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Abstract: This research examines the use of fSEMG (facial Surface Electromyogram) to recognise speech commands 
in English and German language without evaluating any voice signals. The system is designed for 
applications based on speech commands for Human Computer Interaction (HCI). An effective technique is 
presented, which uses the facial muscle activity of the articulatory muscles and human factors for silent 
vowel recognition. The difference in the speed and style of speaking varies between experiments, and this 
variation appears to be more pronounced when people are speaking a different language other than their 
native language. This investigation reports measuring the relative activity of the articulatory muscles for 
recognition of silent vowels of German (native) and English (foreign) languages. In this analysis, three 
English vowels and three German vowels were used as recognition variables. The moving root mean square 
(RMS) of surface electromyogram (SEMG) of four facial muscles is used to segment the signal and to 
identify the start and end of a silently spoken utterance. The relative muscle activity is computed by 
integrating and normalising the RMS values of the signals between the detected start and end markers. The 
output vector of this is classified using a back propagation neural network to identify the voiceless speech. 
The cross-validation was performed to test the reliability of the classification. The data is also tested using 
K-means clustering technique to determine the linearity of separation of the data. The experimental results 
show that this technique yields high recognition rate when used for all participants in both languages. The 
results also show that the system is easy to train for a new user and suggest that such a system works 
reliably for simple vowel based commands for human computer interface when it is trained for a user, who 
can speak one or more languages and for people who have speech disability. 

1 INTRODUCTION 

In this advancing world of technology, there are 
many developments being made in the field of 
computing. Research and development of new 
human computer interaction (HCI) techniques that 
enhance the flexibility and reliability for the user are 
important. The most fundamental applications of 
affective computing would be human-computer 
interaction, in which the computer is able to detect 
and track commands coming from human users, and 

to handle communication based on this knowledge. 
Research on new methods of computer control has 
focused on various types of body functions like 
speech, emotions, bioelectrical activity, facial 
expressions, etc. The expression of emotions plays 
an important part in human interaction. Most of the 
facial movements result from either speech or the 
display of emotions; each of these has its own 
complexity (Ursula and Pierre, 1998).  
 Speech operated systems have the advantage 
that these provide flexibility, and can be considered 
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for any applications where natural language may be 
used. Such systems utilise a natural ability of the 
human user, and therefore have the potential for 
making computer control effortless and natural. 
Furthermore, due to the very dense information that 
can be coded in speech, speech based human 
computer interaction (HCI) can provide richness 
comparable to human-to-human interaction. 
 In recent years, significant progress has been 
made in speech recognition technology, making 
speech an effective modality in both telephony and 
multimodal human-machine interaction. Speech 
recognition systems have been built and deployed 
for numerous applications. The technology is not 
only improving at a steady pace, but is also 
becoming increasingly usable and useful. However, 
speech recognition technology using voice signals 
has three major shortcomings - it is not suitable in 
noisy environments such as vehicles or factories, not 
applicable for people with speech impairment 
disability such as people after a stroke attack, and it 
is not applicable for giving discrete commands when 
there may be other people talking in vicinity. 

This research reports how to overcome these 
shortcomings with a voice recognition approach, 
which identifies silent vowel-based verbal 
commands without the need to sense the voice sound 
output of the speaker. Possible users of such a 
system would be people with disability, workers in 
noisy environments, and members of the defence 
forces. When we speak in noisy environments, or 
with people with hearing deficiencies, the lip and 
facial movements often compensate the lack of 
audio quality. 

The identification of speech by evaluating lip 
movements can be achieved using visual sensing, or 
tracking the movement and shape using mechanical 
sensors (Manabe et al., 2003), or by relating the 
movement and shape to facial muscle activity (Chan 
et al., 2002; Kumar et al., 2004). Each of these 
techniques has strengths and limitations. The video 
based technique is computationally expensive, 
requires a camera monitoring the lips that is fixed to 
a view of the speaker’s head, and it is sensitive to 
lighting conditions. The sensor based technique has 
the obvious disadvantage that it requires the user to 
have sensors fixed to the face, making the system 
not user friendly. The muscle monitoring systems 
have limitations in terms of low reliability. In the 
following sections, the approach is reported of 
recording activity of the facial muscles (fEMG) for 
determining silently commands from a human 
speaker. 

Earlier work reported by the authors have 
demonstrated the use of multi-channel surface 
electromyogram (SEMG) to identify the unspoken 
vowel based on the normalized integral values of 
facial EMG during the utterance, and this 
construction had been tested with native Australian 
English speakers. The main concern with such 
systems is the difficulty to work across people of 
different backgrounds, and the main challenge is the 
ability of such a system to work for people of 
different languages – native ones as well as foreign 
ones. Consequently, in this particular work the error 
in classification of the unvoiced English and German 
vowels by a group of German native speakers are 
compared. Hence, this investigation covers the 
application case of two different languages used by 
native speakers, and the case of speakers talking and 
commanding in a foreign language. 

2 THEORY 

This research aims to recognize the multi-channel 
surface electromyogram of the facial muscle with 
speech and identify the variation in the accuracy of 
classification for two different languages, German 
and English. Articulatory phonetics considers the 
anatomical detail of the utterance of sounds. This 
requires the description of speech sounds in terms of 
the position of the vocal organs, and it is convenient 
to divide the speech sounds into vowels and 
consonants. The consonants are relatively easy to 
define in terms of shape and position of the vocal 
organs, but the vowels are less well defined and this 
may be explained because the tongue typically never 
touches another organ when making a vowel 
(Parsons, 1986). When considering speech 
articulation, the shapes of the mouth during speaking 
vowels remain constant while during consonants the 
shape of the mouth changes. 

2.1 Face Movement and Muscles 
Related to Speech 

The human face can communicate a variety of 
information including subjective emotion, 
communitive intent, and cognitive appraisal. The 
facial musculature is a three dimensional assembly 
of small, pseudo-independently controlled muscular 
lips performing a variety of complex orfacial 
functions such as speech, mastication, swallowing 
and mediation of motion (Lapatki et al., 2003). 
When using facial SEMG to determine the shape of 
lips and mouth, there is the issue of the proper 
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choice of muscles and the corresponding location of 
the electrodes, and also the difficulty of cross talk 
due to the overlap between the different muscles. 
(Chan et al., 2002) demonstrated the presence of 
speech information in facial myoelectric signals 
using an SEMG based system. (Kumar et al., 2004) 
have demonstrated the use of SEMG to identify 
unspoken sounds under controlled conditions. More 
algorithmic details for dedicatedly classifying facial 
muscle activity during vowel-based speech  
previously were reported in (Arjunan et al., 2006). 

Applying integral RMS of SEMG is useful in 
overcoming the issues of cross talk and the temporal 
difference between the activation of the different 
muscles that may be close to one set of electrodes. It 
is impractical to consider the entire facial muscles 
and record their electrical activity. 
 

 
Figure 1: Topographical location of facial muscles 
[Source: (Lapatki et al., 2003)]. 

In this study, only the following four facial 
muscles have been selected: Zygomaticus Major, 
Depressor anguli oris, Masseter and Mentalis 
(Fridlund and Cacioppo, 1986). The placement of 
electrodes and location of these muscles are shown 
in Figure 1. With the variation in speed and 
pronunciation of speaking, and the length of each 
sound in different languages, it is difficult to 
determine an appropriate window in time domain for 
best signal analysis. When the properties of the 
signal are time varying, identifying suitable features 
for classification will be less robust. 

2.2 Features of SEMG 

Surface electromyogram (SEMG) is a gross 
indicator of the muscle activity and is used to 
identify force of muscle contraction, associated 
movement and posture. SEMG is a complex non-
stationary signal. The strength of SEMG is a good 

measure of the strength of contraction of the muscle, 
and it can be related to the movement and posture of 
the corresponding part of the body (Basmajian and 
Deluca, 1985). Root Mean Square (RMS) of SEMG 
is related to the number of active muscle fibers and 
the rate of activation, and is a good measure of the 
strength of the muscle activation, and thus the 
strength of the force of muscle contraction. The 
issue regarding the use of SEMG to identify speech 
is the large variability of SEMG activity pattern 
associated with a phoneme of speech (Basmajian 
and Deluca, 1985). While it is relatively simple to 
identify the start and the end of the muscle activity 
related to the vowel, the muscle activity at the start 
and the end may often be much larger than the 
activity during the section, when the mouth cavity 
shape is being kept constant, corresponding to the 
vowel. To overcome the issue of variation in speed 
and pronunciation of vowels, this research 
recommends the use of the integration of the RMS 
of SEMG from the start till the end of the utterance 
of the vowel. This paper reports the use of 
normalised values of the integral of RMS of SEMG 
from the different muscles to reduce the large inter-
experimental variation. 

2.3 Statistical Analysis using  
Cross-validation 

Cross-validation is the statistical practice of 
partitioning a sample of data into subsets such that 
the analysis is initially performed on a single subset, 
while the other subset(s) are retained for subsequent 
use in confirming and validating the initial analysis.  

 
Figure 2: Random sub-sampling cross validation. [Source: 
(Gutierrez-Osuna, 2001)]. 

The initial subset of data is called the training 
set; the other subset(s) are called validation or 
testing sets. The holdout method is the simplest kind 
of cross validation. The data set is separated into two 
sets, called the training set and the testing set. The 
function approximator fits a function using the 
training set only. Then the function approximator is 
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asked to predict the output values for the data in the 
testing set (it has never seen these output values 
before). The obtained errors are accumulated as 
before to determine the mean absolute test set error, 
which is used to evaluate the model. For having a 
random selection of training and testing data sets, 
Random Sub sampling Cross-validation method was 
used. Random Sub sampling performs k data splits 
of the dataset as shown in Figure 2. Each split 
randomly selects a (fixed) number of examples 
without replacement. For each data split we retrain 
the classifier from scratch with the training examples 
and estimate with the test examples. The true 
classification accuracy is obtained as the average of 
the separate estimates (Gutierrez- Osuna, 2001). The 
training and testing was done using Artificial Neural 
Network architecture with back propagation 
algorithm.  

 
Figure 3: Recorded raw EMG signal and its RMS plot. 

3 METHODOLOGY 

Experiments were conducted to evaluate the 
performance of the proposed speech recognition 
from facial SEMG for two different languages, 
German and English. The experiments were 
approved by the Human Experiments Ethics 
Committee of the University. In controlled 
experiments, participants were asked to speak while 
their SEMGs were recorded. The SEMG recordings 
were visually observed, and all recordings with any 
artefacts – typically due to loose electrodes or 
movement – were discarded. During these 
recordings, the participants spoke three selected 
English vowels (/a/,/e/,/u/) and three selected 
German vowels (/a/,/i/,/u/). Each vowel was spoken 
separately such that there was a clear start and end 
of its utterance. The experiment was repeated ten 

times for each language. A suitable resting time was 
granted to the speakers between each experiment. 
The participants were asked to vary their speaking 
speed and style to obtain a wide training set. 

3.1 EMG Recording and Processing 

In an earlier reference investigation, three male 
volunteers participated who are English native 
speakers, while in the present investigation, one 
female plus two male volunteers participated in the 
experiments. All the participants in this second 
experimental run were native speakers of German 
with English as their second language. 

Four channel facial SEMG was recorded using 
the recommended recording guidelines (Fridlund 
and Cacioppo, 1986). A four channel, portable, 
continuous recording MEGAWIN instrument (Mega 
Electronics, Finland) was used for this purpose. Raw 
signal was recorded at a rate of 2000 samples per 
second. Ag/AgCl electrodes (AMBU Blue sensors 
from MEDICOTEST, Denmark) were mounted on 
appropriate locations close to the selected facial 
muscles. The recordings were visually observed, and 
all recordings with any artefacts were discarded. 
Figure 3 shows the raw EMG signal recording, and 
its RMS values plotted as a function of time domain 
denoted by the corresponding sample number. 

 

 
Figure 4: Example RMS integration of SEMG. 

3.2 Data Analysis 

The first step in the analysis of the data was to 
identify the temporal location of the muscle activity. 
Moving root mean square (MRMS) of the recorded 
signal with a threshold of 1 sigma of the signal was 
applied for windowing and identifying the start and 
the end of the active period (Freedman et al., 1997). 
A Window size of 20 samples corresponding to 
10 ms was used for computing the MRMS. 
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(a) 

 
(b) 

Figure 5: 3-D plot of the normalised IRMS values for (a) 
English Vowels, and for (b) German Vowels. 

The start and the end of the muscle activity were 
also confirmed visually. The next step was to 
parameterise the SEMG for classification of the 
data. MRMS values of SEMG between the start and 
the end of the muscle activity was integrated for 
each of the channels. This provided a four long 
vector corresponding to the overall activity of the 
four channels for each vowel utterance. This data 
was normalised by computing a ratio of integrated 
MRMS of each channel with respect to channel 
number one. This ratio is indicative for the relative 
strength of contraction of the different muscles and 
reduces the impact of inter-experimental variations. 
The outcome of this step was a vector of length three 
corresponding to each utterance. Figure 4 is an 
example of the computation of the integral of RMS 
of SEMG. For computing the integral of RMS of 
SEMG, Durand’s rule (Beyer, 1987) was used, 

because it produces approximations that are more 
accurate, since these represent a straightforward 
family of numerical integration techniques. 

3.3 Classifying of Normalised Features 
of Facial SEMG 

For classification, parameterised SEMG data 
resulting in a vector with three measures for each 
utterance was used. The first step was to determine, 
if this data is separable. 
 

 
(a) 

 

(b) 

Figure 6: Silhouette plot of the normalised IRMS values 
for (a) English Vowels, and (b) German Vowels. 

After confirming this, the next step was to 
determine whether the data is linearly separable. A 
supervised neural network approach was used for the 
separation step. The advantage of using a neural 
network is that such networks can be applied 
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without the assumption for a possible linear 
separation of the data. For this purpose, the data 
from the ten experiments for each vowel uttered by 
one individual participant was divided into two 
groups - training and test data. 

This was repeated for English and German 
language separately. The ANN consisted of two 
hidden layers with 20 nodes in both layers. Sigmoid 
function was used as the threshold decision. ANN 
was trained with gradient descent algorithm using a 
momentum with a learning rate of 0.05 to reduce the 
likelihood of local minima. Finally, the trained ANN 
was used to classify the test data. This entire process 
was repeated for each of the participants. The 
performance of these integral RMS values was 
evaluated by comparing the accuracy in the 
classification during testing. The accuracy was 
calculated as ratio of the percentage of correctly 
classified data points and the total number of data 
points in the class.  

The next step in the classification of this data 
was to test, whether the data was linearly separable. 
Taking advantage of the three dimension in the data, 
three axis plot was produced. In this, data points 
representing each vowel were given a specific colour 
and distinct symbol for visual inspection. Figure 5 
shows example of such a plot, for each of the 
investigated languages. The K-means clustering 
technique was performed to test the data for linear 
separability. To get an idea of how well-separated 
the resulting clusters are, a silhouette plot was made 
using the cluster indices output from k-means. The 
silhouette plot in Figure 6 displays a measure of 
closeness of each point in one cluster to points in the 
neighbouring clusters. 

3.4 Statistical Analysis of Classification 
Accuracy 

Random Sub sampling cross-validation method was 
used to determine the mean classification accuracy 
of the normalised features of facial SEMG. The 
training and testing of different random sub samples 
using ANN was repeated for different times. The 
final classification accuracy is the average of 
individual estimates as in Eqn.1. 

∑
=

×=
K

i
ncKA

1
)/(/1                  (1) 

where c = number of correctly classified utterances 
n = total number of utterances 
K = total repetition count of training and testing 

4 RESULTS AND OBSERVATIONS 

The linear separation of normalised IRMS values of 
different vowels was tested using three dimensional 
plot and silhouette plot. It is observable from the 3-
D plots in Figure 5, that there appears distinct 
clustering of the data based on the vowel uttered for 
both languages.  

Table 1: Mean classification accuracy for English vowels. 

Mean Classification accuracy Vowels 

Participant 1 Participant 2 Participant 3 

/a/ 73.3% 83.3% 80.0% 
/e/ 76.7% 76.7% 83.3% 
/u/ 100.0% 100.0% 100.0% 

Table 2: Mean classification accuracy for German vowels. 

Mean Classification accuracy Vowels 

Participant 1 Participant 2 Participant 3 

/a/ 86.7% 83.3% 83.3% 
/i/ 96.7% 80.0% 76.7% 
/u/ 100.0% 100.0% 100.0% 

This is also verified using k-means Silhouette 
plot (Figure 6): it is clear that most points have a 
large silhouette value, indicating that the clusters are 
separated from each other and this suggests that 
there exists a linear separation of the data. The 
average silhouette values for English vowels and 
German vowels are 0.7634 and 0.8441 respectively. 
This shows that the linear separation of data is 
stronger in German vowels (native language of the 
speaker) than English vowels (foreign language). 
Table 1 shows the ANN classification results on the 
test data using weight matrix generated during 
training for English vowels, and Table 2 lists these 
values for German vowels. These results indicate 
that the mean classification accuracy of the integral 
RMS values of the EMG signal yields better 
recognition rate of vowels for 3 different 
participants, when it is trained individually. The 
results indicate that this technique can be used for 
the classification of vowels for the native and 
foreign language – in this case – English and 
German. This suggests that the system is able to 
identify the differences between the styles of 
speaking of different people at different times for 
different languages. 
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4.1 Variation in Classification Error 
for Native and Foreign Language 

Figure 7 shows the variation in error rate for German 
and English vowels. The error rate in classification 
accuracy for a foreign language (English) is 
marginally high when compared with the native 
language (German). This is due to the muscle pattern 
remaining same during the utterance of the native  
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Figure 7: Error bar plots for classification of English and 
German Vowel - /a/. 
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Figure 8: Error bar plots for classification rates of the 
German vowel - /i/ and the English Vowel - /e/. 

language and changes during the utterance of the 
foreign language. The variation is high for German 
vowels /a/, /i/ and English vowels /a/, /e/ and there is 
no variation for the vowel /u/ in both German and 
English language. This can also be seen from the 
data pattern for both the languages (3-D Plot) in 
Figure 5. 

5 DISCUSSION 

The results indicate that the proposed method using 
activities of facial muscles for identifying silently 

spoken vowels is technically feasible from the view 
point of error in identification. The investigation 
reveals the suitability of the system for English and 
German, and this suggests that the system is feasible 
when used for people speaking their own native 
language as well as a foreign language. 

The results also indicate that the system is not 
disturbed by the variation in the speed of utterance. 
The recognition accuracy is high, when it is trained 
and tested for a dedicate user. Hence, such a system 
could be used by any individual user as a reliable 
human computer interface (HCI). Up to now, this 
method has only been tested for limited vowels. 
Vowels were considered at first, because the muscle 
contraction during the utterance of vowels remains 
stationary. 

The promising results obtained in the experiment 
indicate that this approach based on the facial 
muscles movement represents a suitable and reliable 
method for classifying vowels of single user without 
regard to speaking speed and style in different times 
for different languages. It should be pointed out that 
this method at this stage is not being designed to 
provide the flexibility of regular conversation 
language, but for a limited dictionary only, which is 
appropriate for simple voice control systems. The 
results furthermore suggest that such a system is 
suitable and reliable for simple commands for 
human computer interface when it is trained for the 
user. This method has to be enhanced for large set of 
data with many subjects in future. 

6 CONCLUSIONS 

This work describes a silent vowel based speech 
recognition approach that works with measuring the 
facial muscle contraction using non-invasive SEMG. 
Application of this includes, e.g., removal of any 
disambiguity caused by the acoustic noise for human 
computer interface or computer based speech 
analysis. The presented investigation focused on 
classifying English and German vowels, because 
pronunciation of vowels results in stationary muscle 
contraction as compared to consonants. 

The system has been tested with a very small set 
of phonemes, where the system has been successful. 
The recognition accuracy is high, when it is trained 
and tested for a dedicate user. It should be pointed 
out that this method at this stage is not yet designed 
to provide the flexibility of regular conversation 
language, but for a limited dictionary only, which is 
appropriate for simple voice control systems. This 

ICEIS 2007 - International Conference on Enterprise Information Systems

74



 

method has to be enhanced for large set of data with 
many subjects in future. 

One basic application for such a system is for 
disabled user to give simple commands to a 
machine, which would be a helpful and typical 
application of HCI. Future applications of such a 
system, e.g., cover Internet access for people on the 
move while using their mobile devices, or when they 
are in public places. Further possibilities especially 
include applications for telephony, defence 
problems, and improvement of speech-based 
computer control in general in any noisy 
environment. 
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