of QVT
might be compiled into Java to be executed. Likewise, QVT or DSTL models might be
transformed onto Java code by model-to-text transformations. The problem with these

3 See [1] for an extension implementing MTTL.

59



Fig. 5.A MTTL mapping model on the left. It describes the specialization of the model template
of Fig. 4 after the selection of features from the feature model of Fig. 3.It contains six elements,
all specifying REMOVE operations, that is, the purge of model template objects. On the right,
corresponding ATC model. The transformation of MTTL instances onto ATC is carried out by
filling up an ATC template containing a function per MTTL operation. Each mapping object from
the MTTL model is then translated into a call operation (invokeobject) to the corresponding
function with the proper parameters.

approaches is the inability of reuse: none of the efforts applied in the development of
a compiler or model-to-text transformation may help in the development of the others.
An alternative approach implies to build specific engines for those transformation lan-
guages. One of the shortcomings mentioned for the previous approach is completely
valid here: the inability of reuse in developing these alternative transformation engines
may make their development a too costly enterprise.

6 Conclusions

In this paper we have proposed a MDA approach to model transformation development.
By exploring two case studies that reflect the benefits of thisapproach, we have shown
ways to transform PITs to PSTs. The first of them showed a solution to allow instances
of QVT, a standard and general purpose transformation language, to be indirectly exe-
cuted in the VTE runtime platform. The second example showedthe application of the

60



same approach to execute instances of MTTL, a domain specifictransformation lan-
guage. Similar transformations applied upon ATC models cantransitively extend the
compatibility (and support) of the source language to othertools. Conversely, middle-
ware languages and tools can also be used to bring compatibility of distant languages
in VTE.

We think that we have shown evidence enough so as to argue thatall the benefits
expected from MDA concerning model-driven evolution can directly be expanded to the
use of this very same approach to model transformation development. Among them we
highlight the reuse of transformation facilities, which helps us save costs and increase
productivity when creating MDA solutions in our software development projects.

Acknowledgements

Paper supported by theMinisterio de Educacíon y Ciencia(PTQ2004-1495, PTR1995-
0928-OP), theFondo Social EuropeoandDGUI, Consejeŕıa de Educacíon, Cultura y
Deportes, Gobierno de Canarias(PI042005/007). Thanks also go to theRed de Desar-
rollo de Software Dirigido por Modelos (DSDM), ref: TIN2005-25866-E.

References

1. Orlando Avila-Garćıa and Marcos Didonet Del Fabro. AMW use case: Mapping fea-
tures to models. Technical Report MST-9, Open Canarias, S.L., Apr2007. Available at
http://www.eclipse.org/gmt/amw/usecases/softwareproductline/.

2. Orlando Avila-Garćıa, Antonio Est́evez Garćıa, Victor Śanchez Rebull, and Jose Luis Roda
Garćıa. Using software product lines to manage model families in model-driven engineering.
In SAC 2007: Proceedings of Symposium on Applied Computing, track on Model Transfor-
mation. ACM Press, Mar 2007.

3. Jean B́ezivin, Salim Bouzitouna, Marcos Didonet Del Fabro, Marie-Pierre Gervais, Fŕederic
Jouault, Dimitrios Kolovos, Ivan Kurtev, and Richar F. Paige. A canonical scheme for model
composition. InECMDA 2006: Proceedings of the European Conference on Model-Driven
Architecture, volume 4066 ofLNCS, pages 346–360. Springer-Verlag, Jul 2006.

4. Jean B́ezivin, Nicolas Farcet, Jean-Marc Jéźequel, Benoit Langlois, and Damien Pollet.
Reflective Model Driven Engineering, 2003. Available at http:/www.lina.sciences.univ-
nantes.fr/Publications/2003/BFJLP03.

5. Frank Budinsky, David Steinberg, Ed Merks, Ray Ellersick, and Timothy J. Grose.Eclipse
Modeling Framework (EMF). Addison Wesley, Aug 2003. ISBN 0-13-142542-0.

6. Krzysztof Czarnecki and Michal Antkiewicz. Mapping features to models: A template ap-
proach based on superimposed variants. InProceedings of GPCE 2005, volume 3676 of
LNCS, pages 422–437. Springer-Verlag, 2005.

7. Open Canarias. ATC metamodel, Feb 2007. URLhttp://www.modelset.es/
files/ATC.ecore.

8. Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Formalizing cardinality-based
feature models and their specialization.Software Process Improvement and Practice, special
issue of best papers from SPLC04, 10(1):7–29, 2005.

9. Antonio Est́evez, Javier Padrón, Victor Śanchez, and José Luis Roda. ATC: A low-level
model transformation language. InMDEIS 2006: Proceedings of the 2nd International Work-
shop on Model Driven Enterprise Information Systems, May 2006.

61



10. Fŕederic Jouault and Ivan Kurtev. On the architectural alignment of ATL and QVT. InSAC
2006: Proceedings of the Symposium on Applied Computing. ACM Press, Apr 2006.

11. Denivaldo Lopes, Slimane Hammoudi, Jean Bézivin, and Fŕed́eric Jouault. Mapping spec-
ification in MDA: From theory to practice. InINTEROP-ESA 2005: Proceedings of the
First International Conference on Interoperability of Enterprise Software and Applications,
pages 253–264. Springer-Verlag, Feb 2005. Available at http://www.lina.sciences.univ-
nantes.fr/Publications/2005/LHBJ05.

12. Sun Microsystems. NetBeans Metadata Repository. Homepage at http://mdr.netbeans.org/.
13. OMG. MDA guide version 1.0.1. Technical Report omg/2003-06-01, Jun 2003. Available

at http://www.omg.org/docs/omg/03-06-01.pdf.
14. OMG. Meta Object Facility (MOF) 2.0 core specification. Technical Report ad/2003-10-04,

Apr 2003. Available at http://www.omg.org/docs/ad/03-10-04.pdf.
15. OMG. MOF 2.0 Query/Views/Transformations. Technical Report ptc/05-11-01, Nov 2005.

Available at http://www.omg.org/docs/ptc/05-11-01.pdf.
16. OMG. Architecture-Driven Modernization (ADM): Abstract SyntaxTree Meta-

model (ASTM). Technical Report admtf/2006-11-01, Nov 2006. Available at
http://www.omg.org/docs/admtf/06-11-01.pdf.

62


