XML SCHEMA STRUCTURAL EQUIVALENCE

Angela C. Duta, Ken Barker and Reda Alhajj
Department of Computer Science, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, Canada

Keywords: Schema equivalence, XML structures.

Abstract: The Xequiv algorithm determines when two XML schemas are equivalent based on their structural organization. It calculates the percentages of schema inclusion in another schema by considering the cardinality of each leaf node and its interconnection to other leaf nodes that are part of a sequence or choice structure. Xequiv is based on the Reduction Algorithm (Duta et al., 2006) that focuses on the leaf nodes and eliminates intermediate levels in the XML tree.

1 INTRODUCTION

Much work has been done in the XML schema equivalence area (Do et al., 2003), (Do and Rahm, 2002), (Lee et al., 2002), (Madhavan et al., 2001), (Nierman and Jagadish, 2002)) that is applied optimally in only some situations. We propose an approach that finds equivalent XML schemas from the same domain (the same entities and attributes) that have different tree organizations. The difficulty of comparing and finding matchable schemas arises for two reasons: (1) there are three data storage units in XML: elements, attributes, and text content, and (2) the hierarchical features of the XML structure. XML schema equivalence must be evaluated from three perspectives: (1) hierarchical structure (structural equivalence), (2) elements and attributes data types (syntactic equivalence), and (3) elements and attributes names (semantic equivalence).

This paper focuses on determining the structural equivalence of XML schema by using reduced XML trees generated by the Reduction Algorithm (RA) (Duta et al., 2006). In the reduced XML trees the three data storage units (element, attribute, and text content) are transformed into a single storage unit: the element node (also called the node). RA eliminates intermediate organizational nodes from each XML schema so that a comparison between them is efficient. The reduced XML schema contains only information about leaf nodes: data types, labels, number of occurrences, and interconnections between them. Our argument for using reduced XML trees is that leaf nodes are the important nodes as they store the data in XML files. Higher level nodes represent a subjective hierarchical organization that allows an intelligible reading of the information stored in leaves. From this perspective our approach is contrary to the assumption “elements at higher levels ... are more relevant than subelement deeply nested” (Bertino et al., 2004) used by some methods (Bertino et al., 2004).

The purpose of this paper is to define a new method for optimizing the schema structure equivalence process that applies to schema trees of similar or different organization. A classification of XML trees from the structural perspective is (1) similar tree structures that use different data storage units and (2) different tree structures that use different order, grouping and/or nesting of subelements within a parent element. All approaches published to date focus on similar tree structures and do not address schema equivalence for different tree structures. The novelty of our method is to determine structural matching based on the equivalent leaves content rather than contexts and vicinities. A leaf content is defined by (1) data type and (2) number of minimum and maximum occurrences. Our approach finds equivalent XML schemas in all situations detailed above as long as the minimum information is provided to find a
match (labels and data types).

Paper Organization Following this two DTD examples are detailed that have different tree structures but refer to the same entities: employees, projects, and tasks. Section 2 briefly discusses several developed methods for schema equivalence. Our approach is presented starting with Section 3 that first summarizes the RA and then details Xequiv. An example for Xequiv is depicted in Section 6. This paper draws some conclusions in Section 7.

Motivating Examples Figures 1 and 2 illustrate two simple examples of DTDs that store data about employees, projects, and tasks for a company. The element data type definitions have not been included. No mechanism has yet appeared in the literature to clearly compare these XML schemas and decide if they are equivalent. This paper presents the Xequiv algorithm that structurally compares differently organized XML trees from the same domain.

2 RELATED WORK

Following Salminen and Tompa’s suggestion (Salminen and Tompa, 2001) that the canonical forms for XML recommended by W3C (Boyer, 2001) must be further researched to solve the XML schema equivalence problem, much work has been done in this area. The generic schema matching algorithm Cupid (Madhavan et al., 2001) focuses on leaf nodes using automatic linguistic matching (elements’ name) and structural matching (schema structure, path matching, constraints, and element data types). The similarity between two DTDs is evaluated (Lee et al., 2002) from three perspectives: (1) semantic similarity (similarity between node labels, constraints and path context (ancestors)), (2) immediate descendant similarity, and (3) leaf context similarity. Constraints such as +, *, ?, or none are given weights of similarity. This work is similar to ours in that it addresses some DTD transformation rules also adopted by us.

A collection of documents with DTD’s from the same domain is divided into sets of similar DTDs based on the minimum edit distances (Nierman and Jagadish, 2002). The edit distance is calculated using dynamic programming as the minimum cost to transform a tree A into B. This method works for documents with DTDs having the same tree structure but it cannot be applied to trees that have a significant different structure even though they refer to the same domain. COMA (Do and Rahm, 2002) combines several simple and hybrid matching algorithms. The simple algorithms refer to one aspect in DTD: labels, data types, or user input. Our approach extends the structural matchers Children and Leaves by combining and generalizing them to any type of node (repeated, optional, alternative options, key, reference, etc.)

3 THE XEQUIV ALGORITHM

3.1 The Reduction Algorithm (RA)

RA (Figure 3) addresses multiple data storage units and hierarchical organization in XML. An XML element stores data in a text unit, attributes, and/or subelements. Each data unit is represented by a node. Thus, we easily distinguish between an empty element and a text-only element (element types used accordingly with the W3C standard (Consortium, 2004)) because the first has an element node and several attribute subnodes as data units, while the second uses an element node, a text subnode and several attribute subnodes (for more details refer to (Duta et al., 2006)). RA is based on seven rules that convert the node types of the source structure (element, attribute, text) into a single node type (element) and eliminates intermediate tree levels.

Figure 1: Repeated employee, project, and task elements.

Figure 2: Nested structure of employee, project and task elements.
1. Part 1: Transform text and attribute nodes
2. Part 2: Create the XRTS tree by eliminating intermediate nodes.
3. Part 3: Create XRTN tree by transferring the sequence multiplicator (+, *) or optional indicator ? to each node in the sequence.

Figure 3: The Reduction Algorithm.

The first two parts of RA eliminate nodes but preserve the initial constraints of the XML schema creating an XML reduced tree using sequences (XRTS). Part 3 transfers the outer expression operators (?, +, *) to inner elements creating an XML reduced tree to leaf nodes (XRTN). Part 3 generates some information loss regarding element occurrences restricted to occurrences of other elements but allows a fast first evaluation of schemas similarity.

3.2 The XML Schema Equivalence Xequiv Algorithm

The purpose of Xequiv is to find XML schemas that are similar in terms of leaf content (see Figure 4). To compare leaf contents the source schemas must be reduced using RA so that the intermediate nodes are eliminated. Xequiv focuses only on the nodes that store data and compares leaf nodes which are of only one type: element nodes. A leaf content shows how much data is stored in the XML data file based on the node definition.

leaf content = <data type, leaf cardinality (minOccurrences .. maxOccurrences)>

For example, the structure tasks(task_name?) with task_name of type string has the leaf content task_name_content = <string, 0..1 >. The node task_name is a perfect match with the node job that has the leaf content job_content = <string, 0..1 > and only α% similar (see Table 1) with the job_name node where job_name_content = <string, 1..1 >.

We recommend using XML Schema as it allows a variety of data types and cardinality values. In this paper we use DTD only to present schemas\(^1\) in a compact way but our algorithm is based on XML Schema as it has a larger variety of data types and features (e.g., primary and foreign keys for attributes and elements).

Two nodes are selected for comparison based on their data types and labels. Equivalent nodes must have similar data types and matchable labels, which refer to the same concept either using the same words, abbreviations, or synonyms. WordNet (Laboratory, 2005) retrieves efficiently the set of synonyms for any label. We consider that synonyms and abbreviations are 100% equivalent as we determine structural and not ontology equivalence (contrary to XClust (Lee et al., 2002) that determines levels of equivalence for abbreviations). We use the information provided by labels to select candidate nodes. This is accomplished by the function \(\Theta\) that determines if two nodes have a similar label and their data types are from compatible classes. Consider node \(N_1\) defined by (type \(T_1\), label \(L_1\)) from XRT1\(^2\) and node \(N_2(T_2, L_2)\) from XRT2.

\[
\Theta(N_1, N_2) = \begin{cases}
1 & \text{if } T_1 \equiv T_2 \text{ and } L_1 \equiv L_2 \\
0 & \text{otherwise}
\end{cases}
\]

4 NODES SIMILARITY

4.1 Similarity Metric for Simple Nodes

To determine if two schemas are structurally equivalent, Xequiv first evaluates their leaf nodes similarity. This provides a fast evaluation that separates schemas into different domains. Using the reduced schemas obtained at Part 3 of RA, Xequiv identifies for each node a matching node and determines the measure of inclusion between them. Consider the structures \(str1 : (a)\) and \(str2 : (a+)\). Structure \(str1\) requires node \(a\) to appear exactly one time, while \(str2\) requires node \(a\) to occur several times but at least once in the corresponding XML file. We consider that \(str1\) is included in structure \(str2\) because \(a \subset a+\), and, thus, \(R \subset +\). Also, \(R \subset ?\) because \(?\) admits two statuses: present one time (like \(R\) - required) or non-present. The operator \(?\subset +\) as \(\star\) allows in addition the node to occur multiple times. Similarly, inclusion hierarchies

\(^1\)As a result we take a few liberties with DTD nomenclature in our examples and we will indicate where they occur.

\(^2\)XRT is a general term that refers to the XML reduced tree, either XRTS or XRTN.
are determined between all operators: $R < ? < \ast$ and $R \subset + \subset \phi$.

The inclusion of a structure $str1$ into a structure $str2$ is based on the inclusion of each node from $str1$ into a single node in $str2$. The inclusion $\varepsilon_{x\rightarrow y}$ of a node x from $str1$ into another node y from $str2$ if $\Theta(x, y) = 1$ is based on the inclusion of their expression operators. For nodes with the same operator the inclusion measure equals 1. If the operator of the x node is included in the operator of the y node then $\varepsilon_{x\rightarrow y} = 1$. Otherwise, the node x is included in y with a lower percentage (see Table 1). Values of $\alpha, \beta, \gamma, \delta, \epsilon, \rho, \sigma$ represent the inclusion percentage, and $0 < = \alpha, \beta, \gamma, \delta, \epsilon, \rho, \sigma < 1$. It is very important how these values are set as they are directly correlated with the minimum threshold set for schema equivalence. Note that Table 1 is asymmetrical as the node $a? \subset a*$ and, thus, $\varepsilon_{a?\rightarrow a*} = 1$ but $\varepsilon_{a*\rightarrow a?} < 1$. If a node x from $str1$ does not have a correspondent in $str2$ then the inclusion factor is 0.

We define the similarity function for an XML reduced schema XRTN1 with $n1$ nodes to another schema XRTN2 with $n2$ elements based on the nodes inclusion. We assume that for each node x from XRTN1 there exists at most one node y in XRTN2 such that $\Theta(x, y) = 1$.

$$Sim_{XRTN1\rightarrow XRTN2} = \frac{\sum_{i=1}^{n1} \varepsilon_{x\rightarrow y}}{n1} \times 100\%, 1 \leq j \leq n2$$

The similarity Sim is an asymmetrical function. $Sim_{XRTN1\rightarrow XRTN2}$ expresses how much of the structure of XRTN1 is included in XRTN2. Note that $Sim_{XRTN1\rightarrow XRTN2}$ is different from $Sim_{XRTN2\rightarrow XRTN1}$ if (1) there are nodes in one structure that do not have a match in the other structure, and (2) different operators are used for nodes with $\Theta = 1$.

4.2 Similarity Metric for Choice Nodes

The Sim metric considers each node and its match. The values provided by Table 1 work for simple nodes but not for nodes formed by several alternatives (the choice nodes or structures). The choice structure is formed by several mutually exclusive nodes. The metric Sim_{Choice} must evaluate the similarity of two choice nodes by considering the number of alternatives and also the similarity between a choice node and a simple node. The equivalence metric must be no more than 1 (like nodes inclusion) and differentiate between different number of alternatives. We consider each situation below.

4.2.1 Similarity between Two Choice Structures

Consider the node x formed by several alternative nodes $x = (x_1,..,x_m)$ in XRTN1. To evaluate how similar is node x from XRTN1 to a choice node y in XRTN2 $y = (y_1,..,y_n)$ we assume that alternatives are ordered in both nodes such that $\Theta(x_1, y_1) = \Theta(x_2, y_2) = .. = 1$.

$$Sim_{Choice} = \frac{\sum_{i=1}^{m} \varepsilon_{x_i\rightarrow y_i}}{m}$$

If $\exists k$ such that $\Theta(x_k, y_k) = 0$, then $\varepsilon_{x_k\rightarrow y_k} = 0$. If $n < m$, then there are alternatives in x with no correspondent in y and $Sim_{Choice} < 1$. $Sim_{Choice} = 1$ if each alternative from x has a correspondent in y with the same or a more general expression operator.

4.2.2 Similarity between a Choice and Multiple Simple Nodes

Consider the choice node $(x_i|y)$ in XRTN1 and the sequence (x, y) in XRTN2. $(x|y)$ represents a single node so it must be similar to one node only from XRTN2. But as both alternatives x and y from XRTN1 have a correspondent in XRTN2 the one that maximizes the similarity function based on cardinality matching must be chosen.

$$Sim_{Choice} = \max\{Sim_{Choice}(x_i|y)\}$$

Thus, $Sim_{Choice}(x_1|y) = \max(\varepsilon_{x_1\rightarrow y_1}, \varepsilon_{x_1\rightarrow y_2})$.

Conversely, $Sim_{Choice}(x_i|y)$ must be evaluated using the similarity metric for each simple node $Sim_{Choice}(x_i|y)$ and $Sim_{Choice}(x_i|y)$.

$$Sim_{Choice} = \max\{Sim_{Choice}(x_i|y)\}$$

Thus, $Sim_{Choice}(x_i|y) = \max(\varepsilon_{x_i|y}, \varepsilon_{x_i|y})$.

4.2.3 Similarity between One Choice Structure and Multiple Choice Structures

Consider the alternative structure $(x|y|z|t)$ in XRTN1 and two alternative structures $(x|y)$ and $(z|t)$ in XRTN2. In XRTN1 there is a single node with four alternatives and it has two corresponding nodes in Table 1: Operators inclusion percentages $\varepsilon_{x\rightarrow y}$ (ϕ = non-existent node).

<table>
<thead>
<tr>
<th>$\varepsilon_{x\rightarrow y}$</th>
<th>R</th>
<th>?</th>
<th>+</th>
<th>*</th>
<th>ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>α</td>
<td>1</td>
<td>β</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>+</td>
<td>γ</td>
<td>δ</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>*</td>
<td>ϵ</td>
<td>ρ</td>
<td>σ</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
XRTN2 each with two alternatives. A single node from XRTN2 must correspond to a node from XRTN1 so the one that maximizes the similarity function must be chosen.

\[SimChoice_{x \rightarrow (y_1, \ldots, y_n)} = \max(\text{SimChoice}_{x \rightarrow y_1}, \ldots, \text{SimChoice}_{x \rightarrow y_n}) \]

Thus,

\[SimChoice_{x \rightarrow (y_1, \ldots, y_n)} = \max\left(\sum_{i=1}^{n} \text{SimStr}_{x \rightarrow y_i} \right) \leq 100\% \]

Thus, the similarity value between a schema XRTN1 and a schema XRTN2 formed by n2 nodes is:

\[Sim_{XRTN1 \rightarrow XRTN2} = \frac{\sum_{i=1}^{n1} \text{SimStr}_{x \rightarrow y_i}}{n1} \leq 100\% \]

The similarity value Sim for a node x for which there exists at least a node y in XRTN2 such that \(\Theta(x, y) = 1 \) is defined as follows:

\[Sim_{x \rightarrow y} = \begin{cases} \varepsilon_{x \rightarrow y} & \text{if } x \text{ and } y \text{ are simple nodes} \\ \text{SimChoice}_{x \rightarrow y} \cdot \varepsilon_{x \rightarrow y} & \text{if } x \text{ or } y \text{ is a choice node} \end{cases} \]

The value \(\varepsilon_{x \rightarrow y} \) for choice nodes determines the equivalence between the operators applied to the choice structures making the difference, for example, between \(\{x_1, x_2\} \) and \(\{y_1, y_2\} \). Note that \(\varepsilon_{x \rightarrow y} \) for XRTN schemas is always 1 as there is no outer operator for choice structures. The choice operator is combined with alternative nodes’ operators in Part 3 of RA as described in Section 5.

5 STRUCTURAL SIMILARITY

5.1 Structural Similarity Metric

The similarity Sim is calculated based on the reduced structures obtain in Part 3 of the RA. However it is important how nodes are grouped in sequences in the reduced schema. A more exact way to determine structural equivalence must consider the cardinality of each node and its correlation to other nodes as part of a sequence. Thus, based on reduced schemas obtained in Part 2 of RA we compute similarity SimStr of each structure from XRTS1 with a structure from XRTS2 that contains the corresponding nodes. SimStr determines how similar a structure str1 (sequence or choice) is to a structure str2 considering the nodes’ cardinality, structure cardinality, and number of nodes in the structure str1.

\[\text{SimStr}_{a \rightarrow b} = \begin{cases} \frac{\sum_{i=1}^{m1} \text{SimStr}_{a_{str1} \rightarrow b_{str2}}}{m1} \cdot \varepsilon_{a_{str1} \rightarrow b_{str2}} \cdot 100\% \text{, if } str1 \text{ or } str2 \text{ are sequences} \\ SimStr_{a \rightarrow b, \text{otherwise}} \end{cases} \]

The value \(m1 \) represents the number of inner structures (sequences, choices, or simple nodes) str1 in structure str1 such that \(str1 \cap str2 \neq \emptyset \) for any \(1 \leq i, j \leq m1, i \neq j \). If a node from str1 has a correspondent in str2, then: first the equivalence of nodes is evaluated based on their cardinality, and second it is multiplied by the equivalence of structures cardinality. The value \(\varepsilon_{a_{str1} \rightarrow b_{str2}} \) determines the equivalence between structures cardinality. A structure, for example str1, can be represented by a single node. In this case, SimStr evaluates the similarity of this node with a node from str2. The required operator R is implied whenever there is no other operator for a node or a structure. If both structures str1 and str2 are simple nodes the similarity value for them is depicted in Table 1. If one node is a choice structure the formula of SimChoice is used:

\[\text{SimStr}_{a \rightarrow b} = \begin{cases} \text{SimChoice}_{a \rightarrow b, \text{otherwise}} \cdot \varepsilon_{a_{str1} \rightarrow b_{str2}} \end{cases} \]

Note that in this case \(\varepsilon_{a_{str1} \rightarrow b_{str2}} \) can be different than 1 if different operators are associated with the choice structures.

SimStr values are interpreted as follows. If \(\text{SimStr}_{a \rightarrow b} = 100\% \) and \(\text{SimStr}_{a \rightarrow c} = 80\% \), then it means that structure str1 is included in str2. Str2 has either (1) additional nodes, sequences, or choices; (2) additional alternatives in its choice nodes; or (3) more general operators for nodes.\(^3\)

For example, consider the structures defined in Figure 5. In example (a) structures str1 and str2 are sequences, with str1 containing two nodes: \(a+ \) and \(b, \) and str2 having three nodes \(a, b, \) and \(c. \) The similarity value for them is calculated as follows:

\[\text{SimStr}_{a \rightarrow a_{str1} \rightarrow str2} = (\text{SimStr}_{a_{str1} \rightarrow a_{str2}}) \cdot \varepsilon_{a_{str1} \rightarrow a_{str2}} + \text{SimStr}_{a_{str1} \rightarrow a_{str2}} \cdot \varepsilon_{a_{str1} \rightarrow a_{str2}} \cdot 100\% \]

\[\text{SimStr}_{a \rightarrow a_{str1} \rightarrow str2} = (\varepsilon_{a_{str1} \rightarrow a_{str2}} + \varepsilon_{b_{str1} \rightarrow b_{str2}}) / 2 \cdot \varepsilon_{a_{str1} \rightarrow a_{str2}} \cdot 100\% \]

\(^3\)The most general operator is \(* \); the operator \(+ \) is more general than \(R \) but not than \(* \) and \(\ast \); the optional operator is more general than \(R \).
Using the example values from Table 2 for nodes inclusion, node \(a+ \) from \(str1 \) is 50% equivalent with node \(a \) from \(str2 \), and nodes \(b \) are 100% equivalent. Thus, \(SimStr(a, str1 \rightarrow str2) = 75\% \). This means that 75% of the structure \(str1 \) is included in the structure \(str2 \). To determine the inclusion of structure \(str2 \) in \(str1 \) we calculate \(SimStr(a, str2 \rightarrow str1) \).

\[
SimStr(a, str2 \rightarrow str1) = \frac{(SimStr(a, str2 \rightarrow str1) + SimStr(b, str2 \rightarrow str12) + SimStr(c, str23 \rightarrow str13))/3 \ast \epsilon_{+ \rightarrow +}}{\epsilon_{+ \rightarrow +}}
\]

Structure \(str13 \) does not exist, so \(SimStr(a, str2 \rightarrow str1) = \frac{1 \ast 100\%}{1} = 100\% \). This means that 100% of structure \(str2 \) is found in structure \(str1 \).

In example (b) from Figure 5, the structure \(str1 \) contains two substructures: a sequence \(str11 \) made of two nodes and \(str12 \) made of one node. Similarly, the structure \(str2 \) has a sequence and a node. The similarity value is calculated for one sequence at a time.

\[
SimStr(b, str1 \rightarrow str2) = \frac{(SimStr(b, str11 \rightarrow str21) + SimStr(b, str12 \rightarrow str22))/2 \ast \epsilon_{+ \rightarrow + \rightarrow +}}{\epsilon_{+ \rightarrow + \rightarrow +}}
\]

Thus, \(SimStr(b, str1 \rightarrow str2) = (\epsilon_{+ \rightarrow +} + \epsilon_{+ \rightarrow -} + \epsilon_{- \rightarrow +} + \epsilon_{- \rightarrow -})/2 \ast \epsilon_{+ \rightarrow + \rightarrow +} = 100\% \). This means that 100% of \(str1 \) is included in \(str2 \). \(SimStr(b, str1 \rightarrow str2) \) is computed similarly and is equal to 100%. Both structures \(str1 \) and \(str2 \) have the same number of nodes and for each node in one structure there is an equivalent node in the other. The difference in the similarity values is given by the expression operators making \(str1 \) a more general structure than \(str2 \).

In example (c) from Figure 5, both structures are formed by three nodes but grouped differently in sequences. In \(str2 \) the nodes \(a \) and \(b \) are grouped in a repeatable sequence. In \(str1 \) the nodes \(a+ \) and \(b \) are not separated by \(c \) but it can be considered that there is a required sequence that groups them in \(str1 \) : \((a+, b), c\). This gives the advantage of comparing the two sequences containing the nodes \(a \) and \(b \) and give a better similarity value between \(str1 \) and \(str2 \). Conversely, if \(str1 \) is compared to the structure \((a, b, c)\) the nodes \(a+ \) and \(b \) must not be grouped separately as both structures have only a simple sequence.

\[
SimStr(c, str1 \rightarrow str2) = (\epsilon_{+ \rightarrow +} + \epsilon_{- \rightarrow +} + \epsilon_{+ \rightarrow c})/2 \ast \epsilon_{+ \rightarrow +} = 83.33\%
\]

\[
SimStr(c, str1 \rightarrow str2) = (\epsilon_{+ \rightarrow +} + \epsilon_{- \rightarrow +} + \epsilon_{+ \rightarrow c})/2 \ast \epsilon_{+ \rightarrow +} = 30\%
\]

Table 2: Example of nodes equivalence (\(\emptyset \) non-existent node).

<table>
<thead>
<tr>
<th>(\emptyset)</th>
<th>R</th>
<th>?</th>
<th>+</th>
<th>*</th>
<th>(\emptyset)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>?</td>
<td>0.5</td>
<td>1</td>
<td>0.4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>+</td>
<td>0.5</td>
<td>0.2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>*</td>
<td>0.4</td>
<td>0.5</td>
<td>0.9</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Str1 is a flat structure compared to \(str2 \) which contains other nested structures. \(str1 \) is found in \(str2 \) in terms of 83.33\%, while \(str2 \) is found in \(str1 \) in terms of 30\%. They both contain the same nodes but are grouped differently. The difference in percentages is generated by (1) the nested sequence \((a, b)+\) compared with \(a+, b \), and (2) the * operator.

5.2 Xequiv Applied to Nested and Non-Nested Structures

Consider the examples from Figure 6. The connection between employees who work on projects is preserved either using references (examples (a) and (c)), either through a nested structure Figure 6(d). The example from Figure 6(b) provides some connection between employees and projects but without checking the foreign key integrity. Are they all equivalent? There is no mechanism in the literature to clearly compare them and determine their equivalence. This section is dedicated to solving this problem.

If examples (a) and (d) from Figure 6 are compared, the equivalence algorithms find the node employee.pid is an extra node in example (a), thus reducing the equivalence measure of the two structures. Since a corresponding node to employee.pid is not necessary in the former structure to link an employee to a project as this is done by the nested feature, we have two options to remedy this drawback. The first option is to eliminate nodes which represent references such as employee.pid. Unfortunately, this wrongly determines structures (a) and (b) that have the same nodes to be 100% equivalent even though (b) is missing an important reference. Another option is to add fake references in nested structures in the preparation part of the RA. For example, in the structure (d) we could add either pid in the employee node or eid in the project node, thereby generating two alternative structures that have different equivalence measures to structure (a). As we do not know if structure (d) is compared to (a) or (c), we must add a reference node that will determine the same similarity value between (a) and (d) as between (c) and (d). Thus, we define an additional reduction rule that takes care of references.

Figure 5: Determining sequence equivalence for multiple sequences.
Rule 8 The link between a structure S2 with the primary key KEY2 nested inside another structure S1 with the primary key KEY1 is preserved by adding a choice reference structure formed by primary keys KEY1|KEY2 inside the nested structure. ■

Rule 8 is contained in the preparation part of the RA and is applied at the end of Part 1 when sequences are still nested. References are included in the inner structure to borrow its operator, thereby to preserve the cardinality of the nested structure. If the outer structure S1 contains only S2 and no additional elements but is part of a structure S0 with primary key KEY0, then the choice structure KEY0|KEY2 is added inside S2.

Referring to example (d) from Figure 6, the reference node is formed by (eidREF|pidREF) as eid and pid are primary keys.

\[
\text{company} (\text{employee} (\text{eid}, \text{project} (\text{pid}, \text{description})), \text{name}) \equiv \text{company} (\text{employee} (\text{eid}, (\text{eidREF}|\text{pidREF}, \text{pid}, \text{description})), \text{name})
\]

We represent the choice structure for references using a double line || as this is evaluated differently from a regular alternative construction. Only one element of the alternative structure for references is going to be found (if any) in the other schema. Thus, contrary to SimChoice previously defined, that must determine how many alternative options from one schema are found in the other schema, SimChoiceRef must evaluate if there is any corresponding reference (see Equation 11). Thus, only one \(\varepsilon_{x_i \rightarrow y_j} \) is greater than zero from the components of the maximum function, where \(x_i \) and \(y_j \) are reference alternatives from XRTS1 and XRTS2, respectively.

\[
\text{SimChoiceRef} = \max(\varepsilon_{x_i \rightarrow y_j}) \cdot \varepsilon_{REF} \cdot 100\% \tag{11}
\]

A correct equivalence evaluation must also consider the existence of primary keys. If XRTS3 is defined as Employee(eid), with eid primary key and XRTS4 as Employee(eid), they are not 100% equivalent. Thus, we revise the similarity formula (Equation 10) to multiply the node equivalence to the key equivalence for primary keys. For example if eid is a primary key its equivalence is the product \(\varepsilon_{eid} \cdot \varepsilon_{KEY} \), where \(\varepsilon_{KEY} = 1 \) if both nodes are primary keys, and \(< 1 \) if only one of them is a primary key.

The examples from Figure 6, are reduced to the structures detailed in Figure 7 with the KEY suffix for primary keys and REF for references. By defining \(\varepsilon_{KEY} = 0.7 \) and \(\varepsilon_{REF} = 0.6 \) and using the operators equivalence defined in Table 2, schema (a) is similar to the the rest of the schemas in the proportions presented in Figure 8, where \(x \) represents a generic schema and \(\varepsilon_{eid} \) is the short form for \(\varepsilon_{(a)\text{eid}=(c)\text{eid}} \).

6 Example

RA applied to examples from Figures 1 and 2 generates the following output.

\[
\text{XRTS1: } \text{company1}(\text{eid} | \text{sin}, \text{name}, \text{address}, (\text{pidREF} \ast \text{task_nameREF})+, (\text{pidKEY}, \text{description}, \text{budget} | \text{manager} | \text{location})*, (\text{task_nameKEY}, \text{date}+)\n\]

\[
\text{XRTN1: } \text{company1}(\text{eid}+, \text{sin}+, \text{name}+, \text{address}+, \text{pidREF} \ast \text{task_nameREF}+, \text{pidKEY}+, \text{description}+, \text{budget} | \text{manager} | \text{location}*, \text{task_nameKEY}+, \text{date}+)\n\]

\[
\text{XRTS2: } \text{company2}(\text{eidKEY}, \text{sin}, \text{name}+, \text{address}*, \text{dateOfBirth}?, (\text{pidKEY}, \text{description}?, \text{manager} | \text{location} | \text{pidREF})*, \text{task}*, \text{date}*)\n\]

We start by comparing XTRN trees to determine if they are from the same domain. Consider the operators equivalence detailed in Table 2. We determine the node’s similarity from the two schemas using Equation 2.

\[
\text{SimXRTN1} \rightarrow \text{XRTN2} = \left(\frac{\varepsilon_{\text{name}++} + \varepsilon_{\text{address}++} + \varepsilon_{\text{pid}++} + \varepsilon_{\text{manager}++} + \varepsilon_{\text{location}++} + \varepsilon_{\text{date}++}}{9} \right) \cdot 100\% = 96.20\%
\]

\[
(a) \text{company}(\text{employee} (\text{project})>)
\]

\[
(b) \text{company}(\text{project} (\text{employee})>)
\]

\[
(c) \text{company}(\text{employee} (\text{project})>)
\]

\[
(d) \text{company}(\text{employee} (\text{project})>)
\]

Figure 6: Simple possible equivalent schemas.

Figure 7: Reduced schemas.
\[Sim_{\text{XRTS}1\rightarrow\text{XRTS}2} = \left(\frac{\max(\varepsilon_{\text{cid}}, \varepsilon_{\text{REF}})}{2} \right) + \varepsilon_{\text{name}} + \varepsilon_{\text{address}} + \varepsilon_{\text{dateOfBirth}} + \varepsilon_{\text{pid}} + \varepsilon_{\text{description}} + \varepsilon_{\text{managers}} + \varepsilon_{\text{locations}} / 2 + \frac{\max(\varepsilon_{\text{cid}} + \varepsilon_{\text{REF}}, \varepsilon_{\text{name}} + \varepsilon_{\text{address}} + \varepsilon_{\text{dateOfBirth}} + \varepsilon_{\text{pid}} + \varepsilon_{\text{description}} + \varepsilon_{\text{managers}} + \varepsilon_{\text{locations}})}{12} \times 100\% = 68.83\%
\]

Both values are high enough to suggest that there are common nodes between XRTS1 and XRTS2.

The next step evaluates the similarity between the structures of XRTS1 and XRTS2. To optimize the computation of the structural similarities, we use the references determined in Part 3 and include them accordingly into sequences.

\[Sim_{\text{XRTS}1\rightarrow\text{XRTS}2} = \left(\frac{\max(\varepsilon_{\text{cid}}, \varepsilon_{\text{REF}})}{2} \right) + \varepsilon_{\text{name}} + \varepsilon_{\text{address}} + \varepsilon_{\text{dateOfBirth}} + \varepsilon_{\text{pid}} + \varepsilon_{\text{description}} + \varepsilon_{\text{managers}} + \varepsilon_{\text{locations}} / 2 + \frac{\max(\varepsilon_{\text{cid}} + \varepsilon_{\text{REF}}, \varepsilon_{\text{name}} + \varepsilon_{\text{address}} + \varepsilon_{\text{dateOfBirth}} + \varepsilon_{\text{pid}} + \varepsilon_{\text{description}} + \varepsilon_{\text{managers}} + \varepsilon_{\text{locations}})}{12} \times 100\% = 66\%
\]

The nodes similarity values \(Sim \) show that both schemas are from the same domain and refer to the same set of entities (employee, projects, and tasks) as they have many correspondent nodes. However, the structural similarity values show that they are organized significantly different. XSD1 is less general than XSD2 as more of its structure is included in XSD2 (\(Sim_{\text{XRTS}1\rightarrow\text{XRTS}2} > Sim_{\text{XRTS}2\rightarrow\text{XRTS}1} \)).

7 CONCLUSION AND FUTURE WORK

Our approach finds equivalent XML schema structures by determining if their XML trees are equivalent. Xequiv first determines if schemas are from the same domain and if there is any similarity between their nodes regarding labels, data types and operators. Secondly, our algorithm focuses on structural organization and considers the number of nodes in structures, operators applied to sequences, nested or linked structures. The elimination of the non-leaf nodes using the Reduction Algorithm (Duta et al., 2006) makes the nodes path unimportant. This has the advantage of allowing schemas to be equivalent because they refer to the same entity attributes but not necessarily because they share a part of the XML tree. Further research needs to be conducted to assess the efficiency of Xequiv compared to other existing algorithms in the area.

REFERENCES

