Supporting Time-variant Artifacts
in Groupware Applications

Eberhard Grumnit? and Alexander Lorz

1 Dresden University of Technology
2 SAP Research, CEC Dresden

Abstract. Asynchronous groupware strives to provide a “shared memony” fo
distributed workers. However, current systems fail to keep trackhahges in
work and organizational structures, leading to old information being disda
instead of being archived. Especially in so called “Virtual Organizationbere
such changes happen often, being able to “go back in time” is desiralele. W
present a generic relational data model including operations capabterofg

and querying time-variant data. The applicability of this model is discusaseld

on experiences with a prototypical application enabling visualization anca3ter
tion with respective information.

1 Introduction

Groupware systems supporting collaboration, coordinatmd communication have
established themselves as valuable tools for people wgpddroint projects. Especially
in Virtual Organizations (VOs) spanning several physicdlktributed teams such sup-
port is crucial. The ultimate goal of asynchronous grougwarto provide a “shared
memory” for all co-workers so every participant stays awafr@ppointments, tasks,
documents etc. However, a widely accepted quality of VORke# frequent reconfigu-
ration by dynamically mapping satisfiers to requiremenisjiich means that all these
things as well as the teams themselves are changing cdgsieftecting these changes
is a requirement that is not sufficiently addressed by moshgpurce groupware prod-
ucts. Their majority can store only one specific view of thedeled real world. This
view is a “snapshot” considered to be “current”, whereasnfarviews are discarded
by overwriting or deleting the respective data. For examafter a task has been re-
moved, it is not possible to tell if it has ever existed, letred who was responsible for
it. To remedy these shortcomings, concepts in at least teasanave to be developed.
Firstly, sound and easy to use generic data models desgritijects and their rela-
tions with respect to temporal changes are essential. 8c@uitable metaphors and
user interfaces are required to seamlessly integratevariance into human-computer
interaction.

This paper illustrates the need for supporting time-vasain asynchronous group-
ware tools as well as arising technical issues (Section 83eB on requirements de-
scribed in Section 4, we present a temporal data model (8€s}i In Section 6, we de-
scribe our experimental prototype, including our appraadhtroducing time-variance
at the user interface level. We close with a discussion ofleksons learned and an
outlook towards future work.
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2 Related Work

Frank [2] gives an overview of concepts for modeling temppieenomena. Jensen
and Dyreson [4] provide a glossary of terms related to tigance and temporal
databases. Knolmayer and Myrach [6] discuss how tempotal an be represented
in business software. Most approaches to modeling timesviadata are extensions
of the Entity-Relationship-Model. Gregersen and JensgisuBsey more than ten of
these, includindeRT, TEER andTERM[5]. A discussion of the meaning of “now” in
databases is conducted by Clifford et al. [1]. Even thoughetii commercial databases
do not feature comprehensive support for temporal strastur lot of theoretical back-
ground has already been explored. Snodgrass et al. [9funteothe languagéSQL2
an extension of the SQL standard supporting complex tirtste@ queries. Wang and
Zaniolo [10] propose an XML-based language for describindg querying temporal
data.

However, existing approaches to incorporating time-varéain actual database systems
suffer performance issues and high complexity, leadinddolaof reference implemen-
tations.

The kind of groupware we focus on is characterized by progdisynchronous ac-
cess to shared tools and information such as a calendarasksd Other types of group-
ware include Wikis and Version Control Systems. These dtufea notion of “time”
by preserving past states of the system. However, they #rerfmcused on processing
information richdata (such as arbitrarily structured text) than on highlycitired ée-
mantically rich) data that contains relations and has specific demandgdieggtem-
poral) integrity. An approach to enhancing the desktop pteiaby a notion of time
is presented by Rekimoto [8]. The time-variant desktopecillimeScapean be set to
any desired time, where objects can be created, pastedfieahdir removed. Objects
are not deleted but archived, graphically this is exprebgddtting icons of “removed”
objects fade away as time passes by. The backup tool “Timé&Metof the announced
Mac OS X Leopardeflects some of these ideas.

3 The Need for Time-variant Groupware in Virtual Organizatio ns

None of the web based groupware systems we evaluated isleapaiifficiently docu-
menting the changes over time regarding team membersblpassignment and other
highly structured data. Yet often, it is desirable to “golbactime” to see what data
was considered “current” at a chosen point in time. When dgalith potentially large
objects such as media files, the costs of not deleting dataisieas discard need to be
considered. In groupware systems processing mostly shottighly structured textual
or numeric data this is not a limiting aspect. However, ségc@and privacy concerns
arise when potentially confidential information cannot kéeted permanently.

When talking about “time” with regard to groupware or data&bsgstems, it is im-
portant to distinguish between several notions (see Y&ljd Timespecifies when cer-
tain propositions in the modeled real world are considengel in IT systems, these are
usually specified by the user. In contrabtansaction Timeepresents the time when
an element was available inside the IT systéiser-defined Timeefers to temporal
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attributes not interpreted by the system.Témporal Databassupports at least one
of the first two conceptions of time. Databases supportingi\Vames are calledHis-
toric Databaseswhereas databases supporting Transaction Times are Eadléback
DatabasesBitemporal Databasesupport both aspects. These distinctions can be ap-
plied to groupware systems, too. We argue that in such sgsteatid Time is more
important than Transaction Time, because we are more gtégtén facts about the real
world than in functional aspects of the technical systemweéier, it needs to be con-
sidered that forcing users to enter Valid Times puts additi@ffort on the involved
interactions.

Regarding group awareness, most systems only support trenttime and place
of co-workers, but not the respective history. Yet, infotiora about “who worked on
what, when and where” is potentially useful.

4 Requirements Analysis

The main requirement of the conceived time model is thetgltdiseamlessly document
changes of the modeled real-world artifacts. Thus, we focugalid Time. We need to

consider that certain points in time in the past or in theritmay be unknown to the
user. The reasons can be different: either the user doesawmetdpecific plans for the
future yet, or he does not have access to all necessary fanotdlie past.

Since members of a VO can be distributed over different tiores, these need to
be supported either explicitly or by using normalized tinadues. The time and data
models need to support persistent storage mechanisms iy ghatasaving, loading,
deleting and searching of data sets can be conducted withisof performance. The
precision of the time information is to be derived from pieatrequirements of VOs.

The data model has to be as versatile as possible, to meetigdhe requirements
of a groupware system for VOs but also other potential appbios. It is meant to serve
as a solid, low-level basis for semantically rich (highlgustured) models. Hierarchies
and non-hierarchical relations are to be supported. Therdatlel needs to support the
basic operations create, read, update and delete withatetsperell-defined temporal
consistency constraints. To ensure ease of use, mandgeahill reasonable imple-
mentation effort, the model needs to be easy to comprehahdlauld rely on as few
operations as possible.

5 A Relational Data Model for Time-variant Structures

In this section, we describe our time and data models inetutémporal consistency
constraints and a set of operations.

5.1 Time Model

Our time model is based on intervals describing the tempadality of specific infor-
mation about the real world/élidity intervalg. Intervals are defined by their start and
end points {.,+ Undt.,s) on a discrete time axis with a resolution of one second.
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We consider this resolution sufficient for typical applioas in VOs, however, the ap-
proaches presented below can equally well be applied toadéstime models of higher
resolutions. The intervals are closed, i.e. thgit,., andt.,q values are part of them.

The format of time values is taken froXML Schemaand is structured like this:
YYYY- Mt DDThh: mm ss, with T being a separating character. All time values are
relative to a reference time zondTC), so the internal operations for comparison and
checking of consistency constraints can be implemented edts effort. This only af-
fects the internal storage of data, not necessarily theingsface built on top of this
data.

Besides concrete time values, two special values are ptnt ofiodellUntil changed
(uc) represents the fact that information is valid until sonmedtdifferent is specified.
Consequentlyuc can only be used as a value fQr,4. Its counterpart isiot known
(nk), describing that the start time of a validity interval iskkaown. Thusnk can only
be assigned t6s:+.

5.2 Data model

Obj ect s are considered unique entities composed of time-varitnivaties. They can
be put in time-variant relationships with oth@bj ect s. Obj ect s are composed of
Ver si ons, each of which represents attributes and relations that@rstant over a
particular time interval. That means our data modéemporally ungroupechowever
atemporally groupediew, e.g. using XML, can be created easily. EvEbj ect con-
tains at least on¥er si on and itself has a validity interval, which can be derived from
its Ver si ons. Using a particulaier si on, holistic statements about tigbj ect it
belongs to can be made.

Object,
‘ t Versiony ta
A A A
A 4
‘ t1 Version; to H to+1 Versions t3|ts+1 Versions ta
Objects

Time

Fig. 1. Two relatedObj ect s and theirVer si ons.

Relationsare symmetric links between tvij ect s. They are treated as attributes
of Ver si ons and thus are not modeled as separate entities. Relatians¢hees have
no attributes and inherit their validity intervals from thespectiveVer si ons. Be-
cause(hj ect s are actually a kind of a container fder si ons, relations point to
oj ect s rather than to specifiver si ons of the linkedCbj ect (see Fig. 1). The
required symmetry of the relation needs to be ensured byepsstup of the involved
Ver si ons.



39

5.3 Consistency Constraints

For Cbj ect s and theirVer si ons, we introduce the following consistency con-
straints regarding their validity intervals:

— C1: No changes during the validity interval. The attributes and relations stored
in aVer si on are constant over its whole validity interval.

— C2: No redundancy through similar Ver si ons. AdjacentVer si ons differ in
at least one attribute or relation.

— C3: No gaps.There are no gaps between the validity intervals ofChhect ’s
Ver si ons.

— C4: No overlapping. For any given point in time, eadBbj ect has exactly one
or noVer si on.

— C5: Temporal consistency of relationsAll Cbj ect s that are put in relation are
valid throughout the whole validity interval of the relatio

From C3 follows that, for a givebj ect , the union of all thever si on’s validity
intervals is equal to th€bj ect 's validity interval. It also follows that the validity
interval of anChj ect can be determined by combining the oldest si oNn’s ¢4
and the newesver si on’s t.,4 into an interval. From C4 follows that, for a given
oj ect, the intersection of all th&er si on’s validity intervals is empty. This also
implies that for only oné/er si on per Qbj ect t44,+=nk oOr t.,,q=uc may be true
(one singleVer si on with t,,,,=nk andt.,q=uc is in particular valid). From C5 and
C1 follows that at the beginning and the end time of a relatdirinvolvedCbj ect s
need to have “version borders”. While gaps in@mnj ect ’s validity interval are not
permitted (C3), relations can have temporal breaks. Fanpieg a user can be part of a
group, then leave it and later rejoin it, leading to a logitemember of”-relation with

a gap.

5.4 Definition of Operations

In this section, we present four basic and two derived ofmeraton our data model.
They allow integration of new information with already knofacts, automatically en-
forcing our constraints by adjusting validity intervalgiareating, merging, or deleting
Ver si ons as needed. This simplifies usage of functionality for bo#hdpplication
programmer and the end user.

(1) Add Version. This operation adds ¥er si on to anQbj ect . It can be distin-
guished betweeadding with overwritingandadding without overwritingThe latter is
equivalent to checking the consistency constraints anohgduhly if no constraints are
violated (exception: overlapping with a right op¥ar si on, see Fig. 2A). The gen-
eral case, that is, “adding with overwriting”, only requrthe validity interval of the
input information Yer si on) to touch or overlap the validity interval of thébj ect

that the newMer si on is to be assigned to (C3). The other consistency constraints
can be satisfied automatically by overwriting, splittinglj@r merging (C2) existing
Ver si ons.
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(2) Remove Version. When removing a/er si on, two general cases can be dis-
tinguished. Firstly, the/er si on to be removed can be the temporally first or last
Ver si on of anbj ect . In this case, it can simply be removed from g ect .
However, further steps might be necessary to meet C5. Shgander si on can be an
“inner Ver si on”, having a temporal predecessor and successor. In this siasply
removing it would leave a gap and thus violate C3. This is cemspted by extending
the adjacenYer si ons by half the length of the removeder si on. Another possi-
bility would be to extend only one of the adjacérdr si ons, letting the user decide
which one to use. However, we opted for the “interpolatioprapch” to keep required
user interactions at a minimum.

(3) Change Version. Solely changing &er si on’s attributes corresponds to adding
a newVer si on with the desired attributes at exactly the same place, theiswwiting
the oldVer si on. Practically, the attributes can be changed directly.

Changing the validity interval of a specifder si on is more complicated because
all other Ver si ons of the respectivelbj ect could be affected. The length of a
Ver si on’s validity interval can either remain unchanged, be coraped or stretched.
The case that the length remains unchanged tgng; andt.,, are shifted by the
same amount into one direction can be described by using ressipn on one side
and stretching on the other.

before before
Versiony Versiona
\ 0:Vi
to add to add
Versionnew Relation,
intermediate result
splitting splifting
oV | 0V
after after
‘ Version, ‘Versionz‘ Versions ‘ O V1 O Vi
Relation,
A B (A% O3 Vs

Fig. 2. Adding aVer si on (A) and Adding a relation (B).

If a Ver si on is to be compressed, it is shortened and inserted int@fect .
Then, copies of the formerly adjaceviér si ons are stretched to touch the newly in-
sertedVer si on and inserted, thus overwriting the remainders of the folyraatjacent
Ver si ons. Stretching is done by making a copy of the respectfgesi on, adjust-
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ing the validity interval and adding it. This can lead to savénot only the adjacent)
Ver si ons to be partially or completely overwritten.

(4) Add Relation. Handling relations needs special care because C5 is notabnly
fected by directly manipulating relations, but also by npafating theCbj ect s that
are linked by a specific relation. The simplest case is thataion is added between
two Cbj ect s consisting of only on&/er si on each and sharing a common validity
interval. Here, the relation can be established withoutfanyer steps. When a rela-
tion is to be established between t@bj ect s that only partially overlap in time, the
maximum possible interval for the relation is determinedirigrsecting the validity
intervals of the twdObj ect s and the desired relation. Then, tier si ons att,q.¢
andt.,q of this interval are split to ensure C1 after the relationdded. Finally, the
relation itself can be applied (see Fig. 2B). Splittigr si ons at ¢, andte,q of
the relation’s validity interval can result in up to two n&er si ons.

(5) Remove Relation.Relations can be removed completely by deleting the relspect
references in all affecteder si ons. Afterwards, somé&/er si ons might need to be
merged to ensure compliance with C2. If only a part of a refais to be removed, then
this part is subtracted from the original relation. Agaipljting or merging at the new
tsiare @ndte,q Values of the resulting relations’ intervals may be neagssa

(6) Change Relation. Changing a relation can be expressed as adding (overwrding
removing parts of a relation.

Effects on relations of changes to ObjectsWhenVer si ons are modified, the rela-
tions between the respecti@j ect s might need to be updated. Deleting, compress-
ing or stretching oler si ons might become necessary, but also splitting or merging.
Just like in relational databases, the referential intggreeds to be assured when a
Ver si on referencing artbj ect is deleted. Overwriting/er si ons containing re-
lations is a separate problem. The easy way would be to reit@veelations in the
new Ver si on’s validity interval. However, the information about tidbj ect 's re-
lations does not need to be sacrificed. Because addi@ ai on can not shorten an
oj ect ’s validity interval, C5 can not be violated. However, it dego be ensured
that after adding th¥er si on, C1is still valid. Therefore, the newer si on needs to

be split at all borders of the overwritt&fer si ons where changes regarding relations
occur.

6 Experimental Prototype

Using the Java programming language and JSP scripts, wernepited a groupware
prototype demonstrating the developed concepts. Temgatalcan be inserted, modi-
fied and deleted using a web-based GUI. Data is persisted bypsvad an XML-based
language we specified using XML Schema, proving our modelsieability in XML
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Fig. 3. Our GUI showing a form for entering time-variant information.

databases. As an example scenario, we used a typical datd foodroupwork, con-
sisting of hierarchical groups, projects, and tasks aloitiy users that can be associated
directly or by role. Each of these entities is derived fronpacsal data type providing
functionality for the operations discussed in Section ®/drking with these versioned
objects and treating relations as attributes of versiooggut to be convenient once the
implementation taking care of our consistency constrairts available.

The user interfaces employs a set of widgets called “timérobbar” enabling the
selection of arbitrary time intervals. This selection asts filter for the data that can be
interacted with in a main area. Information from the sel@dtterval can be presented
as lists, detail views, forms, and interactive timelineisad variance is reflected in all
of these elements:

Lists can be rendered either to display the current informatiaio show data from an
arbitrary, user-defined time interval. In the latter calse tewesYer si on overlapping
the chosen interval is used to represent the respeCbyect . Using the checkbox
“show evolution”, earlielVer si ons of eachCbj ect can be displayed in separate,
indented rows. Using colors and icons, the temporal roleach¥&er si on is further
illustrated.

Detail views display all theVer si ons of oneQbj ect , highlighting attributes and
relations that have changed from ovier si on to its successor. Bars are used to illus-
trate the validity intervals of eacVer si on.

Interactive timelines display multipleQoj ect ’'s and theirVer si on’s validity inter-
vals and, on mouse-over, their attributes and relations.

Forms provide common widgets to enable user input. In additionhdarm lets users
specify the information’s validity interval. By defaulhjis interval is set tor{ow, uc).
Relations can be specified using a separate tab which psotsgdéect multiple” lists
with Obj ect s that can potentially be put in relation with the input dataets found it
intuitive to enter data using the enhanced forms. DetaWsieere also easily grasped.
However, lists were sometimes found confusing as it was lsatr avhichVer si on
was actually used for display.
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7 Lessons Learned and Future work

Our concepts of relations ar@bj ect s consisting ofVer si ons have proved to be
technically well suited for storage and retrieval of timeriant data. The advantage

of usingVer si ons is thatholistic statements (as opposed to statements about single

attributes) about some entity over certain intervals camade.

Adding support for time-variant artifacts doesn’'t come fige, but the experience
with applying our model to the prototype scenario has shdwat it can be done with
reasonable effort. The model provides lightweight metaphod a small but sufficient
set of predefined operations promising a steep learningecépplication developers
often implement relations as attributes of the objects limah Expressing temporal
changes of relations between objects as changes in thpeathge attributes instead
of using additional time-variant entities supports thignpof view. The ability to ex-
press temporal changes can be incorporated into an exagiplgcation model without
changing its basic structure. Business logic can be impiadewith a few rules in
mind that map desired changes in the data model to the siatiges of our temporal
model. The price for simplicity is increased redundancydirsy unchanged attributes
multiple times. This should be coped with by a more efficieansioning layer for ob-
jects that stores version differences instead of full digepies. Another solution would
be a temporally grouped representation (that is, everipaté holds its own history).
Such a representation can be serialized using XML, rath@ptdoated table structures
in common RDBMS, or nested tables as supporte®®y.:2003

From our point of view, finding sufficient user interface npitars is crucial for
implementing “temporal awareness” into groupware. Usersiacustomed to software
that only has concepts for “now”. If a person is removed frogr@up, the interaction
either happens because the person just left the group oetherpwas wrongly assigned
to it. In conventional groupware there is no need to care athaudifference between
these operations because the result is the same — the pezoreintly not in the group.
If we start to support time variance we have to make the usareaof a distinction he
is not used to express explicitly. This could prove to be mhentder than implementing
an efficient data model.

Virtual Organizations can employ software similar to oustptype to keep track of
all their internal changes. However in real world settingse would need to consider
concurrency and transactional issues. Enhanced accesslagould be necessary to
prevent unauthorized users from overwriting informatioattrefers to the past.

We also strive for more intuitive ways to input informatiomt forcing users to think
in terms of versions. Our goal is to empower users to intelienter facts like “person
X changed her e-mail address to w@xyz.com in 2006”. We wasthtko be able to
specify single facts (as opposed to filling in a complete foand also want to support
additional unspecific, “fuzzy” time values. Next, we wangetamine possibilities how
this can be supported at the user interface level. In additiee want to explore how
time-variant information can be visualized and manipwageaphically. We already
developed concepts for interactive “time bars”, that weverdver not included in our
prototype due to technical limitations. These conceptsl hebe refined, evaluated and
extended to support large amounts of data and longer tireevals, for example using
perspective distortion ardverview and Detailechniques.
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