
CODE INSPECTION: A REVIEW

Robson Ytallo Silva de Oliveira, Paula Gonçalves Ferreira
CIn - Informatics Center, UFPE - Federal University of Pernambuco, Recife - PE, Brazil

Alexandre Alvaro, Eduardo Santana de Almeida, Silvio Romero de Lemos Meira
C.E.S.A.R – Recife Center for Advanced Studies and Systems, Recife – PE, Brazil

Keywords: Code Inspection, Quality Assurance, Software Reuse, Maintainability.

Abstract: The software inspection process is generally considered a software engineering best practice. For a long
time, it had the goals of finding and fixing defects as soon as possible. For this reason, techniques are
suggested for use in a software reuse process in order to improve the quality of the assets developed and
reused. Thus, the code become itself easier to understand and changeable, and improving its maintainability,
minimizing redundancies and improving language proficiency, safety and portability. In this way, looking
for analyzing this area, this paper presents a survey of code inspection research.

1 INTRODUCTION

Code inspections have emerged as one of most
effective quality assurance techniques in software
engineering. The primary goal of an inspection is to
find defects before the testing phase; and hence
strongly contribute to improve the quality of
software with budget and time benefits (DeMarco,
1982). A real example of code inspection benefits
could be seen at Jet Propulsion Laboratory that gives
support to NASA (Wohlin et al., 2002). They saved
US$ 7,5 million performing around 300 inspections.

The main goal of this survey is study the state-
of-the-art in code inspection research, in an attempt
to analyze this possible trend and to provide insights
in proposal of a well-defined software components
code inspection process. Thus, the main techniques,
process, methods and results were identified and
analyzed.

Besides this introduction, the reminder of this
paper is organized as follows. The Section 2
presents the most relevant techniques for the code
inspection activity that will be considered in the
works found in the literature. Section 3 splits the
code inspection area in two ages and surveys the
state-of-the-art related to code inspection research.
Finally, Section 4 presents the concluding remarks
and directions for future work.

2 CODE INSPECTION
TECHNIQUES

There are a lot of techniques that very important to
guide the code inspection process. They have been
studied and used during last years. The most relevant
code inspection technique was presented by Michael
Fagan in 1976 (Fagan, 1976). The technique was
called FTR (Formal Technical Review) and consists
of five steps, as follows:

 Overview: The author presents the scope
and the proposal of his software product;

 Preparation: In this step, the reviewers
only understand the code;

 Inspection Meeting: The reviewers work
together in order to identify errors and
reporting them;

 Rework: The author repairs the issues
reported in the last step;

 Follow-up: A moderator analyses the
rework step and judge if it is necessary to
repeat the process.

Usually a practical model, based on FTR, is used
when the cost of the code inspection process is
bigger than its benefits, which is composed of three
steps, as follows:

537
Ytallo Silva de Oliveira R., Gonçalves Ferreira P., Alvaro A., Santana de Almeida E. and Romero de Lemos Meira S. (2007).
CODE INSPECTION: A REVIEW.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - ISAS, pages 537-540
DOI: 10.5220/0002366505370540
Copyright c© SciTePress

 Preparation: The reviewers understand the
code. In addition, they need to find defects
in this step in contrast to FTR;

 Collection: The errors discovered are
analyzed and issues are reported when a
defect is considered a real one;

 Repair: In this phase, the reported issues
are addressed to the author repair them.

Some practical model variants try contributing
through their characteristics in the Cost-Benefit
relation. The most known of them are:

 Active Design Review (ADR): It is a
technique based on multiple sessions,
where each session is divided in short
phases which are independent;

 Phased Inspection (PI): As well as ADR,
PI is based on multiple sessions, but its
phases are sequential. The reparation is
done after each phase;

 N-Fold Inspections: This uses the concept
of N-teams which are designated to
perform the same task of inspection. In the
end of process, a moderator is responsible
to remove the redundancies. In general, N-
Fold Inspections have a high price due to
people are addressed to develop the same
task.

3 CODE INSPECTION: A
SURVEY

Analyzing the techniques presented and how they
have been used during the life of software
development, it is possible to divide the code
inspection process in two ages: Before 1976 and
From 1976 until today. However, this survey will
consider just the second age due to this area is scarce
of works and results before Fagan’s model.

First, in 1995, Haton (Hatton, 1995) suggests the
static inspection idea, which is purely the concept of
the code inspection. If suppose a dynamic
inspection, the concepts of test and inspection can be
mixed. Sometimes, the defect is evident into the
software, but the reviewers does not know where
they are, being necessary to run it. To understand the
idea, it is used an analogy: an engineer walks along
a stationary train, punching its wheels. If he has
experience, he is able to identify if there is any crack
in the train, if it is prejudicial and where. In the code
inspection, a static process identifies language
inconsistencies, furthermore becoming the code
easier to be understood and documented,

contributing, consequently, with software reuse. The
great disadvantage, in accordance with this work, it
is the necessity to have an experienced professional
in the language and the system.

Porter et al., in 1997 (Porter et al., 1997),
presented a report related to cost-benefits of the code
inspection techniques. The work had the follow
results:

 No difference in time and effectiveness
between groups with two or four people;

 Two groups with two people are not more
efficient than one group with two people;

 “Multiple sessions” do not have more
effectiveness than “single sessions”.

Still under 1997, (Porter and Johnson, 1997), was
motivated for a work from 1985 (Eick et al., 1992).
The oldest work discussed about the relation
between the steps of Preparation and Inspection
Meeting from FTR model. According to (Eick et al.,
1992), the most of defects were found in the second
step due to using the first one to find errors too,
opposed to the original model. The new work
analysed the relation between Real and Nominal
Group into a code inspection process.

Before the conclusions, it will be defined the
both kinds of groups (Porter and Johnson, 1997):

 Real: “participants meet face-to-face and
interact with each other to accomplish the
group task”.

 Nominal: “participants work individually
without interacting with each other, and
their individual results are pooled together
to accomplish the group task”.

Two experiments was performed and the more
significant result did not find any difference in
effectiveness between real and nominal groups,
nevertheless preparing and joining people – real
group – have a high price.

In 1987, (Basili and Selby, 1987) compared and
combined code inspection techniques. After ten
years, (Wood et al., 1997) performed a similar work,
obtaining the same results: the individual techniques
are very important, but the best results are generated
through techniques combination.

Several works about code inspection are related
or use the FTR model. Few significant modifications
are determined. But in 1998, (Johnson, 1998) wrote
some recommendations for Fagan’s model.
Although the recommendations weren’t being
explicitly referenced into the future works, it is easy
to identify some of them adopted, such as: provide
tighter integration between FTR and development
model; Minimize meetings and maximize
asynchronicity; Shift the focus from defect removal

ICEIS 2007 - International Conference on Enterprise Information Systems

538

to improved developer quality; Build organizational
knowledge bases on review; Outsource review and
insource review knowledge; Investigate computer-
mediated review technology; and Break the
boundaries on review group size.

In (Brykczynski, 1999), Brykczynski listed a
range of checklists, suggesting what to be used or
avoided. By suggestions, it is possible to identify the
Johnson’s recommendation (Johnson, 1998) to build
organizational knowledge bases on review.
Although (Johnson, 1998) is not referenced,
Brykczynski suggests updating the checklist to
maintain an updated knowledge base.

In 1999, the main concern is about Object-
Oriented (OO) Designs. Usually, when an OO code
is inspecting, only a piece of it is analyzed. It can be
very difficult to understand only that piece if we
consider some concepts like polymorphism and
inheritance. Travassos et al. (Travassos et al., 1999)
cited the importance of reading techniques in OO
context. The great problem for OO code inspection
is the preparation phase. Sometimes it is not well-
defined or sometimes it has a high price to be
performed.

In 2000, Kimble and White (Kimble and White,
2000) describes an alternative source code analysis
in order to identify automatically the existence of
recursion, missing functionality and logical errors.
The method used a parser to massage the code to a
set of conventions. A modified notation was created
and from this a Control Flow Diagram (CFD) was
built and the thread analysis was done easier due to
well-defined flows.

Still in 2000, Adams (Adams, 2000) presented an
interesting work, that could be considered very
radical, but his words make sense. According to
Adams, six years before Michael Fagan publish his
work describing the FTR model, Apollo 11 was
launched to space. Considering the Flight Control
Software that helped guide Eagle, Adams concludes
that many complex software systems was developed
and some kind of inspection process was adopted
before 1976. Thus, he creates some questions about
if inspections and reviews are really necessary.

Another work developed in 2000, Nandivada and
Dutta (Nandivada and Dutta, 2000) describes a new
model for code reviews. It is called “The 9 Quadrant
model” and it is based on statistical techniques such
as control charts. The model provides a single
framework to generate a scatter chart between yield
and cost of code review. 9Q model serves as an
excellent tool for process decision-making and
indirectly addresses planning of code reviews,

determining their efficiency and improving the
process.

In 2001, the Bifel et al. (Bifel et al., 2001) work
was concerned in evaluating re-inspection. A re-
inspection repeats the inspection process and is often
believed to be less efficient. Thus, a cost-benefit
model was proposed in this work to help whether a
re-inspection justifies its cost. The work concluded
that more than 80% of re-inspections weren’t
necessary and the remaining were necessary due to
the reviewers weren’t familiar with the system or
with the process.

In 2002, according to Wohlin et al. (Wohlin et
al., 2002), the advantages of inspections were not
well perceived by management. Knowing that
“benchmarking is a continuous improvement process
rather than a competitive comparison” (Wohlin et
al., 2002), and “It is a widely used business practice
and has been accepted as a key component for
organizations to search for improvement in quality,
competitive position or market share” (Wohlin et al.,
2002), benchmarking could compare tools, people,
environments, and so on to build a well-defined code
inspection. Several tools for software benchmarking
have also been developed. Although makes no
reference to (Johnson, 1998), it follows the
recommendation to build organizational knowledge
bases on review.

Again, the relation between Real and Nominal
Groups was discussed by Tyran and George (Tyran
and George, 2002) in 2002. This time was suggested
to use a Group Support System (GSS), attending the
recommendation of Johnson (1998) to investigate
computer-mediated review technology. The GSS’s
are responsible to address group process issues in
collaborative groups, helping to minimize problems
associated with the meeting process. In addition,
according to Tyran and George (2002), to use a
GSS-supported, teams perform best the code
inspection, detecting more defects.

The Usage-Based Reading (UBR) techniques
was discussed by Thelin et al. (Thelin et al., 2003),
in 2003. According to work, the UBR which uses the
traditional inspection concepts, use cases and
operational profile testing, is more effective and
efficient than the checklist-based method.

In 2005, Remillard (Remillard, 2005) presented
his experiences using Source Code Review Systems.
He describes the tools Bugzilla and CodeStriker,
showing their main features. According to work, the
CodeStriker looks like having more advantages
considering the other compared systems. This
assumption is giving emphasis by license type,

CODE INSPECTION - A Review

539

revision control system integration, data storage and
kind of inspections supported.

4 CONCLUSION AND FUTURE
REMARKS

This paper has presented a survey related to the
state-of-the-art in the code inspection research. As
we can observe, the FTR Model was predominant in
the works analyzed. Still on, a set of works found
into literature presented some variants but all of
them follow the Fagan’s principles.

For future work, we planned to establish a well-
defined process for software component code
inspection in conjunction with RiSE1 projects in
order to evaluate this one process. One of the main
motivations for us is due to the fact that we did not
find into the literature a code inspection process
specific for software components. However, this is
one of the three bases adopted in our group for
quality assurance in software components,
composed of a component certification process
(Alvaro et al., 200) (Alvaro et al., 2006) and test’s
component. The code inspection requirements and
the process will be described in future papers.

REFERENCES

Adams, T. (2000). The God of Inspection. ACM SIGSOFT
- Software Engineering Notes, 25, 02, 30.

Alvaro, A., Almeida, E. S., Meira, S. L. (2005). Software
Component Certification: A Survey. In 31st IEEE
EUROMICRO Conference on Software Engineering
and Advanced Applications (SEAA), Component-
Based Software Engineering (CBSE) Track, Porto,
Portugal. IEEE Press.

Alvaro, A., Almeida, E. S., Meira, S. L. (2006). Towards a
Software Component Certification framework. In 5th
International Conference on COTS-Based Software
Systems (ICCBSS), Poster Session, Florida, EUA.
Lecture Notes in Computer Science (LNCS), Springer-
Verlag.

Basili, V., Selby, R. (1987). Comparing the Effectiveness
of Software Testing Strategies. IEEE Transactions on
Software Engineering, 1278-1296.

Bifel, S., Freimut, B., Laitenberger, O. (2001).
Investigating the Cost-Effectiveness of Reinspections
in Software Development. In IEEE International
Conference on Software Engineering (ICSE), 155-164.

1 Reuse in Software Engineering (RiSE) group –
http://www.rise.com.br

Brykczynski, B. (1999). A Survey of Software Inspection
Checklists. ACM SIGSOFT - Software Engineering
Notes, 24, 01, 82-89.

DeMarco, T. (1982). Controlling Software Projects.
Yourdon Press. New York.

Eick, S.G., Loader, C.R., Long, M.D., Vander Wiel, S.A.,
Votta, L.G. (1992). Estimating Software Fault Content
Before Coding, In 14th Internacional Conference on
Software Engineering (ICSE), 59-65.

Fagan, M. (1976). Design and Code Inspections to Reduce
Errors in Program Development. IBM Systems
Journal, 15, 3, 182-211.

Hatton, L. (1995). Static Inspection: Tapping the wells of
software. Programming Research Ltd. 85-87.

Johnson, P. (1998). Reengineering Inspection.
Communications of the ACM, 41, 02, 49-52.

Kimble, J., White, L. (2000). An Alternative Source Code
Analysis. In The International Conference on Software
Maintenance (ICSM), 64-75.

Nandivada, R., Dutta, S. (2000). The 9 Quadrant Model
for Code Reviews. In IEEE Asia Pacific Conference
on Quality Software, 188-193.

Porter, A., Johnson, P. (1997). Assessing Software Review
Meetings: Results of a Comparative Analysis of Two
Experimental Studies. IEEE Transactions on Software
Engineering, 23, 03, 129-145.

Porter, A., Siy, H., Toman, C., Votta, L. (1997). An
Experiment to Assess the Cost-Benefits of Code
Inspections in Large Scale Software Development.
IEEE Transactions on Software Engineering, 23, 06,
329-346.

Remillard, J. (2005). Source Code Review Systems. IEEE
Software, 22, 01, 74-77.

Thelin, T., Runeson,, P., Wohlin, C. (2003). Prioritized
Use Cases as a Vehicle for Software Inspections. IEEE
Software, 20, 04, 30-33.

Travassos, G., Shull, F., Fredericks, M., Basili, V. (1999).
Detecting Defects in Object-Oriented Designs: Using
Reading Techniques to Increase Software Quality. In
14th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,
34, 10.

Tyran, C., George, J. (2002). Improving Software
Inspections with Group Process Support.
Communications of the ACM, 45, 09, 87-92.

Wohlin, C., Aurum, A., Petersson, H., Shull, F.,
Ciolkowski, M. (2002). Software Inspection
Benchmarking - A Qualitative and Quantitative
Comparative Opportunity. In 8th IEEE Symposium on
Software Metrics, 118-127.

Wood, M., Roper, M., Brooks, A., Miller, J. (1997).
Comparing and Combining Software Defect Detection
Techniques: A Replicated Empirical Study. In 6th
European Software Engineering Conference / 5th
ACM SIGSOFT Symposium on the Foundations of
Software Engineering, 1301, 162-277.

ICEIS 2007 - International Conference on Enterprise Information Systems

540

