
E-COMMERCE TRANSACTION MODELING USING
MODERATELY OPEN MULTI-AGENT SYSTEMS

A. Garcés, R. Quirós, M. Chover, J. Huerta
Department of Computer Systems, Jaume I University, Castellón, Spain

E. Camahort
Department of Computer Systems, Politechnic University of Valencia, Valencia, Spain

Keywords: Software Engineering, Agent Paradigm, e-Commerce, Transaction Systems.

Abstract: In this paper we describe how to completely develop a Multi-Agent System using the HABA Development
Framework. We propose a variant of the GAIA methodology to reduce the gap between the abstract model-
ing of Multi-Agent Systems and their practical implementation. To achieve this goal, we reduce the scope of
our methodology to a specific class of systems that we call Moderately Open Multi-Agent Systems. As an
example, we use the implementation of a set of transactions for an electronic commerce system.

1 INTRODUCTION

Computer systems have evolved from single-
processor centralized computing to multi-processor
distributed computing over wide-area networks. In
these systems, agents have become the choice of
paradigm for programming. Agent Oriented Soft-
ware Engineering has been proposed to understand,
model and develop a class of cooperative, distrib-
uted systems called Multi-Agent Systems (MAS).

Design techniques for current MAS have many
features. They allow the specification of task sched-
uling policies and information exchange protocols.
Also, they support code migration and the definition
of intentions and wishes for the system’s compo-
nents. However, implementation techniques have not
made it so far, yet. They are based on extensions of
high-level languages that maintain the artifacts and
limitations of those languages.

GAIA (Wooldridge et al, 2000) was the first
complete methodology for the analysis and design of
MAS. GAIA offers a conceptual framework large
enough to model agent-based systems focusing on
the system analysis and design stages. However, its
high abstraction level limits its application to real-
world problems because GAIA is not related to any
particular language or programming application.

To overcome these limitations we propose a
GAIA-based methodology for the development of
MAS (Garcés et al., 2007). Our methodology tries to

reduce the gap between abstract modeling and
practical implementation of a MAS in GAIA. The
methodology, called Homogeneous Agents Based
Architecture (HABA.DM) is suitable for a reduced
set of MASs with the following features:

 We impose a static organizational structure.
Agent classes and relationships do not change
during execution time. Their skills and ser-
vices are static.

 Agents are homogeneous; all are supported by
the same language and execution platform.

 There is a centralized mechanism that creates,
activates, shuts down and removes the agents
of the system. It manages all the global re-
sources and the interaction protocols of the
application.

We call this type of MAS, Moderately Open
Multi-Agent Systems (MOMAS). They provide a new
model for agent definition and implementation. The
features just described may seem unsuited for large-
scale agent communities with high pro-activity.
However, there is a large class of systems with reac-
tive components that can benefit from our model; for
example, monitoring and control systems, telecom-
muting services, and electronic commerce systems.
Our model allows both high- and low-level behavior
specifications. It comes with a programming lan-
guage and a project manager for fast prototyping of
MAS (Garcés et al., 2006).

167
Garcés A., Quirós R., Chover M., Huerta J. and Camahort E. (2007).
E-COMMERCE TRANSACTION MODELING USING MODERATELY OPEN MULTI-AGENT SYSTEMS.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - SAIC, pages 167-172
DOI: 10.5220/0002397701670172
Copyright c© SciTePress

In this paper we describe how to completely de-
velop a MOMAS using the HABA Development
Framework. As an example, we use the implementa-
tion of a set of transactions for an electronic com-
merce system. We start giving some background
information about multi-agent systems, the architec-
ture of a MOMAS, and e-commerce systems. Then,
we describe how to model and implement a Transac-
tion System following the analysis, design and im-
plementation stages of HABA Development Frame-
work. We conclude our work with a discussion.

2 BACKGROUND

2.1 Agent-Oriented Systems

In the literature one may find many different
methodologies for the development of agent-
oriented systems like BDI (Kinny et al, 1996) or
MAS-CommonKADS (Iglesias et al, 1998). GAIA
(Wooldridge et al, 2000) was the first complete
methodology for the analysis and design of MAS.
The system was conceived like a computational or-
ganization of agents. Each agent has certain roles in
the organization. The agents cooperate to achieve
the common objectives of the application.

There have been theoretical studies and practical
applications of GAIA, both emphasizing its
strengths and weakness (Zambonelli et al, 2003).
Cernuzzi (Cernuzzi et al, 2004) outlines two funda-
mental limitations of GAIA: first, it is not suitable
for complex open environments and, second, it uses
a notation not based on any widely-accepted Soft-
ware Engineering standard. In (Cernuzzi et al, 2004)
three different variants of GAIA are presented. They
overcome some conceptual problems and extend the
development of MAS to complex open environ-
ments. Still, none of them proposes how to imple-
ment MAS on real platforms.

2.2 Moderately Open Multi-Agent Sys-
tems (MOMAS)

As an alternative to regular MAS, we describe how
to model and architect a MOMAS to organize agents
in communities. Our methodology allows modeling
and prototyping MOMAS with the architecture illus-
trated in Figure 1. Applications have a static struc-
ture since agent classes and their relationships do not
change during execution. Services provided by the
agents are also static. Agents are clustered into
communities called packages. A management mod-
ule within the MAS handles the life cycle of pack-

ages and agents. It also manages their communica-
tion, and the social state’s public information. This
module is a special agent that interfaces between the
social state, the agents and the user in charge of
running the system.

Figure 1: Architecture of a Moderately Open Multi-Agent
System.

We propose a new development framework suit-
able for MOMAS architecture. It includes a Devel-
opment Methodology (HABA.DM), a Programming
Language (HABA.PL) and a Project Manager
(HABA.PM) for fast prototyping of MOMAS. De-
scribing the entire development framework is be-
yond the scope of this paper. The reader can find a
complete description in the following references:
(Omitted, 2006), (Omitted, 2007).

2.3 Electronic Commerce Systems

Since the beginning of Internet, electronic commerce
has been one of its fastest growing applications.
Most proposals are informal and based on Web de-
velopment and programming. They consider func-
tionality more relevant than formal specification.

There are three types of e-Commerce applica-
tions: formal based applications (Ehikiova, 2001),
knowledge based applications (Tran, 2006), and
applications based on traditional Software Engineer-
ing (Pastor et al, 2001). The last two types are closer
to traditional programming practices. They include
development tools that produce efficient implemen-
tations. Formal approaches, however, build models
with higher reliability.

Some works have focused on MAS applications
to e-Commerce (Karacapilidis and Moraitis, 2001).
However, they do not provide an implementation
approach like other methodologies such as Object-
Oriented Programming. Our development frame-
work supports rapid application prototyping keeping
the formalism of MAS. We apply this framework to
an application based on e-Commerce transactions.

ICEIS 2007 - International Conference on Enterprise Information Systems

168

We show how MOMAS simplifies processing and
communications. This guarantees complete and effi-
cient implementations particularly for small and
medium enterprises.

3 AN E-COMMERCE
TRANSACTION SYSTEM

We show how our development framework can be
used to model and implement e-Commerce transac-
tion systems. As an example we present a simple
Ordering System with a limited number of transac-
tions.

3.1 System Description

Our example Ordering System supports Business to
Consumers, B2C e-Commerce. It is an improved
version of the e-Commerce system programmed
using OO technology by Ehikiova (Ehikiova, 2001).
They use a formal specification to define the infor-
mation resources. In our work, however, such re-
sources are used at higher level of abstraction. High-
level entities are autonomous agents that run in a
MOMAS architecture.

We present an example company that markets
products to an arbitrary number of customers. The
company needs processes for product display and
purchase. These processes include placing and com-
pleting orders, as well as payment management. Our
example application is best suited for small virtual
shops. Still, it suffices to show the features of our
MOMAS development framework.

Figure 2: Flowchart of a purchase process.

We distinguish four main roles in our system: the
Customer, the CustomerHandler, the Seller and the
WarehouseHandler. The flowchart of a purchase is
shown in Figure 2. A Customer starts the process by
requesting a product catalog from the company
(message m1). A CustomerHandler delivers the cata-
log (message m2). Then, the customer places an
order by selecting a set of products. That set is sent

to the CustomerHandler to complete the order (mes-
sage m3). The CustomerHandler converts the order
into a virtual ShoppingCart, which is in turn proc-
essed by a Seller (message m4). The Seller manages
the order using the ShoppingCart: it validates the
customer’s payment and tells the WarehouseHandler
to deliver the products if the payment is successful
(message m5). Otherwise, the seller rejects the order
and informs the Customer about the problem (mes-
sage m6). The WarehouseHandler waits for shipping
orders, collects the appropriate order paperwork and
delivers the products to the customer.

The following sections describe the analysis, de-
sign and implementation stages of the ordering sys-
tem. Sections 3.2 and 3.3 are devoted to the analysis
and design stages using HABA.DM. Section 3.3
describes the implementation of the design in
HABA.PL, and the execution of the system on the
HABA.PM project manager.

We describe the process of role-guided develop-
ment using the refinement process of the Customer-
Handler role. This refinement proceeds through the
different development stages. The other roles could
also be similarly refined.

3.2 The Analysis Stage

The analysis stage of HABA.DM supports the speci-
fication of the abstract organization of the MOMAS.
It produces a set of models that represent the organ-
izational structure, the environment, a preliminary
description of the roles, and the interaction proto-
cols of the MOMAS.

3.2.1 The Environmental Model

A MOMAS organization is not just made of a simple
collection of roles, but also of an environmental
model. Our methodology produces abstractions of
the environment that specify global information re-
sources. We use two communication methods: role
interactions and shared information resources. The
environmental model contains the computational
resources of the MAS. It identifies the objects of the
environment and their constraints. These constraints
are expressed in Z notation. (Spivey, 1992).

Figure 3 shows the Ordering System environ-
ment. A Client is an individual or organization that
buys Products from a company. Each client has an
identifier id_Client used to place orders. The virtual
ShoppingCart stores the list of products that the cli-
ent has chosen for purchase. Constraints establish
that the ids of the object’s elements are unique.

E-COMMERCE TRANSACTION MODELING USING MODERATELY OPEN MULTI-AGENT SYSTEMS

169

ENVIRONMENT: OrderingSystem

OBJECTS
 Client [id_Client]
 Product [id_Product]
 Request [id_Client]
 ShoppingCart [id_ShoppingCart]
 ClientTransaction [id_Client]
 (*…. Other Objects ….*)

CONSTRAINTS
 ∀ a,b: Client | a≠b • a.id_Client ≠ b.id_Client
 ∀ a,b: Product | a≠b • a. id_Product ≠ b. id_Product
 (*…. Others Constraints …*)

Figure 3: Environmental model: Ordering System.

3.2.2 The Preliminary Role Model

ROLE SCHEMA : CustomerHandler

Description
Product advertisement to atract customer purchases.

Protocols & Activities
 AwaitAskCatalogue, AwaitCustomerRequest,
 ProduceShoppingCart, InformShoppingCart,
 AwaitCustomerCancel, InformCancel
Permissions
 changes ShoppingCart, ClientTransaction
 reads Product, Request
Responsibilities
 Liveness
 CustomerHandler = (RequestProcess | CancelProcess)*
 RequestProcess = (AwaitAskCatalogue.
 AwaitCustomerRequest.
 ProduceShoppingCart.
 InformShoppingCart)
 CancelProcess = (AwaitConsumerCancel.
 InformCancel)
 Safety True

Figure 4: CustomerHandler role preliminary model.

Roles define the behavior of entities within an or-
ganization. They also provide a high degree of reus-
ability. During the analysis stage, roles are initially
modeled using the notation shown in Figure 4. This
initial role model is similar to GAIA’s original role
model (Wooldridge et al, 2000). Our roles are de-
veloped using a top-down approach that refines the
roles step by step. Each step adds more detail to the
role’s specification until the highest level is reached,
which corresponds to the role’s implementation.

3.2.3 The Interaction Model

Due to the scope of our methodology, we limit the
interaction between components to asynchronous

controlled ask-reply communications. This is the
kind of interaction supported by the programming
language HABA.PL.

Figure 5 shows the AwaitCustomerRequest pro-
tocol, which belongs to the CustomerHandler role.
This protocol is initiated by the Customer role and
answered by the CustomerHandler role. Using this
protocol, the Customer role informs the Seller role
of the order just placed.

AwaitCustomerRequest

Customer CustomerHandler r : Request

Send Request reply : Boolean

Figure 5: Interaction model: AwaitCustomerRequest pro-
tocol.

3.3 The Design Stage

The design stage of HABA.DM defines all the enti-
ties that stem from the models specified in the analy-
sis stage. The design models in HABA.DM are
closer to the lower-levels of the architecture of the
MOMAS.

SOCIAL OBJECTS: OrderingSystem

TYPES
 [ℵ, CHAR]
 MONEY == ℵ1
 SHOPPING_CART_STATUS ::== Stopped | Completed
 TRANSACTION_STATUS ::== Canceled | Waiting | Executing
 (*… Other TYPES …*)

OBJECTS:
 Product ≅ [id_product : ℵ1; name: seqCHAR;
 category: seqCHAR; description: seqCHAR;
 OurCost: MONEY; k: ℵ |
 suppliercost > 0 ∧ #name > 0 ∧ #category > 0
 ∧ #description > 0]
 Request ≅ [id_Client: ℵ1; items : P (Product x ℵ1)]
 ShoppingCart ≅ [id_Client: ℵ1; items: P (Product x ℵ1);
 status: SHOPPING_CARD_STATUS]
 ClientTransaction ≅ [id_client: ℵ1; order: Order;
 status: TRANSACTION_STATUS]
 (*…. Other Objects ……*)

CONSTRAINTS:
 ∀ a,b: Product | a ≠ b • a. id_product ≠ b. id_product
 (*…. Other Constraints …..*)

Figure 6: Social object model of our Ordering System.

In HABA.DM, the design stage produces the so-
cial object model, the role model, the agent model
and the structural model. In order to describe these
four models we use the formal Z notation.

A social object model describes the information
resources that belong to the social state of the MO-
MAS. These resources are types, variables and con-

ICEIS 2007 - International Conference on Enterprise Information Systems

170

straints managed by the MOMAS Management
Module (see Figure 1). Figure 6 shows the notation
used to define a social object model.

The social object model of our Ordering System
is shown in Figure 6. This model is derived from the
environmental model produced by the analysis stage.
It describes specification details that are later used
during the implementation stage. Figure 10 only
shows types, objects and constraints used by the
CustomerHandler role.

The role model describes each role of the MO-
MAS in terms of its services, activities, permissions
and responsibilities. Services and activities define
the functionality of the role. Responsibilities can be
liveness or safe. Liveness properties describe the
role life-cycle. Safety properties are invariants that
must be accomplished during role execution. The
model derives directly from the preliminary role
model and the interaction model defined in the
analysis stage.

Figure 7 shows the role model specification for
the CustomerHandler role. This role derives from
the initial role model by refining the interaction
model. This refinement process translates protocols
into services or messages.

ROLE : CustomerHandler

Description
 Product advertisement to atract customer purchases.
Services
 AwaitAskCatalogue [Customer] : → P(Product)
 AwaitCustomerRequest [Customer] : P(Product) → Boolean
 AwaitCustomerCancel [Customer] : ℵ1 → Boolean
Activities
 ProduceShoppingCart : Request → ShoppingCart
 InformCancel : ℵ1 → ClientTransaction
Permissions
 changes ShoppingCart, ClientTransaction
 reads Product, Request
Responsibilities
 Liveness
 CustomerHandler = (RequestProcess | CancelProcess)*
 RequestProcess = (AwaitAskCatalogue().
 AwaitCustomerRequest(in r: Request).
 ProduceShoppingCart(in r: Request; out s: ShoppingCart).
 Seller :: InformShoppingCart(in s: ShoppingCart))
 CancelProcess = (AwaitCustomerCancel. InformCancel)
 Safety True

Figure 7: CustomerHandler Role model.

As an example of a protocol translated into a
service, consider the AwaitCustomerRequest proto-
col of Figure 5. It is started by the Customer role and
served by the CustomerHandler role. In the role

model, the AwaitCustomerRequest protocol be-
comes a service of the CustomerHandler role during
the refinement process.

The agent model specifies the agent classes used
in the MOMAS. Instances of these classes are the
agents that the system creates at runtime. This model
is the same as GAIA’s. Figure 8 shows an example
where two agent classes, CustomerAgent and Cus-
tomerHandlerAgent, are defined with the roles Cus-
tomer and CustomerHandler, respectively. The *
symbol, next to the left arrow, means that we can
create 0 or more instances of the CustomerAgent
class. The string 1..10 next to the right arrow de-
notes that we can create between 1 and 10 instances
of the CustomerHandlerAgent class.

Figure 8: Agent model.

3.4 The Implementation Stage

To illustrate the implementation of a MOMAS we
describe how to program the CustomerHandler role
using the HABA.PL language of our development
framework. We focus on the general structure of the
system omitting unnecessary low-level details. We
assume that all the types and social objects are well
defined in the Social State of the MOMAS. We also
assume the following declarations:

int n, m, l;
Product P[2000];
ShoopingCart S[1000];
ClientTransaction T[1000];

Given these declarations the CustomerHandler
role is specified in the HABA.PL programming lan-
guage as shown in Figure 9.

Role CustomerHandler
{
 boolean canceled = false;
 /* Add other attributes here */

 knowledge
 {
 preferred(ID,100):-ID>0,ID<=1000).
 /* Add other knowledge data here */
 }

 InformCancel(int Id_Client):canceled
 {
 int i;
 i=FindShoppingCart(Id_Client);
 j=FindClientTransaction(IdClient)

CustomerAgent

Customer

CustomerHandlerAgent

CustomerHandler

* 1..10

E-COMMERCE TRANSACTION MODELING USING MODERATELY OPEN MULTI-AGENT SYSTEMS

171

 S[i].status=Stopped;
 T[j].status=Cancel;
 }
 /* Add other activities here */
 Service AwaitAskCatalogue
 (Product &Catalogue[2000];int &nmax):
 [Customer]
 {
 nmax = 0 ; int i = 0;
 while (i < n)
 {
 if (P[i].k > 0)
 {
 Catalogue[nmax] = P[i];
 nmax= nmax+1;
 }
 i = i+1;
 }
 }

 Service AwaitCustomerCancel
 (int id_Client) : [Customer]
 {
 canceled = true;
 InformCancel(Id_Client);
 }

 /* Add other services here */
}

Figure 9: Implementation of the CustomerHandler role.

Roles are kept in a role library which is part of
the social state. Having the CustomerHandler role in
the library we can build an agent class Customer-
HandlerAgent with the role’s functions and other
functions. Given these definitions we can build an
application using the HABA.PM project manager.
This project manager supports the construction of a
library of reusable roles. Those roles and the agent
classes can be programmed within HABA.PM using
the HABA.PL programming language. The reader is
referred to (Garcés et al., 2006) for a detailed de-
scription of both HABA.PL and HABA.PM.

4 DISCUSSION

In this work we present the HABA.DM methodol-
ogy for the development of MAS. Our methodology
is a variant of the GAIA methodology. The goal of
HABA.DM is to reduce the gap between the abstract
modeling of MAS and their practical implementa-
tion. To achieve this goal, we reduce the scope of
our methodology to a specific class of MAS that we
call Moderately Open Multi-Agent Systems (MO-
MAS).

We demonstrate how our methodology can be
used to model an ordering system for e-commerce.
The system is targeted at Business to Consumers,
B2C, companies. Our implementation takes advan-

tage of the parallel and distributed capabilities of-
fered by modern information and communication
technologies.

Our development methodology is applied incre-
mentally. Roles defined for the system are refined
step by step during the three different modelling
stages: analysis, design and implementation. This
improves on GAIA’s approach that does not include
the implementation stage. For the implementation of
our MOMAS systems we use the HABA.PL pro-
gramming language and the HABA.PM Project
Manager.

REFERENCES

Cernuzzi, L., Juan, T., Sterling, L., and Zambonelli, F.
(2004), The Gaia Methodology: Basic Concepts and
Extensions. In Methodologies and Software Engineer-
ing for Agent Systems. Kluwer.

Ehikiova, S.A. (2001) A Formal perspective to modelling
electronic commerce transactions, Colombian Journal
of Computation, Vol. 2, No. 2, pp. 21-40.

Garcés, A., Quirós, R., Chover, M. and Camahort, E.
(2006) Implementing Moderately Open Multi-Agent
Systems. IADIS International Conference WWW /
Internet 2007.

Garcés, A., Quirós, R., Chover, M., Huerta, J. and Cama-
hort, E. (2007) A Development Methodology for
Moderately Open Multi-Agent Systems. IASTED
Conference on Software Engineering SE 2007.

Iglesias, C.; Garito, M.; González, J. and Velaso, J. (1998)
Analysis and Design of multi-agent systems using
MAS-CommonKADS. Intelligent Agents IV, LNAI
vol. 1365, pp. 313-326. Springer Verlag.

Karacapilidis, N. and Moraitis, P. (2001). Inteligent
Agents for an Artificial Market System. In
AGENTS´01. Fifth International Conference on
Autonomous Agents. ACM Press.

Kinny, D., Georgeff, and Rao, A. (1996) A methodology
and modelling technique for systems of BDI agents.
LNAI vol. 1038, pp.56-71. Springer-Verlag.

Pastor, O., Abrahäo, S., and Fons, J. ((2001). Building e-
commerce applications from Object- Oriented Con-
ceptual models. ACM SIGecom Exchanges, vol. 2, is-
sue 2, pp. 28-36.

Spivey, J. M. (1992), The Z notation: A reference manual.
Prentice Hall, Second Edition.

Tran, T. (2006). Designing Recommender Systems for e-
commerce: an integration approach. 8th International
conference on electronic commerce. ACM Press.

Wooldridge M., Jennings, N, and Kinny, D. (2000) The
Gaia Methodology for Agent-Oriented Analysis and
Design. Autonomous Agents and Multi-Agent Sys-
tems vol. 3 no. 3, September, pp. 285-312

Zambonelli, F.;, N. R. Jennings, and Wooldridge, M.
(2003) Developing Multi-agent Systems: The Gaia
Methodology. In ACM Transactions on Software En-
gineering Methodology, vol. 12, No.3, pp. 317-370.

ICEIS 2007 - International Conference on Enterprise Information Systems

172

