
SPECIFICATION AND VERIFICATION OF VIEWS 
OVER COMPOSITE WEB SERVICES 

USING HIGH LEVEL PETRI-NETS 

Khouloud Boukadiα, Chirine Ghediraβ, Zakaria Maamarγ and Djamal Benslimaneβ 

αDivision for Industrial Engineering and Computer Sciences, ENSM, Saint-Etienne, France 
β LIRIS Laboratory, Claude Bernard Lyon 1 University, Lyon, France 
γCollege of Information Technology, Zayed University, Dubai, U.A.E 

Keywords: Web service, Composition, Context-aware, high level Petri-Net, Views. 

Abstract: This paper presents a high level Petri-Net approach for specifying and verifying views over 
composite Web service. High level Petri-Nets have the capacity of formally modelling and verifying 
complex systems. A view is mainly used for tracking purposes as it permits representing a contextual 
snapshot of a composite Web service specification. The use of the proposed high level Petri-Net approach is 
illustrated with a running example that shows how Web services composition satisfies users’ needs. A 
proof-of-concept of this approach is also presented in the paper. 

1 INTRODUCTION 

Web services (WS) have given Web applications a 
new shape, from content display to service supplier. 
The capacity of defining composite Web services is 
an advantage that currently backs the widespread use 
of Web services. Businesses and academia have 
shown a significant interest in WS composition 
(Daniel 2005). Despite the large body of research on 
Web services, much work still needs to be done to 
tie informal methods, e.g., Petri-Nets, with 
specification languages for composite Web services. 
Few initiatives have looked into the use of Petri-
Nets in WS including (Yang 2005). Indeed, there is 
no guarantee that the specification of a composite 
Web service is error-free. Conflicts like concurrent 
accept or reject and deadlocks may occur during the 
specification execution. Fixing errors at run-time is 
time-consuming and requires another round of low-
level programming, which could be expensive, and 
error-prone. An attractive solution would consist of 
allowing developers to detect and fix issues prior to 
WS deployment and to formally verify the business 
processes underlying composite WS against some 
desired properties. 

Composition does not only make WS bind to 
each other, but emphasizes the cornerstone of 
handling users’ preferences and constraints as part of 
the process of meeting personalization requirements. 

Personalization is tightly related to the features of 
the environment in which WS will operate after 
triggering. These features can be related to users 
(e.g., state, location), computing resources (e.g., 
fixed device, mobile device), time periods (e.g., in 
the afternoon, in the morning), physical places (e.g., 
mall, cafeteria), etc. Sensing, gathering, and refining 
the features and changes in an environment 
contribute towards the definition of what is known 
as context. Context is the information that 
characterizes the interactions between humans, 
applications, and the surrounding environment 
(Medjahed 2003). Embedding WS with context-
awareness mechanisms has several advantages. To 
be aware of which part of the specification of the 
composite Web service has to be adjusted because of 
changes in the user environment, an assessment of 
what-was-previously-expected and what-is-
effectively-happening is deemed appropriate. This 
specific part of the composite Web service 
specification is referred to as view. A view is a 
dynamic snapshot over the specification of a 
composite Web service according to a certain 
context (Benslimane et al. 2005). 

In this paper, we aim at discussing the value-
added of Petri-Nets to the specification of firstly, the 
composite WS and secondly, the views that run over 
those ones. We emphasize the use of high level 
Petri-Nets, particularly Colored-Petri-Nets (CPN) 

107
Boukadi K., Ghedira C., Maamar Z. and Benslimane D. (2007).
SPECIFICATION AND VERIFICATION OF VIEWS OVER COMPOSITE WEB SERVICES USING HIGH LEVEL PETRI-NETS.
In Proceedings of the Ninth International Conference on Enterprise Information Systems - SAIC, pages 107-112
DOI: 10.5220/0002349501070112
Copyright c© SciTePress



 

and Hierarchical-Colored-Petri-Nets (HCPN) 
(Jensen 1997). CPN and HCPN have the capacity to 
specify and analyze concurrent systems (Petri 1962). 
Our contributions in this paper are as follows: a 
definition of a composite Web service using high 
level Petri-Nets, an approach for checking the 
correctness of a composite Web service, a 
specification of a view based on high level Petri-
Nets, and finally, automatic mechanisms for 
extracting and showing up views over composite 
WS. 

The rest of this paper is organized as follows. 
Section 2 presents a scenario, lists some Petri-Nets’ 
advantages, and suggests a list of related projects. 
Section 3 discusses the use of Petri-Nets in 
modelling WS and composite WS. Section 4 
describes the concept of view as a means for 
tracking the execution of a composite Web service 
specification. Section 5 presents the prototype that 
was developed as a proof-of-concept of our use of 
Petri-Nets in WS. Concluding remarks are drawn in 
Section 6. 

2 BACKGROUND 

2.1 Motivating Scenario 

Our motivation scenario concerns Anatole, a 60-
years old patient who has a Portable ECG Monitor 
(PEM), which is used to detect and manage any 
cardiac event. An electrocardiogram (ECG) is a test 
that records the heart’s electrical activity. When 
Anatole feels a chest pain, he turns on the PEM so 
his ECG is recorded. The PEM starts with a serial 
analysis of this record and compares it with the 
referenced ECG. The PEM can suspect any cardiac 
problems and send an alert to a call center, if 
needed. The alert triggers a Web service whose role 
is to find a first-aid medical-center close from 
Anatole’s current location. Processing both the 
recorded and referenced ECG, the selected medical 
center identifies two types of alarm: severe or minor. 
In case of a minor alarm, LookforDoctor and 
TreatmentTransmission WS are triggered. When a 
doctor is assigned to Anatole, he gets access to his 
medical records and checks the referenced and 
recorded ECG. Afterwards, he diagnoses the case 
and prescribes an adequate treatment for Anatole. 
TreatmentTransmission WS takes care of 
notifying the treatment, as an SMS message, to 
Anatole’s mobile phone. The language of the 
message is set according to Anatole’s preferred-
language. In case of a severe alarm, 

LookforEmergency WS is concurrently triggered 
with other separate WS that upload Anatole’s 
medical records and identify Anatole’s location, 
respectively. Finally, ContactMobileCare WS is 
activated in case an ambulance is needed. This 
motivating scenario will illustrate our approach, and 
makes clear the use of CPN for contextual WS 
composition. 

2.2 Rationale of Views 

In the three-level ANSI-SPARC architecture, a view 
corresponds to the organization of the database as it 
appears to a particular user. In the relational model, 
a view is defined as a virtual relation that is 
dynamically derived from one or more other base 
relations. The concept of view is also used in the 
workflow community. Workflow view was 
suggested as a support mechanism for the 
interoperability of workflows across multiple 
businesses (Chiu et al., 2004). 

The use of the view concept is backed by our 
previous work and is motivated by several reasons. 
First, the view mechanism grants a powerful and 
flexible approach by hiding the whole specification 
of a composite service from users and the process 
responsible for adjusting this specification. Only the 
significant parts of a specification are presented. 
Second, multiple views over a specification can be 
obtained at different levels of granularity ranging 
from the dependency between WS and the execution 
preferences coupled with WS to the corrective 
measures that WS use. In (Benslimane et al. 2005), 
we proposed a formal specification of the view 
concept based on state-chart diagrams, and a set of 
colored graph procedures to manage the transition 
according to the context and the dynamic nature of 
the view. This proposal motivated the study of the 
correlation and the value-added of the colored Petri-
Nets. 

2.3 Rationale of Colored Petri-Nets 

Jensen formulates CPN as a formally founded 
graphically-oriented modeling language (Jensen 
1997). CPN have got their name because they use 
different colors to be associated with tokens, which 
carry data values. This is in contrast to low level 
Petri-Nets’ tokens, which by default are black. On 
the one hand, Petri-Nets provide the necessary 
mechanisms for specifying synchronization of 
concurrent processes. On the other hand, any 
programming language provides the primitives that 
are needed for defining and manipulating data types. 

ICEIS 2007 - International Conference on Enterprise Information Systems

108



 

Compared to CPN, HCPN includes additional 
features such as substitution transitions. 

Mapping CPN and HCPN concepts into WS and 
composite WS is to a certain extent straightforward. 
First, a WS’s behavior is basically a partially 
ordered set of operations. Therefore, it is possible to 
represent it with a Petri-Net. WS’s operations are 
modeled by transitions and the states of the WS are 
modeled by places (Benatallah 2003). In addition, 
the use of colored tokens permits modeling contexts 
of WS and users by specifying places used to model 
these contexts. Moreover, the hierarchy concept of 
the HCPN shows the components of a composite 
WS at a higher level with no mention to their 
internal details. This is really useful for running 
contextual views over composite WS. 

2.4 Related Work 

Benatallah et al. propose a Petri-Net-based algebra 
for composing WS (Benatallah 2003). In this study, 
context is just ignored, which does not permit 
capturing the changes in a WS composition process. 
Yang et al. concentrate in verifying and analyzing 
composition specification of WS once these 
specifications get translated into a CPN (Yang 
2005). Yang suggests also to model BPEL processes 
as CPN. However, the transformation process is 
ambiguous and no formal definition of how to 
translate a BPEL specification into a CPN is given. 
Xiaochuan et al. propose a model of a simplified 
Travel Reservation system using WS (Xiaochuan 
2004). In (Bing 2006), the author addresses the 
shortfalls of Xiaochuan et al.’s work like incomplete 
conversation between WS, removal of some major 
interactions within WS, and modeling of 
unnecessary components that make the graphical 
representation complex.  

All these proposals mainly focus on WS 
composition modeling with no-emphasis on contexts 
of WS and users. The transformation process for 
example from a BPEL specification towards a CPN 
is still ambiguous and a formal definition would be 
highly appreciated. In order to react in a proper way 
to the detected changes in user and WS environment, 
context needs to be handled during the development 
of specifications of WS. 

3 MODELING WEB SERVICES 
COMPOSITION USING HIGH 
LEVEL PETRI-NETS 

In this section, we define a WS and a composite WS 
using CPN and HCPN, respectively. To this 
purpose, we comply with Jensen’s work (Jensen 
1997). A composite WS is defined by an HCPN to 
be called as Composition Net (CN). Moreover, each 
component WS in the CN has a page modeled by a 
CPN to be called as Service Colored Net (SCN). 

3.1 Service Colored-net Definition 

As aforementioned, we define a WS as a 
SCN=<Σ,P,T,L,A,N,C,E,G> where: 

Σ is a finite set of types also called color sets. 
P is a finite set of places that model the state of a 
system. A WS’s states consist of distributing a data 
value, i.e., token, on the SCN’s places. Two types of 
places exist: 
 Message Places (MP) contain messages 

exchanged between component WS.  
 Context Places (CP) containing the execution 

context of WS.  
T is a finite set of transitions. Each operation in a 
WS is captured by a CPN transition. We can 
distinguish two types of transitions: Tgu is a finite set 
of transitions with guard condition and T

gu  is a 

finite set of transitions without guard condition. 
A is a set of directed arcs. An arc connects a place to 
a transition and vice-versa. In fact, an arc represents 
a causality relation between places and transitions.  
L is a labeling function for each operation in a WS.  
N is function that links each arc going from a place 
to a transition and vice-versa. 
C is a color function that assigns a unique color to 
each place p. The color of a place is denoted as C(p). 
Therefore, each token in a place p must have a color, 
i.e., data value, from C(p).  
E is a function that describes arcs using a set of 
variables. These variables determine the token’s 
variables (i.e., a token has a set of variables) that are 
either consumed or produced during operation.  
G is a guard function that checks the logical 
conditions in a transition. 

Hence, the SCN is defined, we can focus on how 
we get over transitions inside a SCN of a composite 
WS. Indeed, the evolution of a SCN consists in 
crossing its transitions, this task is based on two 
types of rules: 

SPECIFICATION AND VERIFICATION OF VIEWS OVER COMPOSITE WEB SERVICES USING HIGH LEVEL
PETRI-NETS

109



 

1. Firing rule for a transition with guard 
condition: In order to get over a transition with 
guard condition, we must consider the types of 
places, whether message or context, and thus the 
conditions of these places. In case of a message 
place, four conditions should be verified before a 
transition can be passed. The first condition deals 
with the color of the place. The second condition 
verifies that the variable set of the arc has the same 
type as the place connected with this arc. In addition, 
the values of the variables on an arc must match the 
expected data types such as integer. The last 
condition checks if the guard condition returns true 
assuming that every type of variables of a guard 
belong to the color sets of the service colored net. 
We use Is-enabled (Tgu) as the function that checks 
the four conditions for each message place that is 
connected to transition Tgu. In case of a context 
place, only the three first conditions must be 
verified.  
2. Firing rule for a transition without guard 
condition: this transition is independent of the type 
of its connected places. Is-enabled (T

gu
) function 

verifies only the first three conditions. Once each 
SCN of the WS participating in a composite WS 
defined, we can elaborate its Composition Net. 

3.2 Definition of the Composition Net 

A composite WS is a HCPN that is defined as 
follows: CN=<S, ST, SA, PP, PT, PA, FP> where: 
S is a set of pages that represent the atomic WS. 
Each page s∈S is a :  

SCN=<∑s,Ps,Ts,As,Ns,Cs,Es,Gs> 
ST is a set of substitution transitions. A substitution 
transition identifies a WS without any internal 
details on how it is performed.  
SA is a function that assigns a WS to a composite 
WS. Indeed, each ST corresponds to SCN (SA: 
ST→SCN). We assume that firing a substitution 
transition depends on the firing of all the transitions 
that are present in the SCN. 
PP ⊆ P is the set of port places. Each SCN contains 
places that are tagged with either in, out, or i/o. 
These places are named port places and permit the 
communication of a SCN with its peers. As 
mentioned before, each substitution transition is 
related to a SCN. This is achieved by providing a 
port assignment, which describes how the port 
places of the SCN are related to the socket places of 
the substitution transition. 
PT defines the type of the port, PT: PP→ {in, out, 
i/o}. 

PA is a port assignment function that describes how 
the port places of the SCN related to the socket 
places of the substitution transition. 
FP is the first page of the CN, i.e., it represents the 
composite WS. For each substitution transition in 
the first page, a SCN is obtained. 

3.3 Verifying a Composite Web Service 

The use of high level Petri-Nets permits increasing 
the reliability level of composite WS. The associated 
CN could be subject to analysis using different 
techniques and computer tools for CPN. The most 
important one known as a state space method 
consists of designing a graph that has a node for 
each reachable marking, as well as an arc for each 
occurring binding element. We suggest the 
definitions of four properties that can be checked 
using CPN: Reachability that determines whether it 
is possible for a composition to achieve the desired 
results; Boundness that determines the minimal and 
the maximal number of tokens in the different 
places; Dead transition that determines the number 
of transitions which will never be enabled and Dead 
marking which is a marking with no enabled 
transitions.  

3.4 Illustration with Anatole Scenario 

The composition net of Anatole scenario is shown in 
Fig.1. It consists of seven WS designed as 
substitution transitions. The substitutions transitions 
are: { LookforCenter, LookforDoctor, 
LookforEmergency, TreatmentTransmission, 
UpdatePatientRecord, Localization, and 
ContactMobileCare }.  
The boxes that are next to each substitution 
transition specify the SCN that contains the detailed 
description of the activity represented by the 
corresponding substitution transition. For example, 
the page modelling LookforCenter WS is modeled 
by the substitution transition named LookforCenter. 
The substitution transition for LookforCenter WS is 
broken up into three context places (CP1, CP2, 
CP3), as an input and a single message place 
(PTLFC). These places are the input socket places 
for this substitution transition. For illustration 
purposes, the following assumptions are made 
regarding the context and message places: CP1 
contains the required memory, e.g., 1’128 in 
Megabits, for the execution. CP2 contains the time-
slot availabilities of the WS for execution. CP3 
contains French language using 1’french. 

 

ICEIS 2007 - International Conference on Enterprise Information Systems

110



 

 
Figure 1: The CN for Anatole scenario. 

PTLFC models the message between the PEM and 
LookforCenter WS. The two output socket places 
for this substitution transition are: LFCTLFD 
models the message between LookforCenter and 
LookforDoctor WS; LFCTLFE models the message 
between LookforCenter and LookforEmergency 
WS. 
Now we will focus on a component WS of this 
scenario: the LookForCenter WS. Let us consider 
the sub-page of Fig. 2, which is about the detailed 
description of the activity that LookforCenter WS 
carries out. The sub-page shows two operations 
captured by two transitions. We also consider 
EvaluationState transition in order to observe how 
the firing rules get initiated. EvaluationState 
transition is fired iff the following conditions are 
satisfied: (1) The color set of each place connected 
to EvaluationState transition is included in the color 
set of this transition; (2) The arc’s variables type 
matches the color of P1; (3) Having a Boolean color, 
the ok variable can only receive true or false. 
Besides, this variable must have a type already 
defined in the color set of SCNLFC and (4) 
EvaluationState transition is enabled if the ok 
variable in the guard condition evaluates to true. In 
our case, the last condition depends on the value that 
is randomly assigned to the ok variable since all 
others conditions are satisfied. 

 
Figure 2: SCN for LookforCenter Web Service. 

To apply HCPN modelling to a WS composition 
according to a specific context, we introduce in the 
next section, the formal specification of the view 
concept. 

4 THE CONCEPT OF VIEW 

4.1 Formal Definition 

We recall that a view is a dynamic snapshot over the 
specification of a composite WS according to a 
certain context. We suggest below that a view is 
extracted out of the specification of a composite WS 
using high level Petri-Nets. We provide the 
definitions  belows.  
Initial composition net definition. An ICN is 
defined as the following triplet: 
ICN=<S,ST

gu ,STgu> where: S is the set of pages 
that are included in the CN where ∀ s∈S, s is an 
SCN, and ST

gu  and STgu are like previously 
defined. 
Context template definition. CT is the formal 
model of the corresponding context during view 
extraction. The CT includes two types of context: 
user (U-context) and WS (W-context), CT= {U-
context∪W-context} detailed in (Ghedira 2006).  
 
Derived composition net definition. The extraction 
of a view according to a certain context over an 
initial or derived composition specification permits 
obtaining a DCN. DCN is defined with the 
following triplet: a DCN=<S’,S’T

gu ,S’Tgu> where: 

S’: is the derived specification that does not accept 
any additional WS through their pages;  S’T

gu
= { 

st’|∃st∈ST
gu
∧ Is-enabled (st)=true} is the new set 

of substitution transitions without guard conditions; 
and STgu = {st’|∃st∈STgu∧ Is-enabled (st)=true} is 
the new set of substitution transitions with guard 
conditions. 

4.2 Application to Anatole Scenario  

Let us assume that Anatole’s contexts returns details 
on his physical state and localization.  
SU-context={Identity=“Anatole”, Age=“60”, 
Gender=“Male”};  
DU-context={PsychologicalState=“stressed”, 
PhysicalState=“serious”, Localization=“Fourvière 
Cathedral”} 

SPECIFICATION AND VERIFICATION OF VIEWS OVER COMPOSITE WEB SERVICES USING HIGH LEVEL
PETRI-NETS

111



 

An example of WS context is the context of 
ContactMobileCare WS: W-context={SW-
context∪ DW-context}; 
SW-context={Name=“ContactMobileCare”, Memory= 
“128”, language= “French”};  
DW-context={availability=“no”} 
Fig. 3 shows the derived composition net that is 
extracted out of the composition net of Fig. 1 
according to the defined context template. 
 

 
Figure 3: DCN for Anatole scenario. 

Prototype: A prototype is fully operational. We used Java 
to implement the needed functionalities for context 
collection and generation as well as for view extraction. 
The architecture of the prototype comprises two modules 
that a Java program orchestrates. The first module is about 
the context generator and the second is the view extractor. 
The context generator provides, upon request, several 
contextual details related to users and WS. To this 
purpose, two XML files are delivered by the context 
generator. Both files are then submitted to the view 
extraction module. We used CPN Tools, which is a tool 
for editing, simulating and analyzing CPN. The extraction 
of a view consists of comparing the expected contextual 
elements that are associated with this specification to the 
current contextual details that are obtained out of the 
context generator. The result of the comparison is an XML 
file that corresponds to the view that can now be 
visualized as a Petri-Net using the CPN Tools and verified 
using the various properties we listed in Section 3.4. 

5 CONCLUSION 

In this paper, we presented a high level Petri-Net 
approach for the specification and verification of 
composite WS. Our literature review has shown that 
building reliable composite WS calls for formal 
verification. Our literature review has also shown 
that no much has been done to cater for context in 
composite services. Therefore, we proposed a high 
level Petri-Net approach that integrates context 
during specification, maps this specification onto a 
Petri-Net. Furthermore, we discussed in this paper 
how the execution of a composite WS is tracked 
using view. We illustrated and prototyped the dual 

use of Petri-Nets and views with a patient-related 
scenario. Although this scenario was simple, it 
revealed the challenges that need to be taken up 
when deploying WS in critical domains such as 
healthcare. Our next work aims at proposing 
extensions for BPEL with user and WS contexts 
included. In addition, we aim at developing a tool 
that converts an extended BPEL specification into a 
CPN for automatic verification purposes. 

REFERENCES 

Benatallah, B. and Rachid, H., 2003. A Petri net-based 
model for web service composition, in Proceedings of 
the Fourteenth Australasian database conference on 
Database technologies. Adelaide, Australia. 

Benslimane et al, 2005. A View-based approach for 
tracking composite Web services. In Proceedings of 
the European Conference on Web Services, IEEE 
Computer Society. Växjö, Sweden. 

Bing, H., 2006. Choreography Modeling and Analysis of a 
Travel Reservation Web Service, in Proceedings of 
The Fifth International Joint Conference on 
Autonomous Agents & Multi-Agent Systems. 
Hakodate, Japan. 

Chiu, D. K. W., S. C. Cheung, S. Till, K. Karlapalem, Q. 
Li, and E. Kafeza, 2004. Workflow View Driven 
Cross-Organizational Interoperability in a Web 
Service Environment. Information Technology and 
Management Journal, Vol. 5, No. 3/4:221-250. 

Daniel, F. and Pernici, B. , 2005. Insights into Web 
Service Orchestration and Choreography, 
International Journal of E-Business Research, The 
Idea Group Inc., vol. 1, pp. 58 - 77. 

Ghedira, C. and Mezni, H., 2006. Through Personalized 
Web Service Composition Specification: From BPEL 
to C-BPEL, Electronic Notes in Theoretical Computer 
Science, vol. 146, pp. 117-132. 

Jensen, K., 1997. Colored Petri Nets: Basic Concepts, 
Analysis Methods, and Practical Use, 2nd ed. Berlin; 
New York: Springer. 

Medjahed, B. et al., 2003. Composing Web services on the 
Semantic Web, International Journal on Very Large 
Data Bases, vol. 12(4), pp. 333-351. 

Petri, C., 1962. Kommunikation mit Automaten. Schriften 
des IIM Nr. 2, Institut fur Instrumentelle Mathematik. 
Germany: University of Bonn. 

Xiaochuan, Y. and Krys JK., 2004. Process Composition 
of Web Services with Complex Conversation 
Protocols: a colored Petri Nets Based Approach, in 
Proceedings of The Design, Analysis and Simulation 
of Distributed Systems Conference. 

Yang, Y. et al., 2005. Transformation BPEL to CP-nets for 
verifying Web services composition, in Proceedings of 
The International Conference on Next Generation 
Web Services Practices (NWeSP'05). Seoul, Korea. 

ICEIS 2007 - International Conference on Enterprise Information Systems

112


