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Abstract. Mobile phones are frequently lost or stolen. Latest mobile handsets 
contain important information such as an address book, short mail messages, 
and e-cash. To prevent a stranger from accessing to such private information, 
practical security mechanisms have to be introduced into mobile handsets. We 
have developed a distributed network storage system that protects private data 
files stored on the mobile handsets without demanding complex operations for 
users. As computation resource on the mobile handsets is limited, a lighter en-
cryption scheme is indispensable. In this paper, we report a self-encryption 
scheme for mobile distributed storage system. Different from existing encryp-
tion schemes such as PKI (Public Key Infrastructure), this scheme exploits a 
diversity of data files for generating unique encryption keys while minimizing 
computation overhead of encryption. Experimental results show that our 
scheme can generate completely random keys from zipped text files with light 
operations.  

1 Introduction 

Advanced mobile handset features such as digital camera, music player, and e-cash 
have made mobile phones so convenient and attractive for all people. The most recent 
mobile handsets are equipped with high-speed wireless link and gigabytes of storage, 
and multiple CPUs for different purposes. Its performance is far better than the com-
puters of several decades ago. Along with such technological advances, each mobile 
handset came to contain various kinds of important information such as an address 
book, short mail messages, and e-cash.  However, mobile handsets are so small that 
they are easily lost or stolen. Tokyo metropolitan police department reports that more 
than 100,000 mobile handsets have been lost or stolen only in Tokyo area in 2006 [1]. 
Currently, mobile operators provide a networked based blocking service that black-
lists the user’s phone so it will be unusable until picked up by the owner. However, 
such a service is helpless for preventing a stranger from accessing to the private data 
stored inside the mobile handsets. 

In this paper, we first review technical requirements for security mechanisms of 
mobile handsets in preparation for lost and theft. In general, there are design trade-
offs between ease of use and safety. As the computational and communication re-
sources of mobile handsets are limited, general security mechanisms are not always 
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applicable. Therefore we clarify design criteria peculiar to mobile devices in order to 
maximize the usability while minimizing security risks. Then we describe a design of 
mobile distributed storage system based on self-encryption scheme. The self-
encryption scheme refers to an encryption scheme which we define in this paper. An 
encryption key management scheme is one of the main challenges in the security 
community. Conventional block ciphers aim at generating stronger cipher text from 
plain text while minimizing the length of the encryption key. On the other hand, our 
self-encryption scheme exploits the heterogeneity of data files (plain text) to generate 
a longer encryption key sequence. As we use a longer key, we can use a simpler 
stream cipher which requires less computational resources. By integrating the self-
encryption scheme into distributed storage system, we aim at realizing a practical 
secure file system for mobile handsets. 

2 Security Technologies for Mobile Handsets 

In this section, we introduce security technologies provided for mobile communica-
tion services such as mobile phones and PHS (Personal Handy-phone System). Then 
we clarify the technical requirements and design criteria for data protection of mobile 
handsets. 

2.1 Existing Approaches 

Existing security mechanisms for mobile handsets include unauthorized access pre-
vention mechanisms, data backup mechanism, and data encryption mechanisms for 
locally stored data. Table 1 shows security mechanisms provided for mobile handsets 
such as laptop PC and mobile phones. When a user’s mobile terminal is lost or stolen, 
terminal security mechanisms can reduce the risk of strangers to access to confiden-
tial data stored in the terminal.  However, if the malicious attacker breaks the chassis 
to pick out HDD or a flash memory, data may be analyzed easily. When data security 
mechanisms are applied to the local storage data, the data can be protected with cryp-
tographic assurance.  

If we look at existing data security services for mobile handsets, a remote deletion 
service is the only feasible choice. With remote lock services, the owner can lock the 
mobile handset and/or delete locally stored data by sending a special command over 
wireless network [2,3].  This approach, however, is helpless if the mobile handset is 
intentionally placed outside the coverage area. Though data encryption and remote 
storage can be the potential choices for sustaining data security, actual realization 
mechanisms are sometimes too heavy for resource constrained hardware like mobile 
handsets[4,5]. Remote storage approach works without a local data storage and 
downloads necessary files from a remote storage over the network. This approach is 
acceptable for desktop PC and workstations that are always connected to high speed 
LAN. Mobile handsets, on the other hand, are connected to the network by wireless 
link, which is, in general, error-prone and limited in bandwidth. Therefore download-
ing the entire file may lose usability. A distributed storage divides a file into several 
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pieces and stores them in different places in order to increase data confidentiality and 
availability at the same time.  

Shamir’s secret sharing scheme [6] can be used as a method to realize a distributed 
storage. This scheme divides data D into n pieces in such a way that D is easily re-
constructable from any k pieces, but even complete knowledge of k - 1 pieces reveals 
absolutely no information about D. This technique enables the construction of robust 
key management schemes and cryptographic schemes that can function securely and 
reliably. As this scheme is based on polynomial interpolation, even the most efficient 
algorithms are too heavy to implement as a file system on the resource limited mobile 
handsets. 

Table 1. Security Mechanisms for Mobile Terminals. 

 Laptop PC Mobile Phones 
Terminal 
Security 

Biometric Authentication 
Secure IC Memory 

BIOS Password 
Log-in Password 

 
 (SD, Felica, etc.) 
 
 

 (finger print) 
 (SIM) 

NA 
 (PIN code) 

Data Security Authentication / Authorization 
Encryption 

Remote Lock 
Remote Storage 

 
 
 
 

NA 
NA 

 
NA 

2.2 Capabilities of Mobile Handsets 

Computation and communication resources of mobile handsets such as PDA and 
mobile phones are limited compared to personal computers and workstations. Some 
of the mobile handsets are equipped with wireless LAN (IEEE 802.11) and Bluetooth 
interface for local area communication. As a global connection, 3G and GPRS data 
connection services are available. In Japanese market, HSDPA (High Speed 
Downlink Packet Access) and CDMA2000 1xEV-DO services are provided as 3G 
service and those services offer upto several Mbps communication[7]. 

Other than the difference of abilities, mobile handsets afford less complex opera-
tions for users because its user interfaces is constrained (a tiny screen and several 
pieces of keys) and a range of potential users are so wide regardless of age and sex.  

2.3 System Design 

Fig. 1 shows a basic design of our system. In the mobile handset, confidential data is 
encrypted and divided into a pair of cipher text files by using a self encryption 
scheme (which will be described in next section). Each piece of cipher text cannot be 
decrypted alone. One of the cipher text files is stored in the local storage area of the 
mobile handset and the other piece is automatically uploaded to remote storage. 
Moreover, the piece stored locally can be copied to another remote storage for backup 
purpose. When a user hopes to use a file, the file system of the mobile handset seeks 
for the local and remote pieces and decrypts the cipher text files. When the mobile 
handset is lost or stolen, the user blocks the access to remote storage to prevent de-
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cryption of confidential files. When the user hopes to switch to a new mobile handset, 
he just needs to copy the backed up pieces to the new handset. 

 
Fig. 1. A System Design. A secret data file is divided into two pieces of plaintexts. One of 
them is scrambled and used as a key. The key is uploaded to a remote server. The other piece is 
encrypted by the key and stored locally. The locally stored ciphertext is sometimes backed up 
to a back up storage. 

As this scheme needs to download a piece of a file from the remote storage and 
decrypt it, the user may experience short delay in using files. However, most text-
based files can be downloaded within several seconds when we use high speed wire-
less network such as HSDPA. Multimedia data such as MP3 files requires longer time 
for downloading. 

3 Self Encryption Scheme 

In this section, we present a self encryption scheme for mobile distributed storage 
system. In this paper, we define self encryption scheme as an encryption scheme 
whose encryption key is generated from the information contained in the target file 
itself. In other words, self encryption scheme exploits the diversity inherent in data 
files, and uses various information such as meta-data and a part of plain text as an 
input of key generation process. As a self-encryption scheme automatically generates 
unique keys, users do not need to worry about key management.  

3.1 Block Cipher and Stream Cipher 

In general, typical encryption mechanism such as DES[8] and AES[9] are called a 
block cipher. A block cipher is a symmetric key cipher which operates on fixed-
length groups of bits, termed blocks, with an unvarying transformation. When en-
crypting, a block cipher might take a (for example) 128-bit block of plaintext as input, 
and output a corresponding 128-bit block of ciphertext. The exact transformation is 
controlled using a second input — the secret key. Decryption is similar: the decryp-
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tion algorithm takes, in this example, a 128-bit block of ciphertext together with the 
secret key, and yields the original 128-bit block of plaintext. To encrypt messages 
longer than the block size (128 bits in the above example), a mode of operation is 
used. Block ciphers can be contrasted with stream ciphers; a stream cipher operates 
on individual digits one at a time and the transformation varies during the encryption.  

Stronger block cipher requires much computation overhead. A stream cipher, on 
the other hand, typically executes at a higher speed than block ciphers and has lower 
hardware complexity[10]. However, stream ciphers can be susceptible to serious 
security problems if the encryption key is generated from weak random sequence 
generators. In this sense, stream cipher requires stronger random sequence generator, 
which is typically provided as a hardware module.  

Our approach, self encryption scheme, can generate a long key (random sequence) 
from the data file (plaintext). Therefore a plaintext can be encrypted at higher speed 
without any special hardware support. Moreover, the encryption key is unique to each 
plaintext, thus the entire system remain safe even if one of the ciphertext has been 
defeated by an attacker. 

3.2 Formulation of Self Encryption Scheme 

The whole process of self encryption scheme is described in Table 2, Figure 2 and 3. 
The encryption procedure is performed as follows: 

1. A file content message M is split into ML and MR by a split function S  
2. Generate an encryption key KL from MR by a function FR 
3. Encrypt(EL) the message ML using KL to generate a ciphertext CL 
4. Store CL in the local storage area 
5. Generate a key KR using CL with a function FL 
6. Encrypt(ER) MR using KR to generate a ciphertext CR 
7. Upload CR to a remote storage area 
8. Backup CR to a backup storage 

Then the decryption procedure is performed as follows: 
1. Download CR from the remote storage 
2. Generate the key KR from locally stored data CL by FL 
3. Decrypt CR using KR to recover the message MR 
4. Generate the key KL from MR by FR 
5. Recover ML by decrypting(EL) CL using KL 
6. Concatenate(S-1) ML and MR to recover the original M 
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Table 2. Formulation of Self Encryption Scheme. 

Encryption 
{ML,MR} = S(M) Split M into ML and MR 
KL = FR(MR) Generate KL from MR 
CL = EL(ML) Encrypt ML using KL 
KR = FL(CL) Generate KR from CL 
CR = ER(MR) Encrypt MR using KR 
Decryption 
KR = FL(CL) Generate KR from CL 
MR = DR(CR) Decrypt CR from KR 
KL = FR(MR) Generate KL from MR 
ML = DL(CL) Decrypt CL using KL 
M = S-1{ML,MR} Concatenate ML and MR into M 

 

    
Fig. 2. Encryption Procedure.                        Fig. 3. Decryption Process. 

3.3 Algorithms for Self Encryption  

We presented a formulation of self encryption scheme in 3.1. When thinking of a real 
implementation of the self encryption scheme, we need to be careful in choosing 
algorithms and parameters. In this section, we mention the file split method S, the 
encryption algorithm E, and the key generation function F. 
The main objective of splitting a message M into MR and ML is to generate a key for 

encryption. When using shorter MR, it means that longer messages are encrypted with 
shorter keys. It makes, in general, easier to defeat the resulting ciphertext but requires 
shorter time for uploading (and downloading) the key from the remote server. If 
longer MR is chosen, ciphertext becomes stronger. But note that the maximum length 
of MR is 1/2 of the length of original message M. When the length of MR and ML is 
equal and the resulting keys KR and KL are random enough, ciphertext CR and CL 
become unbreakable. 

In our implementation, XOR is used as an encryption algorithm E (ER and EL) to 
combine the plaintext with the key. This stream cipher based approach executes at a 
higher speed than block ciphers (such as AES and Triple DES) and have lower hard-
ware complexity, which is very important in mobile handsets.  
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When using stream ciphers, we need to be careful in the key used for encryption. 
For stream ciphers to be safe, the key needs to be completely random and must not be 
used again. When MR is shorter than ML, we need to generate a longer key (KL) from 
shorter message MR by using a KDF (Key Derivation Function) based on hash func-
tions such as SHA-1 and SHA-256[9]. When |MR| = |ML|, we can choose lighter shuf-
fling algorithms. 

4 Key Generation Functions 

In this section, we look into the key generation functions FR and FL. We evaluate the 
strength of KR and KL which are generated by two different algorithms: A KDF using 
SHA-1 (|MR| < |ML|) and a proposed scrambler (|MR| = |ML|).  

4.1 Methodologies 

Figure 4 shows a key derivation function used in ANSI X9.63[12]. The message M is 
split into j pieces and fed to SHA-1 hash function along with counter values. By con-
catenating resulting stings k1…kj, the key K is achieved.  

 

 

k3 kjk1 k2

K

YCounter

+1 +1 +1

SHA-1

SHA-1

SHA-1
SHA-1

     

・・・

・・・

・・

n bitn bit

m1

k3 kjk1 k2

K

Y

m2 m3 mj

IV

    
Fig. 4. A Key Derivation Function.                      Fig. 5. Scrambling Algorithm. 

Figure 5 shows our proposed scrambling algorithm. This algorithm splits input 
message Y with every fixed length (64, 128, 256, 512 bytes) to generate m1, m2, …, 
mj. Then calculate k1 = IV ⊕ m1, ki = ki-1 ⊕ mi. Here ⊕ denotes XOR operation and 
IV denotes initial value. We get the entire key K by concatenating m1, m2, … , mj. 

4.2 Evaluation 

We evaluate the strength of the key generated by the algorithms mentioned previously. 
The strength of the key is assessed as a randomness of symbols appeared in K.  Vari-
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ous statistical tests can be applied to a sequence to attempt to compare and evaluate 
the sequence to a truly random sequence. A practical randomness assessment of a 
string is defined in NIST SP800-22[13]. A statistical test is formulated to test a spe-
cific null hypothesis (H0).  The null hypothesis under test is that the sequence being 
tested is random.  Associated with this null hypothesis is the alternative hypothesis 
(Ha) which is that the sequence is not random.  For each applied test, a decision or 
conclusion is derived that accepts or rejects the null hypothesis. Each test is based on 
a calculated test statistic value, which is a function of the data. The test statistic is 
used to calculate a P-value that summarizes the strength of the evidence against the 
null hypothesis.  For these tests, each P-value is the probability that a perfect random 
number generator would have produced a sequence less random than the sequence 
that was tested, given the kind of non-randomness assessed by the test. If a P-value 
for a test is determined to be equal to 1, then the sequence appears to have perfect 
randomness.  A P-value of zero indicates that the sequence appears to be completely 
non-random. A P-value ≥ 0.01 would mean that the sequence would be considered to 
be random with a confidence of 99 %.  A P-value < 0.01 would mean that the conclu-
sion was that the sequence is non-random with a confidence of 99 %. For practical 
reasons, 0.01 is often used as a threshold to test the sequence. In this paper, we use 
proportion and uniformity of p-value is assessed.  

Table. 3. Proportion of p-value > 0.01. 

Method Material Frequency Runs Rank Cusum 
(Original M) Plain text 

Zip 
0 (NG) 
0.021 (NG) 

0 (NG) 
0.029 (NG) 

0 (NG) 
0.014 (NG) 

0 (NG) 
0.988 (OK) 

KDF Plain text 
Zip 

0.992 (OK) 
0.991 (OK) 

0.994 (OK) 
0.988 (OK) 

0.994 (OK) 
0.993 (OK) 

0.987 (OK) 
0.988 (OK) 

Scrambler 
(64 bytes) 

Plain text 
Zip 

0.540 (NG) 
0.992 (OK) 

0.436 (NG) 
0.987 (OK) 

0.514 (NG) 
0.993 (OK) 

0.713 (NG) 
0.985 (OK) 

Scrambler 
(128 bytes) 

Plain text 
Zip 

0.565 (NG) 
0.988 (OK) 

0.567 (NG) 
0.991 (OK) 

0.539 (NG) 
0.987 (OK) 

0.992 (NG) 
0.960 (OK) 

Scrambler 
(256 bytes) 

Plain text 
Zip 

0.489 (NG) 
0.995 (OK) 

0.578 (NG) 
0.983 (OK) 

0.383 (NG) 
0.988 (OK) 

0.960 (OK) 
0.984 (OK) 

Table 4. Uniformity of p-value. 

Method Material Frequency Runs Rank Cusum 
(Original 

M) 
Plain text 

Zip 
0 (NG) 
0 (NG) 

0 (NG) 
0 (NG) 

0 (NG) 
0 (NG) 

0 (NG) 
3.2×10-4 (OK) 

KDF Plain text 
Zip 

0 (NG) 
0.244 (OK) 

7.3×10-8 (NG) 
3.2×10-1 (OK) 

0 (NG) 
0.123 (OK) 

1.3×10-6 (NG) 
2.9×10-6 (NG) 

Scrambler 
(64 bytes) 

Plain text 
Zip 

0 (NG) 
0.850 (OK) 

0 (NG) 
0.132 (OK) 

0 (NG) 
0.738 (OK) 

0 (NG) 
5.4×10-2 (OK) 

Scrambler 
(128 bytes) 

Plain text 
Zip 

0 (NG) 
0.083 (OK) 

0 (NG) 
0.138 (OK) 

0 (NG) 
0.010 (OK) 

6.1×10-13 (NG)  
1.2×10-3  (OK) 

Scrambler 
(256 bytes) 

Plain text 
Zip 

0 (NG) 
0.070 (OK) 

0 (NG) 
3.5×10-3 (OK) 

0 (NG) 
0 (NG) 

0 (NG) 
1.4×10-2 (OK) 

 
We choose 1,000 documents available at copyright free online library named Ao-

zora Bunko[14]. We choose cumulative sums (cusum) test, runs test, rank test, and 
frequency test as a measure. The result is shown in Table 3 & 4. 
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The experiment results show that random keys can be generated from zipped text 
files by using either KDF or proposed scrambler. On the other hand, it turned out that 
original plain text data is not suitable as source of keys. This is mainly due to the 
biased appearance probability of ascii code in the plain text data. As a zipped file 
consists of a sequence of randomized symbols due to the compression operation, 
randomness of plaintext is higher than uncompressed text message. In this sense, 
compressed files such as zipped file, JPEG, PNG picture files, MP3, MPEG multime-
dia files can be used as a good input data for generating a strong key. Plain text mes-
sages have to be compressed or randomized before key generation. As a randomize 
mechanism, it will appropriate to apply XOR with a random sequence generated by 
fast random sequence generators such as Mersenne Twister[15]. 

5 Conclusions 

In this paper, we presented a self-encryption scheme for mobile distributed storage 
system. Self-encryption scheme exploits the heterogeneity of data files to automati-
cally generate a longer encryption key sequence. A distributed storage system based 
on this approach has several advantages as follows: 
1. As an encryption key is automatically generated from each data file, the keys be-

come unique to the files. It means the key becomes stronger against attacks. More-
over, even if one of the keys is broken, the others stay safe. 

2. Each encryption key can be generated by different ways. Users can optimize the 
cost and benefit by choosing the algorithms, the size of key (MR and CR), the en-
cryption algorithm (ER and EL) depending on the available computation and com-
munication resources and necessary security levels. 

3. As a long and strong key can be generated, lighter encryption algorithm such as 
XOR based stream cipher can be chosen. 

As an evaluation of our approach, we presented a randomness test of encryption keys 
generated in different ways. The evaluation results show that resulting keys are ran-
dom as long as zipped files are fed as input source.  

Currently, we are implementing our system into mobile handsets and see the feasi-
bilities of our approach. The primal goal is to realize a user-friendly security mecha-
nism that balances usability and security. In this sense, we will look for an integrated 
mechanism with existing security infrastructure such as PKI. 
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