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Abstract: Creation and transformation of visual specifications is driven by modeler's design decisions. After a design

decision has been made, the modeler needs to adjust the specification to maintain its correctness. The number
of adjustments might make the design process tedious for large specifications. We are interested in techniques

that will reduce the modeler’s obligation to control specification correctness.
Every single transformation of the visual specification can be captured by the notiefingimentused in

formal methods. In this work we present the technique that supports a stepwise refinement of visual specifica-

tions based on calculations. We uséinement calculuas a logic for reasoning about refinement correctness.

When a design decision is made by the modeler, the necessary adjustments are calculated based on rules of
refinement propagation. Refinement propagation can automate the specification adjustment and enforce its

correctness.

1 INTRODUCTION SEAM visual specifications (Wegmann, 2003) using
higher-order logic and Refinement Calculus (Back

It is well accepted by now that visual models play and von Wright, 1998). Based on this semantics, we

an important role in the information system develop- define a refinement propagation technique that sup-

ment. With the growth of system complexity, auto- POrts a stepwise refinement of visual specifications.
mated refinement, and refinement verification of vi- We constrained our discussion to the deterministic

sual models is of particular interest. specifications. The refinement propagation technique
Stepwise refinement is a well-known paradigm for 1S grounded on the following observatios&n arbi-
semantic program constructions originally proposed frary refinement may cause a conflict between model
by Dijkstra (1971) and Wirth (1971). It is based on €lements. To resolve such a conflict and maintain cor-
the idea that a program can be developed through aréctness, model adjustment (also considered as a re-

sequence of refinement steps starting from an abstracfinement) is usually requiredhen the initial refine-
specification. ment can be identified with a design decision that is

s Proposed by a modeler, the adjustment of the entire
specification can be calculated based on rulegeof
finement propagation. Propagation means a sequen-

). tial application of these rules until saturation. We
show that sufficient part of calculations can be done

_without modeler’s involvement. We also specify the

struction’, and enables the reduction of proof obliga- Situations when modeler's decision is required to ac-

tions. We believe that refinement by calculation can COMPlish the calculation.

be beneficial for the practical application in the con- This paper is organized as follows. In Section 2

text of visual modeling. we present SEAM visual language and classify re-
In this work we introduce a formal semantics for finements accepted by this language. In Section 3

In contrast to techniques where a refinement i
first proposed and theprovedto be correct, some
techniques allovealculationof refinement step based
on the refinement laws (Morgan and Gardiner, 1990
The refinement calculus is an underlying theory. This
calculation assures refinement correctness 'by con
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REFINEMENT PROPAGATION -

we define a formal semantics for SEAM using higher-
order logic and refinement calculus. This formaliza-
tion allows for reasoning about visual specifications
with mathematical precision. In Section 4 we intro-

Towards Automated Construction of Visual Specifications

e Extension: new property is introduced into the
system.

e Reduction: some property is eliminated.

duce the refinement propagation technique. This tech-Other refinements are used in visual modeling (e.g.

nique is formulated as eight rules of refinement prop-

substitution of one property (or group of properties)

agation. In Section 5 we discuss related works. Sec-PY another property (or group), property renaming,

tion 6 presents our conclusions.

2 REFINEMENT IN 'SEAM’
VISUAL MODELING
LANGUAGE

SEAM (Systemic Enterprise Architecture Methodol-

ogy)(Wegmann, 2003) is an approach for modeling
general systems, including information systems and

enterprises. SEAM epistemological principles are

based on General System Thinking (GST) (Weinberg,

1975) and Living Systems Theory (LST) (Miller,
1995). SEAM ontology is grounded on the second
part of RM-ODP (1995) specification. Based on this

standard, the main modeling concepts such as object,
state, action are defined (Wegmann and Naumenko,

2001). Figure 1illustrates the SEAM visual notation.

Data
1 $tructurq

Behavion !

System (Working Object)
Figure 1: SEAM visual notation.

Any system or system component in SEAM is mod-
eled as aworking object The working object may
communicate with an environment leyents Work-
ing objectS is modeled as a collaboration of two
componentsSl and 2 (also considered as working
objects). Sl is described by it©bservable proper-
ties P1,P2, and abehavior Properties constitute the
data structure of working obje8i and define its state
space. The behavior is represented by a sattibns
a, b organized withiractivity AC.

We focus on the refinement oftdack boxsystem
specification.

Refinement of the state space ( see also data
refinement (Brger, 2003; Woodcock and Davies,

1996; Back, 1989) or data structure refinement (Broy,
1993)) deals with the transformation of system data

structure. We recognize the following ways to refine
a state space:

etc.). Itis not difficult to show that these refinements
can be represented by a combination of extensions
and reductions. Refinement of the system state space
is illustrated in Figure 2.

SpecA Design decision:

0..mlcl[1]..clfm]
Cllknd m
1n 9

Pre:
new_n # null, u:

FName
1|fn"| {String[15]}
LName
H 1|In" | {String[20]}
forAlli clfil.n # new_n Add(new Clent(new_n))
Post:
AddClient

9© Existsi| cl[i]l.n = new_n,
E [new_n:Name] | /

Adjus(memslm [new_fn:FName;

new_In:LName]

Rule2: refinement of
event E

Pre1:

new_fn # null , new_In # null,
forAlli (cl[i].fn # new_fn orcl[il.ln # new_In)
Postt:
Exists i | (cl[il.fn = new_fn and cl[i].ln = new_In)

U1: Add(new Client(new_fn, new_In)) ' Refinement step

Rules 3-4: syntactic and
semantic refinement of
AddClient

SpecAl

~—{ Client
0—{ ien 1jfn
{Pre1, U1, Post1}
AddClient (®
E1

Figure 2: Propagation of refinement of the system
state space. Design decision: to substithitame with
{FNameLNamé&. Required adjustments made by refine-
ment propagation. A correct SpecAl is calculated as a re-
sult of the refinement step.

LName
{String[20]}

1|In

FName
{String[15]}

Refinement of the behavior

e Syntactic Refinement: a number of action’s in-
put and output parameters and their types are
changed.

e Semantic Refinement: a precondition, an update
statement, and/or a postcondition of an action are
changed.

e Extension: new behavior (action or activity) is in-
troduced into the system.

e Reduction: some behavior (action or activity) is
eliminated.

e Behavior distribution: transition from an action
view to an activity (Figure 3).

Aforementioned refinements specify thasisre-
finement types for SEAM visual specifications. Any

1This version of behavioral refinement is also called re-
finement of a syntactic interface (Broy, 1993).
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SpecA2

miclfa].clml| ..o Hlun {Smnag[lsl)&

U: Add(new Client(new_fn, new_In))
Post:

Exists i | (cl[].fn = new_fn
and clfi].in = new_In)

Adjustments:

{Pret, U1, Post1}

Design decision:
.

E1
Figure 3: Propagation of behavior distribution refinement.
SpecA2 refines SpecAl (Figure 2) providing a realization
of action AddClient.

arbitrary refinement can be represented as a combina-
tion of the basis refinement types. Refinement of the
state space and refinement of the behavior can appear

together in a specification. Also the former danply
the latter or vice versa. This effect we callefine-
ment propagation

3 FORMAL SEMANTICS FOR
'SEAM’

To reason about refinement with mathematical preci-

sion, we formalize SEAM modeling concepts using
a higher-order logic and refinement calculus (Back,
1978; Back and von Wright, 1998).

In our work, we were inspired by the ideas pre-
sented by Mikhajlova and Sekerinski (1997), Back et
al. (2000), and Michajlova (1998). In these works,
refinement calculus is used for the formalization of
object-oriented program development.

We find it necessary to introduce some concepts

of refinement calculus in this section.

Introduction of Refinement
Calculus

3.1

In this paper we restrict our study to deterministic
specifications. Nondeterminism will be addressed in
our future work.

A program statén refinement calculus is modeled
as atuple of values of all program components. A pro-
gramstate spacéa type) = is defined as a cartesian
product ~ =23 x 25 X ... x Z, where 1,25,...,2n
are state spaces of all program components.

A predicateover a state spacEis a boolean func-

tion. The set of all predicates defined over the state

spaceX is denoted by
Y = ¥ — {true, false} (2)
A relation between two state spacEsandl is a
function that maps each state3rinto a predicate in
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I". The set of all relations fror to I is denoted by
RIS R SN o 2

It is equivalent to another, more familiar definition:

ST = (ZxT) — {true false}

A predicate transformefrom Z to I" is a function
that maps each predicate minto a predicate irf.
The set of all predicate transformers fra&no I is
denoted by s 3)

Predicate transformeff) is called afunctional
update It applies the functiorf to a stateo to yield a
new statef.o. For all statew, defined by the precon-
dition p, the functional update will produce the state
f o, for which the postconditiog holds:

YoeX|pe (f).qo= q(fo) 4)
Program statementén refinement calculus are
identified with predicate transformers.

For asequential compositionf statementsS T,
and predicatep, q,r:

P{STa=(Er e p{Sir Ar{T}qg (5

A refinement orderingn the predicate transform-
ers is defined as follows. F&T : 2 +—T:

SCT=(Vg: 2l e Sq CT.q)
For refinement ordering the following holds:
SICS A SES = (SIXRE(SxS) (7)
scsScS = sc¢ (8)

r = 2> —ol

(6)

3.2 Formalization of Seam Modeling
Concepts

We distinguish between the following views of
working objects in SEAM:

- Working object as a whol&/ Oynele -
system specification;

- Working object as a composit&/ Q.omposite -
white box system specification.

In this paper, we focus on the black box specifica-
tions.

a black box

a

Working object as a whole describes the system by a

number of propertieB; .. . Py, that specify data types,

and a behavios.

We declare the working obje@ Qynole as follows:
WQNhoIei

P1,--Pry 1 P,

.. 9)

plmw-pnm . P,

B

wherepy,,..py, are instances of a proper.

Working objects may interact with the environment
by receiving inputsly,...Ix and sending outputs
04,..0;, also modeled as a part of the system.
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We distinguish betweeprimitive andcompound also make part of the action specificafion
properties. The former can be considered as an alias A= (10)
for an operational data type (elgt, String, Boolean, En(l1,.. 1), Eou(O1,..,0)),
etc.); the latter is defined by a setadmponent prop- Pre: o (5o x S
erties and referencesto properties using property- re:#(2p x Zin),
property relations. U:(ZpxZin) — (Zp X Zou)

Example 1. SpecAin Figure 2 specifies a work- Post: 2 (Zp X Zout),

ing objectS pecAynole With its propertiesClient and

Name PropertyClient is compound, it has a com- For the deterministic specifications, we consider a
ponent propertfName Nameis primitive - an alias  functional updatgU) : = +— 3. U is a function that

for strings of length 30. This representation unifies & cajculates a post-state from the pre-state. Using the
declarative specification style: definition of functional update from (4), we can write:

"..client is identified by higher namg30 symbols..” Vo | Pree (U).Posto = Post(U o) (11)

and an imperative style, intrinsic to programming: We specify actiom with its preconditionPre, func-

class Cient { . 4 y
name: String[30]: } // String of length 30 tional update{U) and postconditiorPost as follows:

m Int; /1 nunber of clients Pre {|Al} Post=

cl: Array(m of Qient;// list of clients 4
O Pre{|(U)|} Post =Pre C (U) “.Post  (12)

A state of the primitive property denotes a Example 3. SpecAin Figure 2 defines an action
value of the corresponding operational type (e.g. AddClient
1,”ABC’,true); a state of the compound property is AddClient=

defined by the states of its components and references. Ein(Nams,
A tuple of property instancesy, .. pny,, iNPUtSi1, ..in,, Pre=Jnewn:NameA Vcl e cl.n# newn
outputsoy, ..o, and their corresponding states defines U :3ciient — Zclient = Add(newClientnewn))

asystem stateo € 3. Post=3cl | cl.n=new,

> specifies aystem state spacea set of all pos-  Pre states that there exists an input paramatexn
sible states of the working object: and that there is no client with the attribute- newn
presented in the systemJ denotes that a new in-
stance of cliennewClien{newn) is added into the
system. The postconditidPost specifies the fact that

2 = 2p X Zn X Zout where
Sp=(2p X...xZp) X...x (Zp, X ... X Zp,)
—_——— ———

m Nm after AddClientis carried out, the client with the at-
Zin= (T, X X Zpy) X X (D X X Ty ) tributen = newn does exist in the systerf;, (Name
— AN specifies the input evel, that transmits a parameter
newn. [J
2ou = (M) F (m) Activity Accan be considered as a detailed specifica-
nou g tion of actionA: it describeshowthe transition from
Sp,%n, Zout denote state spaces of system proper- pre- state to post- state is performédt defines a set
ties, inputs, and outputs respectively. of component actions and the way they are composed
Example 2. State space of the working objegpecA to carry out the transition:
in Figure 2: Ac=EA0A0...OA (13)
SspecA = ZClient X -+ X ZClient XZin = where() stands for component action ordering, de-

fined by a corresponding action-action relation.

? PreconditionPre, updateU, and postcondition

Zspeca = (String19x String20) ... x (-) 0 Postof A are related to those of component actions:
m1 Prea = ppre(Prea,, -.Prea);
Behavior 3 of a working object can be seen as an ac- Ua = pu(Uz,... Up); (14)
tion or as an activity. Posi = Ppost(POSh,, - . ., POSh, );
Action A is defined by a three-tupléPre,U, Post}. Ppre, Pu, Ppost are defined by the component action or-

Pre-conditionPre and post-conditiorPost define the  dering ().
states of the system, ¢’ € X before and after the ac-

" 2Rrov (1993) defines |
tion respectively. An update specifies a transition Broy (1993) defines input and output channels and the

sort of messages for each channel as a syntactic interface

from pre- state to post- state. o _ of the black box system view. The causal relationship be-
If this action describes a communication with the tween input messages and output messages is defined as a
environment, the input and output evertig,, Eoyt semantic interface of this view.
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Input and output events, Eoye Of the activity
Ac, are related to the input and output events of com-
ponent actiong\y, .. A; :

2in/out © ZIn/Out1 XX ZIn/Outt (15)
Example 4. SpecA2in Figure 3 defines an activ-
ity AddClientthat specifies the realization of the ac-
tion AddClientfrom SpecAlFigure 2. Parameters of
an input event are distributed between input evens
E>1 andE;» of component action&etFNameand-
GetLNamesuch that:

E(FNameLNameg = {Ez1(FNamg, E;2(LName}
and Zjn = (ZFNameX ZLName)

4 REFINEMENT PROPAGATION

In this section we introduce the refinement propa-
gation technique for visual specifications. Explor-
ing the basis refinement types, specified in sec-
tion 2, we found relations between them in the
form "refinementX implies refinementY"This im-
plication we call goropagation of refinement

4.1 Definition of Refinement for Visual
Specifications

Refinement calculus specifies the correct refinement
between program statements as a refinement Ordermgpropertiespl

on the predicate transformerBhe program statement
S is said to be correctly refined by the program state-

whereR,, l;, O; may be compound properties; and:

8 = A(Ein, Eout, Pre,U,Post) | Ac(Ag,..,A),
Ein = Ein(.,li,-.),Eout = Eout(-, O, --), (18)
Pre=Pre(..,li,..,Pj,..), Post=Post(..,R,..,0j, ..)

U=u(.,l,..,pPj,..,0..)

Properties, events, actions, and activities are related
within specification. Thereby a basis refinement of an
arbitrary substatement from (17), (18) may cause a
conflict between certain elements, such that

X X" A WOQphote(X) Z W Qunote(X’)

To resolve this conflict, and to preserve monotonicity,
refinementX! of some other substatemeXi is usu-

ally requiredl. This assertion formalizes our definition
of refinement propagation. Within a final number of
steps, refinement propagation either results in correct
refinement of specificatio/ Qunole:

(XEX) = 4EX) .= G EX) =
WQNhO|e(X7X17 7Xn) E WQNhO|e(X/7Xi7 ey Xfil)
or indicates such a refinement impossible.

Resolving Conflicts between Properties

We distinguish between compound and primitive
properties. The elimination of a compound prop-
erty may cause 'free-floating’ properties and make the
specification confusing.

RuLe 1: If R(R,,..,R,P.,,- P ) isacompound
property with componentB, ..R, and references on
w1--Py» and, by reduction of the state
spacepR is eliminated, then its component properties
R,,.., R, have to be also eliminated. Reduction of the

ment T, iff T satisfies any specification statement sat- gi5te space must be correct.

isfied by S,(6).

The specification statemenéxpresses require-
ments program has to meet in a given state. Defini-
tion of refinement for the programm statements (or
programs) can be generalized for visual specification
statements (or visual specifications) as follows:
Definition 1. SpecificationN O (abstract) is correctly
refined by specificatio?’ O (concrete)WOCEWO
if WO satisfies any requirement satisfied\iyD.

4.2 Propagation Rules

In refinement calculus, refinement orderingrisno-
tonic with respect to the sequential statement con-
struction. It means that Bis a statement an§; oc-
curs as a substatemeBt= S(S;) then
SIES =SS)CSS) (16)
We can writéW Oyhole @S @ compound statement:
WQNhO|e(P1a"aPm7|1a~-aIkaol7"7o|a$) (17)
For the substatements, the following can be written:
R=R(.Pj,.), li=li(.1j,.),0 = (.,0j,..)
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WQI\Ih0|e(~'7 I:’I—17 PI7 I:)I]_v ) I:)I| ) PH—l7 ) ;—P,
WQNhO|E("7PI717PIk+15",PI|PI+17") (19)

We formulate the correctness offinement of the
state space
Definition 2. LetW Qunole be a system specification
as defined in(9); WQ,, e iS its refinement, where
some properties have been introduced, eliminated, or
substituted; and is an abstraction relation connect-
ing ‘old’ and 'new’ states:

M Zwg < Zwo

The refinement of the state space is correct with re-
spect ta, if any state of the abstract specification has
a corresponding state (or group of states) of the con-
crete specification (i.a.is a total surjective function).
The notion ofr can be generalized. Considering
R as a relation between predicates of the abstract and
concrete specifications, we can write:
R: g — Swo

WOLCRWJ = WOCWJ;R

(20)
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Example 5. SpecAin Figure 2 is refined byspecAl
where the propertiameis substituted with two other
properties=NameandLName To maintain the refine-

ment correctness, we have to define an abstraction re-

for connecting 'old’ input and output parameters with
the 'new’ ones:

MNn/out * Zwd — Zin/Out

lation between old’ and 'new’ data types as a total \neres,, is a state space of the refined working ob-

surjective function:
I Xclient — ZClient < (ZFNameX ZLName) — ZName

for example:
1. n :=substr(fn + In, 30)
2 n:=1In//nin’old =1Inin’'new spec
3 ...

considering the second expressiontipwe define:
Cient_old = {n: Nane};
Cient_new = {fn:FNanme, |n:LNane};
r(x: FName, y:LNane):Name = (Nane)y;

This relation can be generalized as a predicate trans-

former:
R: (Zclient — {true, false}) — (Zcjient — {true, false})

< (ZFNameX ZLName) — ZName

pred_ol d(x: Name): Bool ean;
pred_new x: FNane, y:LNane): Bool ean;
R(pred_new(x,y)) = pred_old(r(x,y));

ject. Rin, Royt are the corresponding predicate trans-
formers:

Rin: (Zwg — Zin) — {true, false} = Sy — Zin
Rout : (Zwo — Zout) — {true, falsg} = Z,g — Zout

Ais correctly refined by with respect tdRin, Royt if

ACR,Rou A = RnACA;Rout (21)
Rin andRoy; are total and surjective.
For the propagation Rule 3 we write:
EnC EIln < RnAE)C A(E/) (22)
Eout £ Eouyt & AE)CAE);Rout  (23)

Example 6. For the actionAddClientin Figure 2,
syntactic refinement is correct if predicate trans-
formerRy, is defined:

This refinement step causes a conflict between re- Rin * Zspeca — Zclient = (ZFNameX ZLName) — ZName

fined propertyClient' and the input evenE where
the 'eliminated’ propertyNameoccurs as a parame-

ter. Thus the event specification has to be adjusted

(refined):
Client C Client = EC E’

The definition ofR, is a modeler’s choice. Here we
takeRy = R, as it was specified in Example 5.

E(Namg C E1(FNameLNamg =
Rin;AddClien{E(Name) C AddClien{E1(FNameLNamg)

We generalize this observation as a propagation rule. 0

Resolving Conflicts Between Properties and
Events

RULE 2: If P is a refinement of a property, and
E(..,P..)=E(P) is an event, wher® occurs as a pa-
rameter type, i.eZp C Zg, then the following holds:

PC P = Ein/ou(P) E Enjou(P)
Example 5 (continue): The following elaboration of
specificationSpecAls deducible:
Client C Client’, where
2Client = ZName 2Client = ZFNameX ZLName ZNameC Zin

¢
E(Name C E;(FNameLNamg O

Resolving Conflicts Between Events and Actions:
Syntactic Refinement

RULE 3: If E is an input (output) event of an action
A, then a refinement d is asyntactic refinemeruf
the actionA (by definition of syntactic refinement).
Syntactic refinement must be correct.

ECE < AE) Csyne A(E')
Definition 3. Let A’ be asyntactic refinementf an
actionA, andr, androy are abstraction relations

Resolving Conflicts Between Events and Actions:
Semantic Refinement

RULE 4: If E is an input (output) event of an action
A, andE or some of its parametefs(O;) occurs in
Pre, U, or Postof A, then a refinement @& implies a
semantic refinememif the actionA. Semantic refine-
ment must be correct.

A|Pre(E) VU(E)V PostE) =
ECE = ACeen A

Definition 4. Let A be an action, defined by the tu-
ple {E,Pre,U,Post} ; A’ : {E’,Pre,U’,Post} is its
semantic refinementwherePre/, Post are new pre-
and postconditions, ard’ is a new updateA is cor-
rectly refined by if:

- A is applicable at least on every state whAiis ap-
plicable;

- starting at the corresponding initial statd$,andA
produce equivalent results.

Providing abstraction relatiol®, which relates
'old’ and 'new’ predicates (Definition 2), and using
action specification from (12} is said to be correctly
refined byA’ with respect tR if

RPre C (U)~1.Post and PreC ((U’)"1;R).Post (24)
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For the propagation Rule 4 we write:

ECE = RALC (E//E)AR (25)
where (E’/E)A stands for a substitution of each oc-
currence ofE or one of its parameters ¥/, or its
corresponding parameter.

Example 7. SpecAlillustrates the semantic refine-
ment of the actioddClient specified in Example 3:

AddClient =
Ei1(FNameLName,
Pre; =3 new fn: FNamenewln : LNameA
Vel e (cl.fns#newfn v cl.In # newln)
U1 : Zclient — Zclient = Add(newClientnew fn,newln))
Posg =3cl | (cl.fn=newfn A cl.In = newl!n)

New preconditiorPre; and postconditiofPost have
been calculated by propagation:

E(Name C E;(FNameLNamg = (rule 4)
AddClien{E) Cser AddClien(E;)

Pre = Pre(Name, Post= PostName = (rule 5)
AddClien(Pre, Post) Cserp. AddClien{Pre;, Post ), and
Pre; = 3 new.fn: FName newln : LNameA

Vel e (cl.fn##newfn Vv cl.In # newln)

Post =3cl | (cl.fn=newfn A cl.In =newln)
This refinement is correct by Definition 4. For the
sake of brevity, the proof of correctness is omitted.
The specification adjustment is finished and the re-
finement propagation is complete.

(ClientC Client) = (E C E;) = (AddCL. C AddCL.) =
SpecANameE,AddClient C

SpecA({FNameLNamg,E;,AddClient) O

Resolving Conflicts Between Properties and
Actions: Semantic Refinement

RULE 5: If property P occurs inPre, U, or Post of
action A, then a refinement d?P implies asemantic
refinemenbf A. Semantic refinement must be correct.
A|Pre(P) v U(P)V PostP) =
PCP = ACgmA
By definition of correct semantic refinement (Defini-
tion 4), we write:

PCP = RALC (P//P)AR (26)
where (P'/P)A stands for a substitution of each
occurrence oP by P’ in the statements &, andR is
an abstraction relation.

Resolving Conflicts between Events and the Sys-
tem State Space

RULE 6: If E is an input (output) event of working
objectW Qunole then an extension d& by some pa-
rameter of typel implies anextension of the system
state spacéy introdléction of a property.

ey byen

W Quhole E+ Wthole AN Zyg = Zwo X Z1 (27)
Note: If Zg/ C 2 (a reduction) - there is no conflict
with the system state space.
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Resolving Conflicts Between Pre-,
Post-conditions, and Updates

A semantic refinementkes place when pre-, post-
condition, or update statement of an action is
changed. The equation (12) relates pre-, post-
condition, and update. PreconditiBne can be calcu-
lated as aveakespreconditionwp(A, Post) that guar-
antees termination of any executionAf(U)) in the
final state that satisfieBost PostconditiorPost can

be calculated as a strongest postcondisp(A, Pre)
respectively. An updatg cannot be resolved by cal-
culation and requires a modeler’s decision.

Conflicts between pre-, post-conditions, and up-
dates indicate that semantic refinemeninisorrect
Correctness of semantic refinement is formulated in
Definition 4.

Resolving Conflicts between an Activity and its
Component Actions
Behavior distribution refinemestands for an activity
definition (Figure 3). This requires a set of compo-
nent actions and action ordering provided by modeler.
RULE 7: If an activity Acis a behavioral distribution
refinement of an actioA, andAy,..A; - are compo-
nent actions, see (13), then:
1. Eventsgj,, andEgy; of component actions are de-
fined based on the modeler’s decision, providing (15)
holds;
2. Precondition®rg of component actions are de-
fined either by propagation or based on modeler’s de-
cision, providingppre for the given action ordering
(14) is defined;
3. UpdatedJ; and/or postconditionBost are defined
based on modelers decision, providipg, Ppost for
the given invocation order (14) are defined, and (12)
holds for each component action;
Example 8. Figure 3 illustrates the propagation of a
behavior distribution refinemenComponent actions
GetFNameGetLNameandSaveDatatheir ordering,
and set of input events are provided by a modeler. By
refinement propagation, we define the preconditions
for AddFNameand AddLNamecomponent actions.
Specification of the postcondition is the modeler’s de-
cision (hereSaveDaty

Without loss of generality, any action in SEAM
specification can be seen as a component action of
some abstract activit@&cparem.3 Thus, the refinement
of the behavior by amxtensionis considered as an
introduction a new component to this abstract activity,
whereas aeductionstands for elimination of some

3systemlife cycleis the most abstract activity system
performs from the moment of putting in operation (startup)
till the end of functioning (shutdown). Any action or activ-
ity is a part of the life cycle.
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component from it. Rule 6, applied for th&parent, diagrams. The approach in (Muskens et al., 2005)
specifies the propagation of these refinements. is based on verification of obligation and constraint

Both extensiorandreductionof the system’s be-  rules using relation partition algebra. In contrast to
havior have to preserve the semantics of the rest of thethese approaches, refinement propagation technique
specification. Put it in other terms, modeler needs to for SEAM black box specifications focuses on preser-
guarantee that the system will work 'at least as well as vation of semantic correctness for visual specifica-
before’ in presence of new actions/activities or after tions.

removing any of them. This follows from the Defini- Baar and Marco (2006) introduce a proof tech-
tion 1. nigue for the semantic preservation of refactoring
Incorrectness rules for UML class diagrams and OCL constraints.
RULE 8: Refinement propagation is impossible if the Refactoring can be considered as a specific form of re-
correctness of initial refinement is not provable. finement. We believe that the refinement propagation
Summary technique can be equally used to support automated

In this section we provide definitions for the refine- refactoring of SEAM specifications. In our work, ac-
ment correctness and formulate eight rules of refine- tion constraints in SEAM (pre-, post- conditions, and
ment propagation. Refinement steps often representUpdates) are specified using some meta-language. Al-
combinations of refinements. For such a combination ternatively, they can be expressed in OCL.
(7) and (8) hold. Pons (2006) presents the OCL-based technique
We demonstrate that a significant part of specifi- and a tool support for UML and OCL model refine-
cation elaboration can be done by calculation. We ment. Object-Z is an underlying theory for refine-
also specify the situations, when intervention of the ment verification. The authors discuss the refinement
modeler is necessary. Formal proof of soundness andPatterns and formulate the refinement conditions for
completeness of the refinement propagation techniquethese patterns in OCL language(OCL, 2003). Simi-
is an important issue. This makes a topic of our cur- larly, our technique considers several standard refine-
rent research. ment types that can be identified with patterns. In ad-
For the sake of brevity, some technical details have dition, we define conflict situations, caused by these
been omitted. For more explanations, please, contact'efinement types and explore the idea of refinement
the authors. propagation.

5 RELATED WORK 6 CONCLUSION

The foundations in mathematical logic are extensively |n this work we formalize the notion of refinement
used to formalize specifications and refinement tech- and its correctness for visual specifications using
niques for program constructions. Woodcock and refinement calculus (Back and von Wright, 1998).
Davies (1996) present the method of software specifi- Based on this formalization, we define the refinement
cation development called ZdBger and Sirk (2003)  propagation technique for semiautomated specifica-
introduce the Abstract State Machine method of ab- tion construction. Initiated by modeler’s design de-
stract refinable system specifications. Refinement for- cision, correct refinement of the visual specification
malization for object-oriented programs using refine- can be:

ment calculus is presented by Mikhajlova and Sek- . '

erinski (1997), Back et al. (2000), and Michajlova automatlt_:ally calculated, based on refinement
(1998). Back(2005) proposes a method of incremen- propagation,

tal software construction using refinement diagrams. e calculated based on supplementary information
Here refinement calculus is used as a logic for reason-  from the modeler,

ing about software systems and their evolution.

In the domain of visual languages, evolutionary
specifications of ADORA are provided with refine- Eight rules of refinement propagation address pos-
ment calculus semantic (Xia and Glinz, 2004). The sible conflicts between SEAM specification elements,
transition between model views requires a represen-caused by refinements. Figure 4 summaries the appli-
tation consistency that is guaranteed by the applica- cability of our technique. The leftmost column enu-
tion of refinement calculus. Muskens, in (Muskens merates the refinements. Each row denotes conflicts
et al., 2005), focuses on the problem of consistency between elements, caused by the respective refine-
checking between software views, expressed as UML ment, and solutions for these conflicts. For example,

e recognized as impossible to calculate.
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Figure 4: Refinement propagation rules. Summary.

an introduction of a property (row 1) causes no con-
flict with action preconditions (column 3), whereas
property elimination (row 2) may cause such a con-
flict (column 3). This conflict can be resolved apply-
ing a propagation rule 5.

Refinements may cause conflicts by breaking
property-property and action-action relationn
SEAM (Figure 1). Formalization, refinement, and re-
finement propagation for these relations is out of the
scope of this paper. We put a question mark in the
summary table to specify these cases.

We consider the refinement propagation technique

as an efficient step towards computer-aided construc-

tion of visual specifications. Application of this tech-
nigue in the form of a modeling tool is one of our
on-going projects.
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