
MODEL-DRIVEN DEVELOPMENT USING STANDARD TOOLS

Julián Garrido, Mª Ángeles Martos and Fernando Berzal
Dept. Computer Science and AI, ETSIIT, University of Granada, Granada 1807, Spain

Keywords: Model-driven development, application generator, reflection, persistence service, OO model, O/R mapping.

Abstract: This paper describes a model-driven software development tool suitable for the rapid development of
enterprise applications. Instead of requiring new specialized development environments, our tool builds on
top of a conventional programming platform so that it is suitable for the progressive adoption of model-
driven development techniques within a software development organization.

1 INTRODUCTION

Due to its large potential, model-driven software
development has drawn a lot of attention during the
last few years (Mellor, 2003), let it be in the form of
OMG’s Model Driven Architecture (Frankel, 2003),
Microsoft’s Software Factories (Greenfield, 2004),
or plain code generation, e.g. (Herrington, 2003).

Even though hype is quite common when talking
about tools purported to provide “order of
magnitude” benefits, more modest but important
productivity and quality benefits can still be
achieved using model-driven software development
techniques, such as quick prototyping, improved
application portability, and reduced maintenance
costs.

Learning a new tool or technique actually lowers
programmer productivity initially and eventual
benefits are to be achieved only after the learning
curve is overcome (Glass, 2003). In order to reduce
the steep learning curve associated to the
introduction of a new development approach, we
propose a model-driven software development tool
built on top of the Java programming platform.

We introduce our system architecture in the next
section. Once the stage is set, we will describe the
parts that comprise the input needed to generate a
typical business application using our MDD tool.
We will do so in the order the user would usually
design them.

2 SYSTEM ARCHITECTURE

Figure 1 shows the overall design of our MDD tool,
which clearly resembles the layered architecture of
many enterprise applications (Fowler, 2003).

In order to use our application generator, the user
must provide an application model, shown in Figure
1 as a shaded oval. From that model, our generator
will automatically create a stand-alone application.
In our current prototype, the generator creates a Java
web application, although it can easily be extended
to create applications for a windows-based desktop
environment or a mobile device, for example. As we
will see, our generator can also create a suitable
database schema for storing data in a relational
database (for green-field projects) or can work with
existing databases (in production environments
where the database is already supporting other
applications).

Application model

S
er

vi
ce

 la
ye

r (
us

e
ca

se
s)

Object-Oriented
Domain Model DB

Web
Application

(Java)

Database
schema

(SQL DDL)

Generated
application

UI specification O/R
mapping

annotations

Application model

S
er

vi
ce

 la
ye

r (
us

e
ca

se
s)

Object-Oriented
Domain Model DB

Web
Application

(Java)

Database
schema

(SQL DDL)

Generated
application

UI specificationUI specification O/R
mapping

annotations

Figure 1: Overall system architecture.

433
Garrido J., Ángeles Martos M. and Berzal F. (2007).
MODEL-DRIVEN DEVELOPMENT USING STANDARD TOOLS.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - DISI, pages 433-436
DOI: 10.5220/0002395204330436
Copyright c© SciTePress

The application model needed by our MDD tool
requires three components:
1. An object-oriented domain model describing

our problem domain, designed using
conventional object-oriented design techniques,
and annotated for O/R mapping purposes.

2. A service layer providing a programmer-
friendly “external” interface to our system
(separate from the domain model for improving
testability and simplifying the specification of
the user interface).

3. An abstract model of the user interface
describing the presentation layer for the system.
This UI specification includes a navigation map
describing how the user can move around in our
application and independent descriptions of all
the interaction contexts needed by the
application (i.e. the different windows or web
pages that will be presented to end-users).

The next three sections describe these three

components in greater detail.

3 OO DOMAIN MODEL

Domain modeling is central to software design:
“Through domain models, software developers are
able to express rich functionality and translate it into
a software implementation that truly serves the
needs of its users” (Evans, 2004). Hence, an object-
oriented domain model will serve as the foundation
for our MDD tool.

Our tool requires a set of valid Java classes as
the input describing our domain model. These
classes can be developed using standard IDEs, such
as Eclipse, and reused among projects once you
establish a reusable asset library within your
organization. Archetype patterns, as described by
(Arlow, 2004), are ideal candidates for such a
library.

In our MDD tool, the classes describing the
domain model are enriched with metadata (Java
annotations in our current prototype) so that the
generated application can interoperate with a
relational database, probably by using an existing
O/R mapping tool such as Hibernate. Our tool
includes a persistence service that provides the basic
CRUD functionality needed to persist data (and a
reflective O/R mapping tool so that you do not have
to configure anything to get started).

These annotations, although not strictly needed
by a domain model, are needed when putting
domain-driven design in practice (Nilsson, 2006). In

our system, they can be used to generate a database
schema suitable for storing the information in our
domain model and also to provide the mapping
needed by our domain to work with existing
databases.

Basically, annotations tell the O/R mapping tool
the table within the database that will be used to
store the instances belonging to a particular class.
They specify which table column(s) will hold each
instance variable. Finally, they describe how the
relationships between classes will be represented
within the relational database (using foreign keys
and referential integrity constraints to represent both
associations and inheritance relationships).

 The annotations can also be helpful when
mapping data types, since the database type system
will not match that of the programming platform.

The following code snippet shows how an
annotated Order class might look like in our
system:

@Persistent()
public class Order{

@Key()
@Persistent (type=Types.INTEGER)
int id;

@Persistent
 (name="total",precision=2)
Decimal price;

@Persistent(name="order_details")
Vector<Product> products;

}

The above example shows how orders are

persisted. In case we are using a relational database,
individual orders will be stored in the order table,
where the order id will act as the primary key in a
namesake table column and the order price will be
stored in its total column. Order details will be
stored in a separate order_details table
representing the many-to-many association between
orders and products.

In case our programming environment does not
support generic types (any JDK prior to JDK 5), we
would need a third annotation to indicate the type of
the objects included in our products collection, i.e.

@Reference(Product.class)
@Persistent(name="order_details")
Vector products;

This @Reference annotation is also needed to

support bidirectional associations in our system.

ICEIS 2007 - International Conference on Enterprise Information Systems

434

4 SERVICE LAYER: USE CASES

Once we have defined a suitable domain model for
the application we want to generate (which is
arguably the hardest part of the problem, something
that MDD cannot automate), the next step would
consist of organizing the functionality of the desired
application according to its use cases, following the
usage-centered design proposed in (Constantine,
1999).

In our system, we will model each use case in a
separate Java class whose methods will correspond
to the steps the user must perform to complete the
use case and whose instance variables will hold the
objects required during the execution of the use
case.

This usage-centered approach, always from the
end-user’s perspective, improves our system
testability (Martin, 2005) and, in some sense, it is
somewhat similar to how test fixtures are developed
in Fit to automate testing (Mugridge, 2005). As in
Fit, our approach supports iterative software
development and, integrated within our complete
MDD solution, it provides almost immediate
feedback to changing requirements and allows for
quick prototyping.

In order to illustrate how our system works in
practice, we will show the implementation of a
simple use case:

public class CustomerRegistration
 extends Task
{
 Customer client;

public void newCustomer
 (string name)
{
 client = new Customer();
 client.name = name;
}
…
public void registerCustomer()
{
 persistenceService.store(client);
}

}

As shown above, we have also resorted to
annotated classes in order to describe use cases for
maintaining consistency with the approach we used
to define our domain model:
- Each use case is created as a subclass of Task,

which provides access to the persistence
service needed to store data.

- The use case implementation is always
performed in terms of the domain model we
have previously developed, so that the coding
effort is kept to a minimum in the service layer
(a good design practice).

5 PRESENTATION LAYER: UI

Once we have defined our system use cases as
described in the previous section, our tools help us
automate the creation of the user interface for the
application. Using a pure object-oriented approach,
our previous work might be more than enough to
generate a working user interface, as “naked
objects” demonstrate (Pawson, 2002). However, we
provide higher flexibility in the construction of the
presentation layer for our application.

Following the same approach described above,
we use an annotated set of classes to describe the
user interaction contexts for our application (i.e. the
set of screens the user will be presented with when
using the generated application). Provided with such
description, our MDD tool will be able to generate a
commercial-quality complete working application.

Interaction
Contexts

XML
representation

index.html

Start-up page

Navigation
Map

web.xml
Configuration
file

Java servlets

Interaction
Contexts

XML
representation

index.html

Start-up page

Navigation
Map

web.xml
Configuration
file

Java servlets

Figure 2: Provided the UI specification, our system
automatically generates all the elements needed by a
complete Java web application (an intermediate XML
representation is used in our current system).

The code snippet below shows the description of
the final interaction context the end-user would face
for completing the customer registration use case
from the previous section:

@Interface
 (task={CustomerRegistration.class})
public abstract class NewCustomer
 extends InteractionContext
{

MODEL-DRIVEN DEVELOPMENT USING STANDARD TOOLS

435

@Input()
Customer client;

@Action
 (target={CustomerAccount.class})

 public abstract void registerCustomer ();
}

This abstract description of the interaction
context links the user interface with the system use
cases. Please, note the use of the task property to
refer to the use case implementation, the
specification of the target property to define the
application navigation map, the correspondence
between the abstract actions in the user interface and
the methods in the use cases, and the mapping
between the data in the interface and the data
consumed by the use case.

Each interaction context is annotated with
metadata to describe user input (@Input),
application output (@Output), user selections
(@Selection, for data collections), individual user
actions (@Action), and use case entry points
(@EntryPoint). Additional annotations provide
some control over the visual presentation of user
interface controls, the overall organization of the
application interface (e.g. task groups to provide
hierarchical menus), and alternative navigation paths
to be followed in the presence of errors.

6 CONCLUSIONS

Our application generator improves programmer
productivity since it allows her to work at a higher
level of abstraction, without having to deal with the
elaborate details of the presentation and data access
layers in conventional layered architectures.

The input needed by our generator is as far from
implementation details as current technologies
allow. By focusing on the external view of the
system, its phenotype (Davis, 2003), our tool lets
developers work at the analysts’ abstraction level,
blurring the line between requirements specification
techniques and implementation technologies.

Our tool automates most, if not all, of the routine
work needed to create a working application, thus
avoiding the mistakes a manual process would entail
and improving the overall application quality.

Moreover, the separation of concerns in our
system makes applications truly portable, since they
do not depend on the particular persistence
mechanism employed nor on the specific technology
used to develop a friendly user interface.

Even though our current prototype always works
with relational databases and generates web

interfaces, nothing prevents us from adding new
profiles so that the same application can be targeted
to different platforms (i.e. Web, windows, or mobile
interfaces) and use alternative persistence
mechanisms (e.g. XML databases). Because of our
tool modular design and the reusable nature of
specifications in MDD, application migration to new
implementation technologies is almost trivial.

Our working application generator shows how
model-driven development is something more than
mere hype: it improves programmer productivity,
helps addressing user needs, provides portable
applications, and removes many sources of error that
are present in hand-coded applications (hence
improving quality).

REFERENCES

Arlow, J., Neustadt, I., 2004. Enterprise patterns and
MDA, Addison-Wesley, ISBN 0-321-11230-X.

Constantine, L., Lockwood, L., 1999. Software for use,
Addison-Wesley, ISBN 0-2101-92478-1.

Davis, A., 2003. System phenotypes, IEEE Software 20:4,
July/August 2003.

Evans, E., 2004. Domain-driven design: Tackling
complexity in the heart of software, Addison-Wesley,
ISBN 0-321-12521-5.

Fowler, M., 2003. Patterns of Enterprise Application
Architecture, Addison-Wesley, ISBN 0-321-12742-0.

Frankel, D., 2003. Model Driven ArchitectureTM: Applying
MDA to enterprise computing, Wiley Publishing,
ISBN 0-471-31920-1.

Glass, R., 2003. Facts and fallacies of software
Engineering, Addison-Wesley, ISBN 0-321-11742-5.

Greenfield, J., Short, K., 2004. Software factories:
Assembling applications with patterns, models,
frameworks, and tools, Wiley Publishing, ISBN 0-
471-20284-3.

Herrington, J., 2003. Code generation in action, Manning
Publications, ISBN 1-930110-97-9.

Martin, R., 2005. The test bus imperative: Architectures
that support automated acceptance testing, IEEE
Software 22:4, July/August 2005.

Mellor, S., Clark, A., Futagami, T. (guest editors), 2003.
Model-driven development, IEEE Software 20:5,
September/October 2003.

Mugridge, R., Cunningham, W., 2005. Fit for developing
software: Framework for integrated tests, Prentice
Hall, ISBN 0-321-26934-9.

Nilsson, J., 2006. Applying Domain-Driven-Design and
Patterns, Addison-Wesley, ISBN 0-321-26820-2.

Pawson, R., 2002. Naked objects, IEEE Software 19:4,
July / August 2002.

ICEIS 2007 - International Conference on Enterprise Information Systems

436

