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Abstract: Well defined, loosely coupled services are the basic building blocks of the service-orientated design-
integration paradigm. Services are computational elements that expose functionality (e.g. legacy 
applications) in a platform independent manner and can be described, published, discovered, orchestrated 
and consumed across language, platform and organizational borders. Using service-orientation (SO) it is 
fairly easy to expose existing applications/resources and to aggregate them into novel services called 
composite services (CS). This aggregation is achieved by defining a workflow that orchestrates the 
underlying services in a manner consistent with the desired functionality. Since CS can aggregate atomic 
and other CS they foster the development of service layers and reuse of already existing functionality. But 
by defining workflows, existing services are put into novel contexts and exposed to different workloads, 
which in turn can result in unexpected behaviours. This paper examines the behaviour of sequential 
workflows that experience short-lived load bursts. Using workflows of varying length, the paper reports on 
the transformations that loads experience as they are processed by providers. 

1 INTRODUCTION 

Service-Orientation (SO) (Four Tenets Of Service 
Orientation) is a design & integration paradigm that 
is based on the notion of well defined, loosely 
coupled services. Within SO, services are viewed as 
computational elements that expose functionality in 
a platform-independent manner and can be 
described, published, discovered, orchestrated and 
consumed across language, platform and 
organizational borders. While service-orientation 
(SO) can be achieved using different technologies, 
Web Services (WS) (Natis, 2003) are the most 
commonly used, due to the standardization efforts 
and the available tools/infrastructure (Apache Axis). 
The Service-Oriented Architecture (SOA) (Chatarji, 
2007), first introduced by Gartner in 1996 (Natis, 
2003), is a conceptual framework that identifies 
service-consumers, service-providers and a registry 
trough which providers publish and consumer 
discover.  

In a service-oriented system, services are offered 
by service providers that register them with 
registries (e.g. UDDI). Service consumers (aka 
clients) discover at runtime service providers by 
simply queering the registries.  

 

 

 

 

 

 

 

Figure 1: SOA. 

Upon discovering a service provider, the 
consumer obtains from the provider the meta-data of 
the service in form of an XML document called Web 
Service Definition Language (WSDL) (Web Service 
Definition Language) that is then used to establish a 
binding to the provider (e.g. generation of stubs).  

Since services are high-level constructs that hide 
implementation details, consumers can easily bind to 
unknown services across platform and language 
barriers, resulting in a system with very dynamic 
functional dependencies between its components. 
Consequently service-orientation supports a loose 
coupling between consumers and providers, 
allowing for agile and open systems. One of the 
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most profound implications of the loose-coupling is 
the ease with which components (e.g. legacy 
systems) can be connected and aggregated into new 
services called composite services (CS). Composite 
Services (CS) aggregate multiple services into one 
logical unit to accomplish a complex task (e.g. 
business process). This aggregation is achieved by 
defining a workflow that orchestrates the underlying 
services in a manner consistent with the desired 
functionality. Since CS can aggregate atomic and 
other CS they foster the development of service 
layers and reuse of already existing functionality.   
This gave rise to the idea of service networks in 
which resources and workflows are shared across 
organizational boundaries. 
Over time many different approaches for modelling 
business processes have been developed and 
consequently there is no shortage of languages or 
concepts for implementing composite services. 
Below are two different approaches (sequential 
workflow and state-machine workflow) of modelling 
a business process that orchestrates three services.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: Business Process. 

While a sequential workflow (left) models the 
business process from a process-driven viewpoint, a 
state-machine workflow (right) models it as a finite 
state machine in which state transitions are the result 
of events.  
Sequential workflows are prescriptive and like a 
script or program define to the order in which the 
operations (underlying services) are executed.  
Using constructs such as loops, conditional 
statements and basic exception handling they 
assume a scenario in which the workflow is in 
control since the path of execution is determined by 
workflow internal factors. State-Machine based 

workflows follow the opposite approach, since they 
rely on events to trigger state transitions. State-
machine workflows are often used for business 
processes that are event-driven (e.g. involve human 
feedback) and that should therefore enable many 
paths of execution. Sequential workflows on the 
other side, are most often used for implementing 
machine workflows (e.g. process automation) that 
are sequential in nature, and have little or no human 
involvement.  

As already mentioned, the aggregation of 
services enables the definition of new services and 
thus layers of services arise. But by defining 
workflows existing services that may expose local 
resources (e.g. legacy applications) are also 
subjected to novel and potentially dangerous 
workloads. This is particularly worrisome for 
sequential workflows that automate processes and 
are therefore more likely to experience overloads 
that can cause ripple effects throughout a network of 
services. 

This paper focuses on the behaviour of 
sequential workflows that experience short-lived 
load bursts. Section two presents a brief discussion 
of general server behaviour. This is followed by the 
presentation of the experimental setup (section 
three) and the results of exposing workflows to 
different loads (section four). The paper concludes 
with a summary and an outlook on future work. 

2 BEHAVIOUR OF SINGLE 
SERVERS 

If a service provider does not share resources with 
other providers (e.g. no two providers expose the 
same data base), it can be modelled as a server. If 
such a provider is capable of handling multiple 
requests simultaneously it must assign resources for 
dealing with the incoming requests. Assuming that 
servers have a finite amount of resources and that 
each new consumer request will (temporary) reduce 
the available server resources, it is interesting to 
examine server behaviours under various loads. 
Studies (Heiss, 1991) show that servers respond in a 
common way to loads.   
If a server is gradually exposed to an ever-increasing 
number of service requests it is possible to observe 
three distinct stages, namely under-load, saturation 
and over-load. At the beginning the server 
experiences a load that is below its capacity (under-
load). As the number of requests is increased, the 
throughput (number of completed jobs per time unit) 
improves. As the rate of incoming requests increases 
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the server will experience its saturation point (a 
peak load). This saturation marks the point where 
the server is fully utilized and operating at its full 
capacity. The saturation point marks also the highest 
possible throughput. Further increases of the rate at 
which the requests arrive will now lead to an 
overload or thrashing effect. The service capacity is 
exceeded and “an increase of the load results in the 
decrease of throughput” (Heiss, 1991). Typically the 
main reasons for a server to experience thrashing 
are: 

• Resource contention: overload of the 
physical devices such as CPU, memory, 
hard drive, etc. 

• Data contention: a contention caused by 
locking.  

3 WORKFLOWS & LOADS 

While the behaviour of a single server towards loads 
is fairly well researched, there has been little work 
on the impact of loads on sequential workflows.  
 
 
 
 
 
 
 
 
 
 

 
   

 
 
 
 
 
 
 
 
 
 
 

Figure 3: Sequences with and without Branching. 

Depending on the used constructs (e.g. loops, 
conditional statements, parallel execution etc.) a 
sequential workflow can execute operations in a 
variety of ways.  
However, for the analysis of the basic behaviours of 
workflows it seems sufficient to limit the discussion 
to the sequence pattern since the more advanced 

execution paths can be treated as extensions and/or 
variations of the sequence pattern. 
Our previous studies with currently used Web 
Services platforms (e.g. AXIS 1.x, AXIS 2.x and the 
Windows Workflow Foundation) (Apache Axis,  
Eclipse, Visual Studio Home) showed that the 
behaviour of providers can be simulated (XJ 
Techologies) (with sufficient accuracy) by use of 
fairly simple models.  Instead of modelling the 
different resources of providers (e.g. processor, 
memory, network etc.) and trying to emulate page 
faults, context switches or locking of resources, it is 
sufficient to combine all resources into one type that 
is distributed equally over all current requests 
(Processor Sharing is the standard scheduler for 
providers). 

3.1 The Impact of a Single Short Burst 

In the first experiment workflows of various lengths 
were exposed to a load of 100 requests.  The 
providers in the workflow are to process jobs that 
require 100 % of the resources for 1.2 seconds (load 
= 120 %). The impact of the 100 requests on the first 
provider can be seen by the residence times of the 
requests (time it takes to process each request). 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Residence Times of Requests on 1st Provider. 

Since each request requires 120 % of resources per 
second, the provider encounters immediately a light 
overload. This is seen by the residence times (shown 
in milliseconds) that begin to rise until no longer 
new requests arrive. The rise in residence times is 
due to the overloading of the server, requests come 
in faster than they are completed. However since the 
burst consists of only 100 requests, there is a point 
when no new requests are received and the 
completion of requests frees up resources, enabling 
an ever faster processing of the remaining requests. 
It is noteworthy that the decline is steeper than the 
rise.  
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Figure 5: Interdeparture times for 1st Provider. 

The corresponding job interdeparture times 
(measured in milliseconds) of the first provider are 
shown in fig. 5. There is a brief warm-up period in 
which the interdeparture times fluctuate. This is 
followed by a phase in which the interdeparture 
times gradually stabilizes followed by a rapid 
decent. This transition from stabilized interdeparture 
time  to rapid decent marks the point when no longer 
new jobs arrive and the existing ones enjoy more 
and more resources which allow them to depart 
increasingly faster.  

The most interesting aspect of the displayed 
departure rates is that a short overload (burst) with 
of a constant arrival rate (1 job/sec), leads to a 
departure rate that is no longer constant. Figure 5 
shows that ca. 70 % of the requests have a departure 
rate of 1/1.4 job/sec and ca. 25 % a rate above 1 
job/sec second (speedup). The impact of this 
transformation can be seen when looking at the 
interdeparture times of the second provider.  
 
 
 
 
 
 
 
  
 
 
 

Figure 6: Interdeparture times for 2nd Provider. 

The departure rate of the second provider seems at 
first glance very different from that of the first one. 
To explain the behaviour of the second provider we 
combined both graphs. As can be seen in figure 7, 
the departure rates for the second provider match 
those of the first provider for nearly 70 % of the 
requests. The departure rate of the 2nd provider 
differs from the 1st provider only in the last 30 %. 
The spike starts exactly when the jobs of the 1st 

provider begin to arrive at 1.2 job/sec As soon as 
they arrive faster than 1.2 job/sec, the 2nd provider 
begins to experience a gradual overload that leads to 
slowdown in the departure rates (peak emerges). An 
interesting aspect in the departure rates of the 2nd 
provider is that the rates decrease and increase at a 
faster rate than that of the 1st provider. This effect 
can also be seen when more providers are observed 
(fig. 8). With every additional provider a new spike 
emerges. 
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Figure 7: Interdeparture times of Providers 1 & 2. 
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Figure 8: Interdeparture times of the first five Providers. 

3.2 Multiple Short Bursts 

To simulate short bursts the requests arrive now in 
10 groups of 100 requests (arrival rate 1 
second/request). Each group of 100 requests is 
separated by a period of 100 seconds (no requests). 
Again the providers in the workflow are exposed to 
jobs that require 100 % of the resources for 1.2 
seconds (load = 120 %). 
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Figure 9: Interdeparture times of 1st Provider (enlarged). 
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Figures 9 & 10 display the interdeparture times of 
the 10 bursts from the first server. As can bee seen 
in figure 9 (zoomed) the familiar burst pattern (fig. 
5) appears.  
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Figure 10: Interdeparture times of 1st Provider. 

The departure rates of the second provider show a 
similar picture. Once again one notices that each 
pulse produces the already known burst pattern of a 
second provider (fig. 6). In addition one can also 
notice that the gap between the burst once again has 
been reduced.   
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Figure 11: Interdeparture Times of 2nd Provider. 

This gradual reduction of the original gap 
continues as more providers are introduced. 
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Figure 12: Interdeparture Times of 6th Provider. 

When the interdeparture times of each provider 
are presented in one graph (concatenated) an 
interesting picture emerges. As shown in figure 13, 
the high spikes that mark the gap between the 

original bursts gradually disappear. This means that 
as more providers are chained in a sequence pattern 
the more the bursts merge into a completely new 
pattern. 
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Figure 13: Concatenated interdeparture times of the first 8 
Providers. 
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Figure 14: Concatenated interdeparture times of the first 
20 Providers. 

Figure 14 shows the results of exposing a sequential 
workflow consisting of 20 providers to the 10 bursts. 
The spikes that mark the original gaps between two 
bursts gradually shrink until they totally disappear 
(8th provider). Starting at the 9th provider the 
phenomenon of emerging spikes (as seen in section 
3.1) begins to be the only reason for spikes. As a 
result of these experiments we conclude that a 
sufficiently long sequential workflow can transform 
an input pattern with bursts into a completely 
different output pattern.  

3.3 The Impact of a Constant Load 
between Short Bursts  

To simulate short bursts on top of a constant 
medium load, 1000 requests are used. Again 10 
groups of 100 requests are formed. However this 
time the groups have alternating arrival rates shown 
in fig 15. The 1st, 3rd, 5th, 7th and 9th group have an 
interarrival time of 2 seconds and the 2nd 4th 6th 8th 
and 10th an interarrival time of 1 second. Again the 
providers in the workflow are exposed to jobs that 
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require 100 % of the resources for 1.2 seconds (load 
= 120 %). 
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Figure 15: Alternating interarrival times (arrival rates). 

0

500

1000

1500

2000

2500

1 66 131 196 261 326 391 456 521 586 651 716 781 846 911 976

Request

Ti
m

e

 
Figure 16: Interdeparture times of 1st Provider. 
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Figure 17: Interdeparture times of 2nd Provider. 

Figure 16 shows the interdeparture times of the first 
provider. As soon as the arrival rate switches from 2 
to 1 second the provider encounters an overload.  

As a result of this overload the already familiar 
pattern of the provider emerges with a brief warm-
up period in which the departure rates fluctuate. This 
is followed by a phase in which the interdeparture 
time gradually stabilizes followed by a rapid decent. 

The departure rates of the second provider are 
also very similar to those of the previous runs. Only 
when longer sequences are observed significant 
differences become visible [fig. 17].  

As seen in figure 18 & 19 larger sequences of 
providers transform faster into more chaotic 
sequences.  
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Figure 18: Concatenated departure rates of the first 8 
Providers. 
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Figure 19: Concatenated interdeparture times of the first 
20 Providers. 

These results indicate that short lived bursts have a 
significant large impact on workflows that already 
experience a constant medium load.   

3.4 The Impact of Admission Control 

It is well-known that overload situations lead to a 
decline in service throughput. Heiss and Wagner 
(Heiss, 1991) proposed to use an adaptive load 
control as a means of admission control. This 
prevents overloads, by first determining the 
maximum number of parallel requests (e.g. 
maximum number of simultaneous consumers) and 
then buffering/queuing new requests once the 
saturation point has been reached. Adding admission 
control to an already existing service (e.g. CS) can 
be achieved by using a proxy that shields/hides the 
original provider and thus enables the introduction 
of a transparent admission control and scheduling 
(Cherkasova 1998, Elnikety 2004, Harchol-
BalterSchroeder, 2003).  

To test the impact of an admission control each 
of the providers is shielded by a proxy that controls 
the maximum number of parallel request for each 
service provider (proxy introduces no overhead).  

Figure 20 shows the result of limiting the 
concurrently processed requests to 1 for each 
provider when the alternating load of section 3.3 (2 
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and 1 second arrivals) is used. As expected, setting 
limit of concurrently processed requests to 1 for 
each provider ensures that no transformations of the 
original arrival rates occur. 
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Figure 20: Interdeparture times of first 9 Providers (max 
1). 

Changing the limit to 10 concurrent requests already 
leads to transformations (fig. 21). 
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Figure 21: Interdeparture times of first 9 Providers (max 
10). 

When examining the first provider, one can also see 
the emergence of an alternating pattern. Since the 
provider allows only 10 concurrent requests at any 
moment in time the leaving of completed and the 
entering of new requests results in a reoccurring 
pattern of available resources. 
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Figure 22: Interdeparture time of 1st Providers (max 10). 

By concatenating the output of the first 20 providers 
one can see how the interdeparture time becomes 
increasingly chaotic. 
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Figure 23: Interdeparture times of 20 providers (max 10). 

Since the load scenario of section 3.3 consisted of a 
constant 60 % load that increased to 120 % in the 
bursts it is interesting to compare it to the lighter 
load of section 3.2 (no constant load only 120 % in 
bursts). 

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Request

Ti
m

e

 
Figure 24: Interdeparture time of 20 providers (max 10). 

As can be seen in figure 24, the gradual decline of 
the gap is still visible in this lighter workload 
scenario. However by shielding the proxy there are 
less distortions of the original workload. 

It is however important to note that the positive 
impact of the admission control is also a result of the 
constant loads each request imposes. As soon as an 
exponential distribution of arrivals and loads is 
introduced it becomes difficult to determine what the 
maximum amount of concurrent request should be 
for each given moment in time. 

4 CONCLUSIONS  

This paper focuses on the behaviour of sequential 
workloads that experience short periods of overloads 
(bursts). Two basic scenarios were used, short bursts 
that were separated by a pause of requests and bursts 
that appeared between a medium (60 %) load.  
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The results of the experiments showed: 
1) Workflows that encounter even short-lived 

overloads distort the original arrival rates. 
2) The more providers a workflow contains, 

the more chaotic the resulting departure rate 
becomes. 

3) The impact a burst has depends on the load 
surrounding it. Bursts that are embedded in 
a medium load have a bigger impact than 
those embedded in a light or no load. 

4) Adding an admission control reduces the 
distortion introduced by the workflow.  

These results show that there is a need for a load and 
configuration management of sequential workflows 
that can encounter bursts. Only if tools for 
monitoring/tracking/routing requests and loads are 
available will it become feasible to ensure 
dependable services in a complex service network. 

5 FUTURE WORK  

Based on the presented findings our future work will 
focus on: 

1) Further investigation into workflow 
behaviour. The investigated workflows are 
still very basic and don’t reveal the impact 
conditional statements or loops will have.  

2) The development of mechanisms to 
monitor and manipulate the loads 
workflows experience. 

3) The study of seamless replication as a 
mechanism to soften the impact of sudden 
bursts. 

4) Investigating if and how workflows can be 
annotated (semantic marking) to enable 
better management. 

5) Provenance of workflow behaviours.   
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