
REMOTE ALGORITHMIC COMPLEXITY ATTACKS AGAINST
RANDOMIZED HASH TABLES

Noa Bar-Yosef∗

School of Computer Science
Tel Aviv University, Ramat Aviv 69978, Israel

Avishai Wool
School of Electrical Engineering

Tel Aviv University, Ramat Aviv 69978, Israel

Keywords: Algorithmic complexity attack, denial of service, packet filter.

Abstract: Many network devices, such as routers, firewalls, and intrusion detection systems, usually maintain per-
connection state in a hash table. However, hash tables are susceptible to algorithmic complexity attacks,
in which the attacker degenerates the hash into a simple linked list. A common counter-measure is to ran-
domize the hash table by adding a secret value, known only to the device, as a parameter to the hash function.
Our goal is to demonstrate how the attacker can defeat this protection: we demonstrate how to discover this
secret value, and to do so remotely, using network traffic. We show that if the secret value is small enough,
such an attack is possible. Our attack does not rely on any weakness of a particular hash function and can
work against any hash — although a poorly chosen hash function, that produces many collisions, can make
the attack more efficient. We present a mathematical modeling of the attack, simulate the attack on different
network topologies and finally describe a real-life attack against a weakened version of the Linux Netfilter.

1 INTRODUCTION

1.1 Background

Many network devices, such as routers, firewalls, and
intrusion detection systems, need to maintain per-
connection state. One commonly used data struc-
ture of choice is a hash table. This choice is mainly
based on the fact that in the average case retrieving
elements from a hash table takes an expectedO(1)
operations, independent of the number of connection
states. However, in the worst case, a hash table can
also degenerate into a linked list, and operate inO(n)
steps. Because of this, (Crosby and Wallach, 2003)
showed that an attacker can remotely mount an “algo-
rithmic complexity attack” against the hash table: if
the attacker knows the victim’s hash function, she can
force this worst case behavior by producing a long
sequence of items that are placed in the same hash
bucket, thereby exhausting the device’s CPU time.

∗Supported by the Deutsch Institute

A common counter-measure is to randomize the
hash table: this is the approach taken by Netfilter (Fil-
ter,). To do so, the hash function calculation includes
a secret random value known only to the device. Ran-
domizing the details of the hash calculation is sup-
posed to disable the attacker’s ability to manufacture
items that, predictably, fall into the same hash bucket.
In this work, we show that randomized hash tables are
not necessarily the correct measure to apply, and that
under certain circumstances, given enough time and
space, an adversary can still force the device’s hash
table to perform in its worst case behavior and mount
an algorithmic complexity attack.

1.2 Related Work

Our research builds upon the work of (Crosby and
Wallach, 2003). In their paper they introduce a fam-
ily of low-bandwidth denial of service attacks called
algorithmic complexity attacks, which exploit algo-
rithms’ worst-case behaviors. The focus of their work
is on deterministic hash tables. Using their method,

117
Bar-Yosef N. and Wool A. (2007).
REMOTE ALGORITHMIC COMPLEXITY ATTACKS AGAINST RANDOMIZED HASH TABLES.
In Proceedings of the Second International Conference on Security and Cryptography, pages 117-124
DOI: 10.5220/0002118101170124
Copyright c© SciTePress

the adversary can create specific inputs that all fall
into the same hash bucket, causing the hash table to
degenerate into a simple linked list. They successfully
carried out their attacks on different applications, such
as the IDS, Bro (Paxson, 1999) and several Perl ver-
sions. They showed how within 6 minutes they were
able to cause the server to consume all of its CPU as
well as to drop most of its received packets.

A low-bandwidth attack differs from other com-
mon TCP attacks that exhaust the server’s resources,
such as memory or bandwidth, resulting in a denial of
service (Needham, 1993). A typical (high bandwidth)
attack that exhausts the server’s backlog queue is the
well-known syn-flooding attack (SYN flood, 1996).
The attacker basically floods the victim with more
traffic than the victim can process.

The difficulty with a low-bandwidth attack is that
it is much harder to detect than a flooding attack. The
aim in low-bandwidth attacks is not to explode the
server’s resources in an aggressive manner, but rather
to exploit vulnerabilities in the server slowly, culmi-
nating in a denial of service. For example, (Kuz-
manovic and Knightly, 2003) discuss a low-rate de-
nial of service attack that exploits the retransmission
timeout mechanism in TCP. By sending small bursts
of packets at just the right frequency, the attacker can
cause all TCP flows sharing a bottleneck link to si-
multaneously stop indefinitely. And because the at-
tacker only needs to burst periodically, the attack traf-
fic will be difficult to distinguish from normal traffic.

The notion of a low-bandwidth attack exploiting
an algorithm’s worst case can be traced back to an
attack using nested HTML tables. Some browsers’
algorithms perform super-linear work to determine
the layout of the table. Thus, a maliciously crafted
web page can cause the browser to freeze (Garfinkel,
1996). (Dean and Stubblefield, 2001) propose a so-
lution to an attack against an SSL server that may
lead to the paralysis of e-commerce websites. In their
scenario, the attacker requests the server to engage
in expensive RSA decryptions without first having
done any work. An algorithmic complexity attack
can also be performed against the quicksort algorithm
as shown by (McIlroy, 1999). Quicksort is a com-
mon choice of sorting algorithm because of its ex-
pected average-case running time ofO(nlogn). How-
ever, McIlroy provides a way to force quicksort into
achieving its worst case running time ofO(n2). An-
other example includes the attack presented in (Gal
et al., 2004). In their work, the attacker takes ad-
vantage of the fact that the Java bytecode verifica-
tion scales quadratically with the size of the program
and so keeps the verifier busy in order to constitute
a denial of service. The authors develop this no-

tion in order to construct complexity attacks against
mobile-code systems. They show the difficulty of
conventional defenses thwarting the attack since the
attack not only is located ahead of the point at which
run-time resource control sets in but it also attacks
the mechanism that ensures safety in regards to the
Java Bytecode verifier. It is worthwhile to mention a
more recent paper by the aforementioned authors (Gal
et al., 2005) where they warn that algorithmic com-
plexity attacks are going to be prevalent on all sys-
tems, from mobile code systems, to software appli-
cations, and hardware. These authors then advocate a
new security paradigm based on complexity-hardened
systems.

Our attack strategy involves guessing the secret
random value of the hash function parameter. The
technique resembles those implemented in timing at-
tacks where the attacker determines a victim’s secret
by analyzing the victim’s processing time remotely
over the Internet. For example, (Boneh and Brumley,
2003) devise a timing attack against OpenSSL where
the client is able to extract the private key stored on
the server by measuring the time the server takes to
respond to decryption queries. More recently (Kohno
et al., 2005) showed how to fingerprint a device re-
motely by finding microscopic deviations according
to each computer’s unique clock skew. A practi-
cal timing attack is mentioned in RFC 4418, Mes-
sage Authentication Code using Universal Hashing
(UMAC) (RFC4418,), which warns of a possible tim-
ing attack in the UMAC algorithm since the behav-
ior of the algorithm differs according to the length
of the inputted string. In (Shacham et al., 2004),
the authors show a practical timing attack in which
they overcame anti-buffer overflow memory random-
ization protection techniques. Many operating sys-
tems now randomize their initial address space as a
way to avoid buffer overflow attacks. However, the
authors show a feasible way to find the random value,
and thus the address space is calculated in a straight-
forward manner leaving the system once again vulner-
able to buffer overflow attacks. They further investi-
gate various strengthing address-space randomization
techniques.

1.3 Contributions

Our starting point is the observation that if the at-
tacker can discover the secret value that is used inside
the server’s hash function calculation, then she can
mount the algorithmic complexity attack of (Crosby
and Wallach, 2003). Therefore, our goal is to demon-
strate how the attacker can discover the secret value,
and to do so remotely, using network traffic. We show

SECRYPT 2007 - International Conference on Security and Cryptography

118

that if the secret value is small enough, such an attack
is possible. Our attack does not rely on any weakness
of a particular hash function and can work against any
hash, including cryptographic hashes2 — although a
poorly chosen hash function, that produces many col-
lisions, can make the attack more efficient.

The attack scenario we envision consists of two
stages: (i) An offline calculation and information
gathering stage, followed by (ii), a full-blown algo-
rithmic complexity attack. In this paper we focus on
the first stage.

Our attack is an exhaustive search performed
against all possible choices of the secret value. For
each candidate secret value,Xi , we produce a set of
packets that would hash to the same bucket, send them
to the server, and measure the round-trip time (RTT).
If the server’s secret value isXi , then there will be a
slowdown in the RTT. After trying all the possible val-
uesXi the one causing the longest RTT is likely to be
the correct secretXi . The challenges we face are: (i)
Being able to produce enough attack packets so that
RTT slowdown will be significantly longer than nor-
mal network RTTs, and (ii), doing so in a way that lets
the attacker receive the server’s responses, so she can
measure the RTT — i.e., without spoofing the source
IP address.

We demonstrate, via mathematical analysis, that
the attack is plausible. We then conducted a simula-
tion study, followed by an actual implementation of
the attack against Netfilter. Both simulations and im-
plementation show that the attack is very realistic for
secret values of 13-14 bits using current hardware.

Organization: In Section 2 we describe the al-
gorithmic complexity attack of (Crosby and Wal-
lach, 2003) and the Linux Netfilter. In Section 3 we
describe our attack and provide some mathematical
modeling about its properties. In Section 4 we de-
scribe an attack implementation against a weakened
version of the Linux Netfilter stateful firewall. We
conclude in Section 5.

2The reason is that the number of buckets in the hash ta-
ble is, intentionally, rather small—the default value for net-
filter is 8192 buckets. Even a strong cryprographic hash will
produce many bucket collisions once its output is reduced
modulo 8192.

2 PRELIMINARIES

2.1 Algorithmic Complexity Attacks
Against Hash Tables

In a hash data structure, an item is hashed through
a hash function which produces a hash output. The
output is then stored in the hash bucket, correspond-
ing to the output modulo the number of buckets in
the hash table. Items that hash into the same bucket
form a linked list in that hash bucket. In order to re-
trieve a stored item, the server first computes the hash
function to find the correct bucket, and then traverses
through the list in the corresponding hash bucket to
locate the item. A properly implemented hash func-
tion will distribute its inputs evenly throughout the ar-
ray, creating very short lists in the buckets, so that
retrieving a stored item will perform in anO(1) av-
erage lookup time. However, if an adversary knows
the details of the hash function, can control its input,
and if the number of buckets is small enough, then
she can produce inputs that all collide into the same
hash bucket. In the worst case scenario one will have
to traverse a list of all the items stored, resulting in
the same lookup time complexity as that of a regular
linked list, O(n), assumingn elements were hashed.
What (Crosby and Wallach, 2003) did was to demon-
strate that an attacker can force such worst-case be-
havior, over the Internet, against a variety of network
devices. If the attacker can cause all the hash lookups
to run in O(n) steps — she can waste enough CPU
time on the server to create a denial of service condi-
tion.

Note that a malicious attacker can induce such
worst-case behavior againstany hash function, in-
cluding cryptographic hash functions. Our method
does not rely on the strength of the algorithm itself,
but rather on the search space of the secret input key.
Since the input space is much larger than the hash ta-
ble size, many hash collisions are bound to occur. If
the hash function is weak, then the attacker can easily
find many inputs with the same hash. But even for
an ideal hash function the attacker can run an offline
computation and find a large set of items that fall into
the same bucket.

2.2 Linux Netfilter

We tested our attack against the hash table stored
in Linux’ Netfilter (Filter,), which is the Linux IP
firewall. The current Netfilter release is used in the
2.4 and 2.6 Linux kernels. Netfilter contains a state-
ful packet filtering module calledip conntrackwhich
keeps state for each connection. Prior to the work of

REMOTE ALGORITHMIC COMPLEXITY ATTACKS AGAINST RANDOMIZED HASH TABLES

119

(Crosby and Wallach, 2003), users of Netfilter com-
plained already in July 2002 of a server slowdown
that was attributed to a poor choice of hash function.
In response to this issue, the developers of Netfil-
ter switched their hash function to the Jenkins’ hash
(Jenkins, 1997), and additionally included a random
secret value, known only to the server, as a param-
eter to the hash function. Thus, the Netfilter hash is
protected against the basic attack of (Crosby and Wal-
lach, 2003).

As it is used in Netfilter, the Jenkins’ hash receives
4 parameters, each of 32 bits in length as follows: (i)
the packet’s source IP address, (ii) the packet’s des-
tination IP address XORed with the connection pro-
tocol number, (iii) a concatenation of the source and
destination ports, and (iv) the secret random value
known only to theip conntrackmodule.

Rather than analyzing the uniformity of the bit-
mixing in the Jenkins’ hash (thus finding hash colli-
sions), we consider the Jenkins’ hash as a “black-box”
which receives the above 4 parameters for each con-
nection and returns a 32-bit output modulo the num-
ber of hash buckets. Our attack is based on creating
packets that cause enough bucket collisions to achieve
a recognizable slowdown.

The default conntrack hash table size is 213 buck-
ets. It is worth noting that the Linux developers rec-
ommend that a server used only as a firewall should
increase the size of the hash table. Furthermore, the
Netfilter developers limit the total number of connec-
tions in the hash table to 8 times the number of buck-
ets, giving a default maximum of 216 connections.3

This limited capacity is actually a security measure:
the attacker cannot attack the hash table by exploding
the memory. On the other hand, as we shall see, the
capacity is not small enough to avoid a server perfor-
mance degradation. Throughout this paper, we con-
siderip conntrackin its default settings.

3 ATTACK OVERVIEW

3.1 Attack Constraints

To conduct an efficient remote algorithmic complex-
ity attack against a hash table, the following prereq-
uisites must be met: (i) the hash function (except the
secret value) must be known to the attacker, (ii) the
attacker must be able to produce enough packets that

3In fact, the number of possible connections stored in
the hash is 215. However, each connection and its reversed
tuple gets stored in the hash table, giving us a hash table
capacity of 216.

fall into the same bucket, and (iii), the attacker must
be able to deliver these packets to the victim’s server.

For network devices that track TCP/UDP connec-
tions, the items to be hashed are usually defined by
the 96-bit tuple< src addr, src port, dst addr, dst
port >. The IP addresses are 32 bits each, and each
port is of 16 bits length. However, the attacker can-
not manipulate all 96 bits to produce collisions. First,
the destination must be fixed to contain the victim’s
IP address. Next, most servers do not have all their
ports open. In fact, many only have as few as two
or three open ports. Therefore, for a basic algorith-
mic complexity attack (Crosby and Wallach, 2003),
the attacker can manipulate the 32-bit source address,
the 16-bit source port, and a few choices for destina-
tion port, which we take as another 2 bits, giving a
total of 50 bits. As a result, the attack relies heavily
on source IP address spoofing.

However, when we are attempting to determine
the secret value in a randomized hash table (in the
information gathering stage), we need to compute the
RTT so we can detect the server’s slowdown — i.e.,
the attacker needs to receive the server’s SYN-ACK
packets. This implies that the attacker must place her
true IP address in the source IP address field, other-
wise the server’s responses will not be routed back to
her. At a first glance, this seems to create a serious
difficulty for the attacker: she only has about 18 bits
to manipulate (only the source port and the open des-
tination ports). For example, the default number of
buckets in Netfilter for a server with 1GB of RAM is
213. Assuming that the hash function distributes its
input uniformly across the hash table, even if all 218

possible packets are tried, the expected chain size is
only 32, which is too small to achieve a considerable
list traversal slowdown.

3.2 Producing a Noticeable Slowdown

As noted in Section 3.1, if the attacker wants to mea-
sure the RTT then the source and destination IP ad-
dresses, as well as most of the destination ports bits,
are fixed. The key observation is that the attacker
is interested in the return trip time of a connection
sentafter the bucket filled up. In other words, while
the bucket is filling up, the adversary does not care
about the server’s replies. Our solution, then, is to
create 2 classes of attack packets per candidate secret
value. Class A consists of many packets, with spoofed
source IP addresses, that all fall into the same bucket.
Class B packets are a small set of packets, with the
source containing the true IP address of the attacker,
that fall into thesamebucket as those of the Class A
packets. Note that the attacker creates all Class A and

SECRYPT 2007 - International Conference on Security and Cryptography

120

Class B packets, for every possible secret value,in
advance.

During the attack, the adversary iterates over all
possible secret values, sending for each random value,
Xi , a “large enough” number of Class A packets, fol-
lowed by a small number of Class B packets. The
attacker only measures the RTT of the Class B pack-
ets. Sending this relatively small number of packets
will not result in a denial of service, but will produce
a detectable slowdown, which is sufficient for us to
identify the correct secretX.

3.3 Modeling the Attack Viability

3.3.1 Distribution of the Longest Chain

Let n denote the number of connections inserted into
the hash table of sizem. For the attack to be vi-
able, the attacker must be able to construct at least
a few Class B packets. As a concrete example, we
considerm = 213 hash buckets, as in Netfilter, and
n = 218 possible Class B packets. To find the dis-
tribution of the longest chain in any bucket, we con-
sider a cell that follows a binomial distribution with
µ = n/m = 218/213 = 32. Let M be a random vari-
able representing the length of the chain in some cell.
We want to findK such that Pr(M > K)≥ 1/2, which
derives to:

1
2
≤Pr(M > K) = 1−Pr(M ≤K) = 1− [F(K)]m (1)

WhereF(K) is the resulting cumulative distribution
function. Substitutingm to be 8192, we obtain the
condition:

[F(K)]8192
≤ 1/2 (2)

The normal approximation to the binomial distribu-
tion (with the error complementary function) yields:

1
2
≥

[

φ
(

K + 1
2 −

n
m

√

n(m−1)
m2

)]8192

= (3)

[

φ
(

K + 1
2 −32

√

328191
8192

)]8192

=

[

φ
(

K−31.5
5.6565

)]8192

(4)

φ
(

K−31.5
5.6565

)

≤ 0.5(1/8192)
≈ 0.99992 (5)

K−31.5
5.6565

. 3.891 (6)

K . 53.5⇒ K ≤ 54 (7)

Thus, we see that with high probability we can create
chains of length 54, even for an ideal hash function —
this is more than enough for Class B packets.

3.3.2 Calculating the Number of Class A Packets

We also need to estimate the number of packets
needed to be sent for each secret value, in the informa-
tion gathering stage, for the attacker to achieve a rec-
ognizable slowdown. Assume that the normal RTT is
T. LetTr(n) denote the RTT for Class B packets, after
sendingn Class A packets, assuming a secret value of
r. We would like to achieveTr(n) > (1+ α)T if r is
the correct secret value, for some fixedα > 0.

Let t0 to be the time to traverse from one node to
another in a linked list (thelookup time) and lett1 be
twice the network propagation delay between the at-
tacker and victim, i.e., the “network” part of the RTT.
When all the connections are distributed uniformly
throughout the hash table, we calculate the follow-
ing expectation to receive a reply from the server after
creatingn connections:T = t0(n/m)+t1 since, on av-
erage, the servers needs to examinen/m tuples in the
hash function. When all the connections fall into the
same hash bucket, the time that it takes to receive a
reply after sendingn packets is:Tr(n) = nt0 + t1. To
achieveTr(n) ≥ (1+α)T we need

(1+α)[(
n
m

t0 + t1)] < nt0 + t1 (8)

which implies that

n− n
m(1+α)

α
>

t1
t0

(9)

For simplicity we setα = 1 (for a slowdown of 2).
Then form= 213 we have

n(1−
2

213) >
t1
t0

(10)

As a crude estimate, if we set the ratiot1/t0 to be
1000, we see thatn ≈ 1000 Class A packets would
suffice to produce a factor of 2 slowdown in the RTT
when we test the correct secret value.

Such a ratio is reasonable when the propagation
delay is, e.g.,≈ 1ms (an attacker is stationed just a
few hops away from the victim), and the lookup time
is ≈ 1µs. Clearly, as the noise in the network in-
creases, or the distance between the attacker and the
victim increases,t1 increases which means that we
need to create more connections to recognize a slow-
down. Likewise, a faster victim machine would re-
quire more connections.

Note that in reality we don’t really require a slow-
down of 2, all we need is that the RTT for the correct
secret value should be largest among the RTTs com-
puted for all possible candidates.

REMOTE ALGORITHMIC COMPLEXITY ATTACKS AGAINST RANDOMIZED HASH TABLES

121

4 ATTACK IMPLEMENTATION
AGAINST NETFILTER

Before we implemented our attack, we conducted an
extensive simulation study using NS2 (McCanne and
Floyd,). We omit the details due to space constraints.

4.1 Implementation Setup

We implemented this attack by running a real-life
experiment between 2 machines sitting on the same
network switch. A computer containing a 3.4GHz
Intel Pentium 4 CPU with 1GB RAM, running Fe-
dora Core 4 distribution with a Linux kernel ver-
sion 2.16.14, served as the attacked server. The victim
machine had only 3 open ports and an installed Net-
filter with ip conntrackversion 2.3. We changed the
Netfilter module,ip conntrack, so that it can receive
the size of the random value in bits as a parameter to
the module. The attacker machine, composed of an
Intel Pentium 4 2.4GHz and 512MB RAM, ran a Red
Hat 9 Linux distribution with a 2.4.2 kernel.

We wrote a simple C program to generate 40 Class
B tuples for each candidate secret value (with the at-
tacker’s source IP address) which all enter the same
hash bucket, assuming that the current candidate se-
cret value is the one used in the server. With hind-
sight, 10 class B would have been sufficient.

After generating 40 Class B tuples, the program
then generates another 1500 Class A tuples that fall
into that same bucket, but with fake source IP ad-
dress. For the forged addresses, we chose to use the
10.X.X.X address space (224 choices) to avoid the
true IP addresses from sending RST packets which
would cause a connection to be purged from the hash
table.4 Constructing the tuples with these forged IP
addresses, leaves us with 42 bits of freedom, still
enough to cause hundreds of bucket collisions. Once
we generated all the tuples for the experiment (an
offline computation), we can test sending packets in
bursts of different sizes between the attacker and the
victim in order to recognize a slowdown.

To inject and capture TCP packets we used the
packit (Bounds, 2003) application with minor modi-
fications of our own to accommodate the experiment.

4When we used totally random source addresses, the
victim’s SYN-ACK packets were routed towards the Inter-
net. The campus PIX firewall would trap them in its egress
filtering mode, identify them as “out-of-state”, and send a
spoofed TCP-RST back to the victim, causing the victim
machine to tear down the half open connection and thwart
the attack. This counter-measure would not affect the attack
in a real scenario when the attacker is outside the perimeter
because the border firewall would see both the attack SYN
and the victim’s SYN-ACK.

We iterated over all possible secret values, sending
first a variable-length burst of Class A packets to the
server, and then 10 Class B packets (with the real
source IP address). We ran this experiment in bursts
of 200, 500, 600, 750, 900, 1000, 1200, 1350, 1500
packets and repeated this sequence twenty times.

For each burst sent for each secret value, we cal-
culated the average RTT over the Class B packets and
performed our statistical tests on this data. However,
we noticed that occasionally the average RTT of a
certain value was unreasonably high due to transient
network congestion on the switch. Thus, we consid-
ered these abnormally high times asoutliers which
we excluded from our statistical tests. The thresh-
old to consider a data point as an outlier was set to
1500µs, taken as 10 times the average RTT between
the 2 machines under normal circumstances. Note
though that on some of the tests, also the correct se-
cret value showed up as an outlier and so was dropped
from the statistics as well. We calculated the fraction
of times the highest average RTT was detected for the
actual secret value, the fraction of times the true se-
cret value RTT was in the top-5, and when it was in
the top-10.

We ran this experiment twice: The first experi-
ment set the random value’s size to 13 bits while the
second set the size to 14 bits.

4.2 Experiments Results

4.2.1 13-bit Secret Values

In the first experiment the random value had 13 bits.
The offline generation of packets lasted about 54
hours and produced 350MB of file space. On av-
erage, it took 83,000 different combinations to find
40 Class B tuples for each random value when hash-
ing with the attacker’s real source IP addresses, and it
took 12,000,000 different combinations to find 1500
Class A tuples that collide into the same bucket as the
Class B tuples for the same secret value. The online
slowdown recognition experiment lasted 15 days.

Note that a slow information gathering stage is
not unreasonable. In fact, the attacker may choose
to use a low transmission rate to avoid being detected
as an old-fashioned SYN-flood attack. In our experi-
ment the overall transmission rate was 33 Kbps (1,048
SYN packets per second) and with short bursts of 480
Kbps.

Figure 1 presents the statistical results. Out of
all the tests, 31 outliers were removed from the data.
Out of these, 6 of the outliers were actually the real
random value. One can see in the graph that as the
number of packets sent per burst increases, the high

SECRYPT 2007 - International Conference on Security and Cryptography

122

 0

 0.2

 0.4

 0.6

 0.8

 1

 1500 1350 1200 1000 900 750 600 500 200

F
ra

ct
io

n
of

 ti
m

es

Number of Packets Sent for each Random Value

HIGHEST
TOP 5

TOP 10

Figure 1: Fraction of times in which the correct secret value
caused the highest RTT, was in the top-5 RTTs, or the top-
10 RTTs, as a function of the number of Class A packets
sent. The secret value is of 13 bits.

RTT values are the result of finding the actual ran-
dom value. However, even sending 200 packets per
burst gives a success rate of 20% for having the high-
est RTT value belong to the actual secret value. For
a burst of 750 packets per candidate secret value, the
correct value’s average RTT was one of the ten high-
est RTT values on more than half of the tests. The
drops in the graph for the top-5 and top-10 highest
values were caused by the removal of the outliers as
presented above, i.e., by poor transient network con-
ditions. The graph shows that with a burst size of
1000, the attacker guessed the true secret value al-
most always. According to these results, it can be
safely said that 1000 packets are enough to detect the
correct secret value during the information gathering
stage, when the secret value is 13 bits long. These re-
sults closely match those we previously calculated in
Section 3.3.2. Figure 2 shows the differences in RTT
values for each candidate value taken in a single run
with a burst size of 500. The figure on the top shows
that the highest RTT is the one calculated for the ac-
tual secret value (which is set to be 5766). However,
the bottom figure is also a single run with a burst size
of 500. In this case, the RTT of the true secret value
was not even one of the top-10 highest received RTTs.

4.2.2 14-bit Secret Values

For the experiment when the secret value is 14 bits
long, the offline pre-processing time and space is mul-
tiplied by a factor of 2: the tuple generation lasted
about 104 hours on the same computer and produced
700MB of space. The number of combinations to cre-
ate tuples that fall into the same bucket, both when
forging and not forging the source IP address are sim-
ilar to the results received when the random value is
13 bits long: on average over all the random values,

 0

 50

 100

 150

 200

 0 1000 2000 3000 4000 5000 6000 7000 8000

R
T

T

Secret Value

"rtt_500_4"

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 1000 2000 3000 4000 5000 6000 7000 8000

R
T

T

Secret Value

"rtt_500_7"

Figure 2: Comparison when the highest RTT belongs to
the actual random value (5766) (top), and when the RTT of
the random value was not even in the top 10 highest RTTs
when the network was generally slower (bottom). A burst
of 500 was sent for both these tests. RTTs are specified in
microseconds.

83,000 combinations were tried to create 40 Class
B tuples, and 12,000,000 combinations were tried to
create 1500 Class A tuples that all fall into the same
bucket. The experiment for the 14 bit random value
length lasted about 31 days.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1500 1350 1200 1000 900 750 600 500 200

F
ra

ct
io

n
of

 ti
m

es

Number of Packets Sent for each Random Value

HIGHEST
TOP 5

TOP 10

Figure 3: Fraction of times in which the correct secret value
caused the highest RTT, was in the top-5 RTTs, or the top-
10 RTTs, as a function of the number of Class A packets
sent. The secret value is of 14 bits.

REMOTE ALGORITHMIC COMPLEXITY ATTACKS AGAINST RANDOMIZED HASH TABLES

123

The experiment results are shown in Figure 3.
The number of outliers in this experiment was higher,
where 58 results were removed. Out of these values, 6
outliers were caused by the extremely high RTT val-
ues received for the real random value. The drop in
the top-5 and top-10 success rate in the figure for the
burst size of 1350 is due to the outlier being the actual
secret value. The figure is very similar to Figure 1: as
the burst size grows, a slowdown in the RTT values is
almost always due to finding the correct secret value.
The figure shows that as few as 500 packets suffice
to recognize the correct secret value in the top-5 with
≈ 50% success.

5 CONCLUSIONS AND FUTURE
WORK

We have demonstrated that a remote algorithmic com-
plexity attack, against randomized hash tables, is pos-
sible if the secret value is chosen from a small enough
space. More secret bits cause more effort, time and
space to be consumed in theinformation gathering
stage. Thus, it seems that a random value of 32
bits would render this attack impractical with today’s
technology. Note though that in this paper the at-
tacker iterates over all possible random values in a
brute-force manner, searching for bucket collisions.
However, the search space may be limited to a smaller
subset of random numbers by taking advantage of the
vulnerabilities in the Linux Random Number Gener-
ator as suggested in (Gutterman et al., 2006). This
might lead to a feasible attack against a server with a
longer secret value.

The Linux Routing Table cache which uses a hash
table, has also updated its hash function as a counter-
measure against the algorithmic complexity attack
with Linux version 2.4.2. In this patch, the routing
table cache also uses a random value as a parameter
to the hash function, but in order to increase the secu-
rity, this key is changed every 10 minutes. Since our
experiments show that when the random value is 13
bits long, testing all 8192 possibilities with 500 packet
bursts takes about 1 hour, this additional measure is
indeed helpful. However, changing the secret value is
not always easy: Doing so on a firewall like Netfilter
will potentially break existing connections since fu-
ture packets will be hashed to a different bucket and
not find the connection’s state.

REFERENCES

Boneh, D. and Brumley, D. (2003). Remote timing attacks
are practical. InProceedings of the 12th USENIX Se-
curity Symposium.

Bounds, D. (2003). packit v1.0.http://www.obtuse.
net/software/packit/.

Crosby, S. and Wallach, D. (August 2003). Denial of service
via algorithmic complexity attacks. InProceedings of
the 12th USENIX Security Symposium, pages 29–44.

Dean, D. and Stubblefield, A. (Aug. 2001). Using client
puzzles to protect TLS. InAnnual USENIX Security
Symposium, page 178, Washington, D.C., USA.

Filter. Linux netfilter.http://www.netfilter.org/.

Gal, A., Probst, C., and Franz, M. (2004). Complexity-
based denial of service attacks on mobile-code sys-
tems. Technical Report 04-09, School of Informa-
tion and Computer Science, University of California,
Irvine.

Gal, A., Probst, C., and Franz, M. (2005). Average case vs.
worst case margins of safety in system design. InPro-
ceedings of the 2005 New Security Paradigms Work-
shop (NSPW 2005), Lake Arrowhead, CA, USA.

Garfinkel, S. (1996). Script for a king.HotWired Packet.

Gutterman, Z., Pinkas, B., and Reinman, T. (2006). Anal-
ysis of the linux random number generator. In
IEEE Symposium on Security and Privacy, Berke-
ley/Oakland, CA, USA.

Jenkins, B. (1997). Jenkins’ hash. http://
burtleburtle.net/bob/hash/doobs.html.

Kohno, T., Broido, A., and Claffy, K. (2005). Remote phys-
ical device fingerprinting. InIEEE Symposium on Se-
curity and Privacy, Oakland, CA, USA.

Kuzmanovic, A. and Knightly, E. (2003). Low-rate TCP-
targeted denial of service attacks (the shrew vs. the
mice and elephants). InProc. Sigcomm.

McCanne, S. and Floyd, S. ns network simulator.http:
//www.isi.edu/nsnam/ns/.

McIlroy, M. D. (1999). A killer adversary for quicksort.
Softw., Pract. Exper., 29(4):341–344.

Needham, R. M. (1993). Denial of service. InProceedings
of the 1st ACM conference on Computer and commu-
nications security, pages 151–153, FairFax, VA, USA.

Paxson, V. (1999). Bro: a system for detecting network in-
truders in real-time.Computer Networks (Amsterdam,
Netherlands: 1999), 31(23–24):2435–2463.

RFC4418. Umac: Message authentication code using
universal hashing.http://www.rfc-archive.org/
getrfc.php?rfc=4418.

Shacham, H., Page, M., Pfaff, B., Goh, E.-J., Modadugu,
N., and Boneh., D. (2004). On the effectiveness of ad-
dress space randomization. InACM Conf. Computer
and Communications Security (CCS), pages 298–307.

SYN flood (1996). SYN-flooding attacks.http://www.
cert.org/advisories/CA-1996-21.html.

SECRYPT 2007 - International Conference on Security and Cryptography

124

