
Supporting Time-variant Artifacts
in Groupware Applications

Eberhard Grummt1,2 and Alexander Lorz1

1 Dresden University of Technology
2 SAP Research, CEC Dresden

Abstract. Asynchronous groupware strives to provide a “shared memory” for
distributed workers. However, current systems fail to keep track of changes in
work and organizational structures, leading to old information being discarded
instead of being archived. Especially in so called “Virtual Organizations”, where
such changes happen often, being able to “go back in time” is desirable. We
present a generic relational data model including operations capable ofstoring
and querying time-variant data. The applicability of this model is discussedbased
on experiences with a prototypical application enabling visualization and interac-
tion with respective information.

1 Introduction

Groupware systems supporting collaboration, coordination, and communication have
established themselves as valuable tools for people working on joint projects. Especially
in Virtual Organizations (VOs) spanning several physically distributed teams such sup-
port is crucial. The ultimate goal of asynchronous groupware is to provide a “shared
memory” for all co-workers so every participant stays awareof appointments, tasks,
documents etc. However, a widely accepted quality of VOs is their frequent reconfigu-
ration by dynamically mapping satisfiers to requirements [7], which means that all these
things as well as the teams themselves are changing constantly. Reflecting these changes
is a requirement that is not sufficiently addressed by most open source groupware prod-
ucts. Their majority can store only one specific view of the modeled real world. This
view is a “snapshot” considered to be “current”, whereas former views are discarded
by overwriting or deleting the respective data. For example, after a task has been re-
moved, it is not possible to tell if it has ever existed, let alone who was responsible for
it. To remedy these shortcomings, concepts in at least two areas have to be developed.
Firstly, sound and easy to use generic data models describing objects and their rela-
tions with respect to temporal changes are essential. Secondly, suitable metaphors and
user interfaces are required to seamlessly integrate time-variance into human-computer
interaction.

This paper illustrates the need for supporting time-variance in asynchronous group-
ware tools as well as arising technical issues (Section 3). Based on requirements de-
scribed in Section 4, we present a temporal data model (Section 5). In Section 6, we de-
scribe our experimental prototype, including our approachto introducing time-variance
at the user interface level. We close with a discussion of thelessons learned and an
outlook towards future work.

Grummt E. and Lorz A. (2007).
Supporting Time-variant Artifacts in Groupware Applications.
In Proceedings of the 4th International Workshop on Computer Supported Activity Coordination, pages 35-44
DOI: 10.5220/0002417400350044
Copyright c© SciTePress



2 Related Work

Frank [2] gives an overview of concepts for modeling temporal phenomena. Jensen
and Dyreson [4] provide a glossary of terms related to time-variance and temporal
databases. Knolmayer and Myrach [6] discuss how temporal data can be represented
in business software. Most approaches to modeling time-variant data are extensions
of the Entity-Relationship-Model. Gregersen and Jensen [3] survey more than ten of
these, includingERT, TEER, andTERM [5]. A discussion of the meaning of “now” in
databases is conducted by Clifford et al. [1]. Even though current commercial databases
do not feature comprehensive support for temporal structures, a lot of theoretical back-
ground has already been explored. Snodgrass et al. [9] introduce the languageTSQL2,
an extension of the SQL standard supporting complex time-related queries. Wang and
Zaniolo [10] propose an XML-based language for describing and querying temporal
data.
However, existing approaches to incorporating time-variance in actual database systems
suffer performance issues and high complexity, leading to alack of reference implemen-
tations.

The kind of groupware we focus on is characterized by providing asynchronous ac-
cess to shared tools and information such as a calendars and tasks. Other types of group-
ware include Wikis and Version Control Systems. These do feature a notion of “time”
by preserving past states of the system. However, they are rather focused on processing
information richdata (such as arbitrarily structured text) than on highly structured (se-
mantically rich) data that contains relations and has specific demands regarding (tem-
poral) integrity. An approach to enhancing the desktop metaphor by a notion of time
is presented by Rekimoto [8]. The time-variant desktop calledTimeScapecan be set to
any desired time, where objects can be created, pasted, modified, or removed. Objects
are not deleted but archived, graphically this is expressedby letting icons of “removed”
objects fade away as time passes by. The backup tool “Time Machine” of the announced
Mac OS X Leopardreflects some of these ideas.

3 The Need for Time-variant Groupware in Virtual Organizatio ns

None of the web based groupware systems we evaluated is capable of sufficiently docu-
menting the changes over time regarding team membership, task assignment and other
highly structured data. Yet often, it is desirable to “go back in time” to see what data
was considered “current” at a chosen point in time. When dealing with potentially large
objects such as media files, the costs of not deleting data that users discard need to be
considered. In groupware systems processing mostly short and highly structured textual
or numeric data this is not a limiting aspect. However, security and privacy concerns
arise when potentially confidential information cannot be deleted permanently.

When talking about “time” with regard to groupware or database systems, it is im-
portant to distinguish between several notions (see [4]).Valid Timespecifies when cer-
tain propositions in the modeled real world are considered true. In IT systems, these are
usually specified by the user. In contrast,Transaction Timerepresents the time when
an element was available inside the IT system.User-defined Timerefers to temporal

36



attributes not interpreted by the system. ATemporal Databasesupports at least one
of the first two conceptions of time. Databases supporting Valid Times are calledHis-
toric Databases, whereas databases supporting Transaction Times are called Rollback
Databases. Bitemporal Databasessupport both aspects. These distinctions can be ap-
plied to groupware systems, too. We argue that in such systems, Valid Time is more
important than Transaction Time, because we are more interested in facts about the real
world than in functional aspects of the technical system. However, it needs to be con-
sidered that forcing users to enter Valid Times puts additional effort on the involved
interactions.

Regarding group awareness, most systems only support the current time and place
of co-workers, but not the respective history. Yet, information about “who worked on
what, when and where” is potentially useful.

4 Requirements Analysis

The main requirement of the conceived time model is the ability to seamlessly document
changes of the modeled real-world artifacts. Thus, we focuson Valid Time. We need to
consider that certain points in time in the past or in the future may be unknown to the
user. The reasons can be different: either the user does not have specific plans for the
future yet, or he does not have access to all necessary facts from the past.

Since members of a VO can be distributed over different time zones, these need to
be supported either explicitly or by using normalized time values. The time and data
models need to support persistent storage mechanisms in a way that saving, loading,
deleting and searching of data sets can be conducted with sufficient performance. The
precision of the time information is to be derived from practical requirements of VOs.

The data model has to be as versatile as possible, to meet not only the requirements
of a groupware system for VOs but also other potential applications. It is meant to serve
as a solid, low-level basis for semantically rich (highly structured) models. Hierarchies
and non-hierarchical relations are to be supported. The data model needs to support the
basic operations create, read, update and delete with respect to well-defined temporal
consistency constraints. To ensure ease of use, manageability, and reasonable imple-
mentation effort, the model needs to be easy to comprehend and should rely on as few
operations as possible.

5 A Relational Data Model for Time-variant Structures

In this section, we describe our time and data models including temporal consistency
constraints and a set of operations.

5.1 Time Model

Our time model is based on intervals describing the temporalvalidity of specific infor-
mation about the real world (validity intervals). Intervals are defined by their start and
end points (tstart und tend) on a discrete time axis with a resolution of one second.

37



We consider this resolution sufficient for typical applications in VOs, however, the ap-
proaches presented below can equally well be applied to discrete time models of higher
resolutions. The intervals are closed, i.e. theirtstart andtend values are part of them.

The format of time values is taken fromXML Schemaand is structured like this:
YYYY-MM-DDThh:mm:ss, with T being a separating character. All time values are
relative to a reference time zone (UTC), so the internal operations for comparison and
checking of consistency constraints can be implemented with less effort. This only af-
fects the internal storage of data, not necessarily the userinterface built on top of this
data.

Besides concrete time values, two special values are part ofthe model.Until changed
(uc) represents the fact that information is valid until something different is specified.
Consequently,uc can only be used as a value fortend. Its counterpart isnot known
(nk), describing that the start time of a validity interval is unknown. Thus,nk can only
be assigned totstart.

5.2 Data model

Objects are considered unique entities composed of time-variant attributes. They can
be put in time-variant relationships with otherObjects. Objects are composed of
Versions, each of which represents attributes and relations that areconstant over a
particular time interval. That means our data model istemporally ungrouped, however
a temporally groupedview, e.g. using XML, can be created easily. EveryObject con-
tains at least oneVersion and itself has a validity interval, which can be derived from
its Versions. Using a particularVersion, holistic statements about theObject it
belongs to can be made.

Time

V ersion1

V ersion1 V ersion2 V ersion3

Object1

Object2

t1

t1 t2 t3

t4

t4t2 + 1 t3 + 1

Fig. 1. Two relatedObjects and theirVersions.

Relationsare symmetric links between twoObjects. They are treated as attributes
of Versions and thus are not modeled as separate entities. Relations themselves have
no attributes and inherit their validity intervals from therespectiveVersions. Be-
causeObjects are actually a kind of a container forVersions, relations point to
Objects rather than to specificVersions of the linkedObject (see Fig. 1). The
required symmetry of the relation needs to be ensured by proper setup of the involved
Versions.

38



5.3 Consistency Constraints

For Objects and theirVersions, we introduce the following consistency con-
straints regarding their validity intervals:

– C1: No changes during the validity interval.The attributes and relations stored
in aVersion are constant over its whole validity interval.

– C2: No redundancy through similar Versions. AdjacentVersions differ in
at least one attribute or relation.

– C3: No gaps.There are no gaps between the validity intervals of anObject’s
Versions.

– C4: No overlapping.For any given point in time, eachObject has exactly one
or noVersion.

– C5: Temporal consistency of relations.All Objects that are put in relation are
valid throughout the whole validity interval of the relation.

From C3 follows that, for a givenObject, the union of all theVersion’s validity
intervals is equal to theObject’s validity interval. It also follows that the validity
interval of anObject can be determined by combining the oldestVersion’s tstart

and the newestVersion’s tend into an interval. From C4 follows that, for a given
Object, the intersection of all theVersion’s validity intervals is empty. This also
implies that for only oneVersion perObject tstart=nk or tend=uc may be true
(one singleVersion with tstart=nk andtend=uc is in particular valid). From C5 and
C1 follows that at the beginning and the end time of a relation, all involvedObjects
need to have “version borders”. While gaps in anObject’s validity interval are not
permitted (C3), relations can have temporal breaks. For example, a user can be part of a
group, then leave it and later rejoin it, leading to a logical“is member of”-relation with
a gap.

5.4 Definition of Operations

In this section, we present four basic and two derived operations on our data model.
They allow integration of new information with already known facts, automatically en-
forcing our constraints by adjusting validity intervals and creating, merging, or deleting
Versions as needed. This simplifies usage of functionality for both the application
programmer and the end user.

(1) Add Version. This operation adds aVersion to anObject. It can be distin-
guished betweenadding with overwritingandadding without overwriting. The latter is
equivalent to checking the consistency constraints and adding only if no constraints are
violated (exception: overlapping with a right openVersion, see Fig. 2A). The gen-
eral case, that is, “adding with overwriting”, only requires the validity interval of the
input information (Version) to touch or overlap the validity interval of theObject
that the newVersion is to be assigned to (C3). The other consistency constraints
can be satisfied automatically by overwriting, splitting (C1) or merging (C2) existing
Versions.

39



(2) Remove Version. When removing aVersion, two general cases can be dis-
tinguished. Firstly, theVersion to be removed can be the temporally first or last
Version of anObject. In this case, it can simply be removed from theObject.
However, further steps might be necessary to meet C5. Secondly, aVersion can be an
“inner Version”, having a temporal predecessor and successor. In this case, simply
removing it would leave a gap and thus violate C3. This is compensated by extending
the adjacentVersions by half the length of the removedVersion. Another possi-
bility would be to extend only one of the adjacentVersions, letting the user decide
which one to use. However, we opted for the “interpolation approach” to keep required
user interactions at a minimum.

(3) Change Version. Solely changing aVersion’s attributes corresponds to adding
a newVersion with the desired attributes at exactly the same place, thus overwriting
the oldVersion. Practically, the attributes can be changed directly.
Changing the validity interval of a specificVersion is more complicated because
all otherVersions of the respectiveObject could be affected. The length of a
Version’s validity interval can either remain unchanged, be compressed or stretched.
The case that the length remains unchanged andtstart and tend are shifted by the
same amount into one direction can be described by using compression on one side
and stretching on the other.

V2

A B

beforebefore

intermediate result

afterafter

to addto add

splitting splitting

O1V1

O1V1

O1V1

O1V1

O1V1

O2V1

O2V1

O2V1

O2V2

O2V2

V ersion1

V ersion1

V ersion2

V ersion2

V ersion3

V ersionnew

Relation1

Relation1

Fig. 2.Adding aVersion (A) and Adding a relation (B).

If a Version is to be compressed, it is shortened and inserted into theObject.
Then, copies of the formerly adjacentVersions are stretched to touch the newly in-
sertedVersion and inserted, thus overwriting the remainders of the formerly adjacent
Versions. Stretching is done by making a copy of the respectiveVersion, adjust-

40



ing the validity interval and adding it. This can lead to several (not only the adjacent)
Versions to be partially or completely overwritten.

(4) Add Relation. Handling relations needs special care because C5 is not onlyaf-
fected by directly manipulating relations, but also by manipulating theObjects that
are linked by a specific relation. The simplest case is that a relation is added between
two Objects consisting of only oneVersion each and sharing a common validity
interval. Here, the relation can be established without anyfurther steps. When a rela-
tion is to be established between twoObjects that only partially overlap in time, the
maximum possible interval for the relation is determined byintersecting the validity
intervals of the twoObjects and the desired relation. Then, theVersions at tstart

andtend of this interval are split to ensure C1 after the relation is added. Finally, the
relation itself can be applied (see Fig. 2B). SplittingVersions at tstart andtend of
the relation’s validity interval can result in up to two newVersions.

(5) Remove Relation.Relations can be removed completely by deleting the respective
references in all affectedVersions. Afterwards, someVersions might need to be
merged to ensure compliance with C2. If only a part of a relation is to be removed, then
this part is subtracted from the original relation. Again, splitting or merging at the new
tstart andtend values of the resulting relations’ intervals may be necessary.

(6) Change Relation.Changing a relation can be expressed as adding (overwriting) or
removing parts of a relation.

Effects on relations of changes to Objects.WhenVersions are modified, the rela-
tions between the respectiveObjects might need to be updated. Deleting, compress-
ing or stretching ofVersions might become necessary, but also splitting or merging.
Just like in relational databases, the referential integrity needs to be assured when a
Version referencing anObject is deleted. OverwritingVersions containing re-
lations is a separate problem. The easy way would be to removethe relations in the
newVersion’s validity interval. However, the information about theObject’s re-
lations does not need to be sacrificed. Because adding aVersion can not shorten an
Object’s validity interval, C5 can not be violated. However, it needs to be ensured
that after adding theVersion, C1 is still valid. Therefore, the newVersion needs to
be split at all borders of the overwrittenVersions where changes regarding relations
occur.

6 Experimental Prototype

Using the Java programming language and JSP scripts, we implemented a groupware
prototype demonstrating the developed concepts. Temporaldata can be inserted, modi-
fied and deleted using a web-based GUI. Data is persisted by means of an XML-based
language we specified using XML Schema, proving our model’s applicability in XML

41



Fig. 3.Our GUI showing a form for entering time-variant information.

databases. As an example scenario, we used a typical data model for groupwork, con-
sisting of hierarchical groups, projects, and tasks along with users that can be associated
directly or by role. Each of these entities is derived from a special data type providing
functionality for the operations discussed in Section 5.4.Working with these versioned
objects and treating relations as attributes of versions proved to be convenient once the
implementation taking care of our consistency constraintswas available.

The user interfaces employs a set of widgets called “time control bar” enabling the
selection of arbitrary time intervals. This selection actsas a filter for the data that can be
interacted with in a main area. Information from the selected interval can be presented
as lists, detail views, forms, and interactive timelines. Time variance is reflected in all
of these elements:
Lists can be rendered either to display the current information orto show data from an
arbitrary, user-defined time interval. In the latter case, the newestVersion overlapping
the chosen interval is used to represent the respectiveObject. Using the checkbox
“show evolution”, earlierVersions of eachObject can be displayed in separate,
indented rows. Using colors and icons, the temporal role of eachVersion is further
illustrated.
Detail views display all theVersions of oneObject, highlighting attributes and
relations that have changed from oneVersion to its successor. Bars are used to illus-
trate the validity intervals of eachVersion.
Interactive timelines display multipleObject’s and theirVersion’s validity inter-
vals and, on mouse-over, their attributes and relations.
Forms provide common widgets to enable user input. In addition, each form lets users
specify the information’s validity interval. By default, this interval is set to (now, uc).
Relations can be specified using a separate tab which provides “select multiple” lists
with Objects that can potentially be put in relation with the input data. Users found it
intuitive to enter data using the enhanced forms. Detail views were also easily grasped.
However, lists were sometimes found confusing as it was not clear whichVersion
was actually used for display.

42



7 Lessons Learned and Future work

Our concepts of relations andObjects consisting ofVersions have proved to be
technically well suited for storage and retrieval of time-variant data. The advantage
of usingVersions is thatholistic statements (as opposed to statements about single
attributes) about some entity over certain intervals can bemade.

Adding support for time-variant artifacts doesn’t come forfree, but the experience
with applying our model to the prototype scenario has shown that it can be done with
reasonable effort. The model provides lightweight metaphors and a small but sufficient
set of predefined operations promising a steep learning curve. Application developers
often implement relations as attributes of the objects involved. Expressing temporal
changes of relations between objects as changes in their respective attributes instead
of using additional time-variant entities supports this point of view. The ability to ex-
press temporal changes can be incorporated into an existingapplication model without
changing its basic structure. Business logic can be implemented with a few rules in
mind that map desired changes in the data model to the six operations of our temporal
model. The price for simplicity is increased redundancy by saving unchanged attributes
multiple times. This should be coped with by a more efficient versioning layer for ob-
jects that stores version differences instead of full object copies. Another solution would
be a temporally grouped representation (that is, every attribute holds its own history).
Such a representation can be serialized using XML, rather complicated table structures
in common RDBMS, or nested tables as supported bySQL:2003.

From our point of view, finding sufficient user interface metaphors is crucial for
implementing “temporal awareness” into groupware. Users are accustomed to software
that only has concepts for “now”. If a person is removed from agroup, the interaction
either happens because the person just left the group or the person was wrongly assigned
to it. In conventional groupware there is no need to care about the difference between
these operations because the result is the same – the person is currently not in the group.
If we start to support time variance we have to make the user aware of a distinction he
is not used to express explicitly. This could prove to be muchharder than implementing
an efficient data model.

Virtual Organizations can employ software similar to our prototype to keep track of
all their internal changes. However in real world settings,one would need to consider
concurrency and transactional issues. Enhanced access control would be necessary to
prevent unauthorized users from overwriting information that refers to the past.

We also strive for more intuitive ways to input information,not forcing users to think
in terms of versions. Our goal is to empower users to intuitively enter facts like “person
X changed her e-mail address to w@xyz.com in 2006”. We want them to be able to
specify single facts (as opposed to filling in a complete form) and also want to support
additional unspecific, “fuzzy” time values. Next, we want toexamine possibilities how
this can be supported at the user interface level. In addition, we want to explore how
time-variant information can be visualized and manipulated graphically. We already
developed concepts for interactive “time bars”, that were however not included in our
prototype due to technical limitations. These concepts need to be refined, evaluated and
extended to support large amounts of data and longer time intervals, for example using
perspective distortion andOverview and Detailtechniques.

43



References

1. James Clifford, Curtis Dyreson, Tomas Isakowitz, Christian S. Jensen, and Richard Thomas
Snodgrass. On the semantics of “now” in databases.ACM Trans. Database Syst., 22(2):171–
214, 1997.

2. Andrew Frank.Spatial and Temporal Reasoning in Geographic Information Systems, chapter
Different types of “times” in GIS. Oxford University Press, 1995.

3. Heidi Gregersen and Christian S. Jensen. Temporal entity-relationship models - a survey.
Knowledge and Data Engineering, 11(3):464–497, 1999.

4. C. S. Jensen and C. Dyreson. The consensus glossary of temporal database concepts february
1998 version. 1998.

5. M. R. Klopprogge. Term: An approach to include the time dimension in theentity-
relationship model. InProceedings of the Second International Conference on the Entity
Relationship Approach, pages 477–512, Washington, DC, 1981.

6. G. Knolmayer and T. Myrach. Zur abbildung zeitbezogener daten in betrieblichen informa-
tionssystemen.Wirtschaftsinformatik, 38:63–74, 1996.

7. Abbe Mowshowitz. Virtual organization.Communications of the ACM, 40:30–37, 1997.
8. Jun Rekimoto. Timescape: a time machine for the desktop environment.In CHI ’99: CHI

’99 extended abstracts on Human factors in computing systems, pages 180–181, New York,
NY, USA, 1999. ACM Press.

9. Richard T. Snodgrass, Ilsoo Ahn, Gad Ariav, Don S. Batory, James Clifford, Curtis E. Dyre-
son, Ramez Elmasri, Fabio Grandi, Christian S. Jensen, Wolfgang Kafer, Nick Kline, Kr-
ishna G. Kulkarni, T. Y. Cliff Leung, Nikos A. Lorentzos, John F. Roddick, Arie Segev,
Michael D. Soo, and Suryanarayana M. Sripada. Tsql2 language specification. SIGMOD
Record, 23(1):65–86, 1994.

10. Fusheng Wang and Carlo Zaniolo. An xml-based approach to publishing and querying the
history of databases.World Wide Web, 8(3):233–259, 2005.

44


