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Abstract. In image-based robot navigation, the robot localises itself by compar-
ing images taken at its current position with a set of reference images stored in
its memory. The problem is then reduced to find a suitable metric to compare im-
ages, and then to store and compare efficiently a set of images that grows quickly
as the environment widen. The coupling of omnidirectional image with Fourier-
signature has been previously proved to be a viable framework for image-based
localization task, both with regard to data reduction and to image comparison.
In this paper, we investigate the possibility of using a space variant camera, with
the photosensitive elements organised in a log polar layout, thus resembling the
organization of the primate retina. We show that an omnidirectional camera us-
ing this retinal camera, provides a further data compression and excellent image
comparison capability, even with very few components in the Fourier signature.

1 Introduction

A mobile robot that moves from place to place in a large scale environment needs to
know its position in the environment to successfully plan its path and its movements.
The general approach to this problem is to provide the robot with a detailed descrip-
tion of the environment (usually a geometrical map) and to use some kind of sensors
mounted on the robot to locate in its world representation. Unfortunately, the sensors
used by the robots are noisy, and they are easily misled by the complexity of the en-
vironment. Nevertheless, several works successfully addressed this solution using high
precision sensors like laser range scanners combined with very robust uncertainty man-
agement systems [13] [2]. Another solution, very popular in real-life robot applications,
is the management of the environment. If artificial landmarks, such as stripes or reflect-
ing dots, are added to the environment, the robot can use these objects, which are easy
to spot and locate, to calculate its position on a geometrical map. An example of a
successful application of this method is the work of Hu [6]. Unfortunately, these two
approaches are not always feasible. There are situations in which an exact map of the
environment is either unavailable or useless for example, in old or unexplored build-
ings or in environments in which the configuration of objects in the space changes fre-
quently. So, the robot needs to build its own representations of the world. This means
that in most cases a geometrical map contains more information than that needed by
the robot to move in the environment. Often, this adds unnecessary complexity to the
map building problem. In addition to the capability of reasoning about the environment
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topology and geometry, humans show a capability for recalling memorised scenes that
help themselves to navigate. This implies that humans have asort of visual memory
that can help them locate themselves in a large environment.There is also experimental
evidence to suggest that very simple animals like bees and ants use visual memory to
move in very large environments [3]. From these considerations, a new approach to the
navigation and localization problem developed, namely, image-based navigation. The
robotic agent is provided with a set of views of the environment taken at various loca-
tions. These locations are called reference locations because the robot will refer to them
to locate itself in the environment. The corresponding images are called reference im-
ages. When the robot moves in the environment, it can comparethe current view with
the reference images stored in its visual memory. When the robot finds which one of
the reference images is more similar to the current view, it can infer its position in the
environment. If the reference positions are organised in a metrical map, an approximate
geometrical localization can be derived. With this technique, the problem of finding the
position of the robot in the environment is reduced to the problem of finding the best
match for the current image among the reference images. The problem now is how to
store and to compare the reference images, which for a wide environment can be a large
number. In order to store and match a large number of images efficiently, it has been
shown in [9] the transformation of omnidirectional views into a compact representa-
tion by expanding it into its Fourier series. The agent memorises each view by storing
the Fourier coefficients of the low frequency components. This drastically reduces the
amount of memory required to store a view at a reference location. Matching the current
view against the visual memory is computationally inexpensive with this approach.
We show that a further reduction in memory requirements and computations can be
met by using log-polar images, obtained by a retina-like sensor, without any loss in the
discriminatory power of the methods.

2 Materials

2.1 Omnidirectional Retinal Sensor

The retina-like sensor used in this work is the Giotto cameradeveloped by Lira-Lab at
the University of Genova [11] [12] and by the Unitek Consortium [4]. It is built using
the 35µm CMOS technology, and arranging the photosensitive elements in a log-polar
geometry. A constant number of elements is placed on concentric rings, so that the size
of these elements necessarily decreases from the peripherytoward the center. This kind
of geometric arrangement has a singularity in the origin, where the element dimension
would shrink to zero. Since this dimension is constrained bythe building technology
used, there is a ring from which no dimension decrement is possible for accomodat-
ing a constant number sensitive elements. Hence, the area inside this limiting ring does
not show a log-polar geometry in the arrangement of the elements, but is nevertheless
designed to preserve the polar structure of the sensor and atthe same time tessellate
the area with pixels of the same size. This internal region will be called thefoveaof
the sensor for its analogy with the fovea in the animal retina, whereas the region with
constant number of pixels per ring will be calledperiphery.
The periphery is composed byNper = 110 rings withM = 252 pixels each, and the

88



Fig. 1. The central part of the electronic layout of the retinal sensor (from [4]).

fovea is composed byNfov = 42 rings (see Fig. 1). This lead to a log-polar image hav-
ing size ofMxN = 252x152, whereN = (Nper + Nfov), and the image is obtained
from a sensor with 38.304 photosensitive elements. It is claimed in [4] that given its
resolution, the log polar sensor yields an image equivalentto a1090x1090 image ac-
quired with a usual CCD: a sample image acquired with this camera is shown in Fig. 2,
together with its cartesianig:retina remapping in Fig. 3

Fig. 2. A sample252x152 image acquired
with the retina-like camera.

Fig. 3. The sample image of Fig. 2 trans-
formed in a1090x1090 cartesian image.

To obtain the omnidirectional sensor, the retina-like camera is coupled with an hy-
perbolic mirror with a black needle at the apex of the mirror to avoid internal reflections
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on the glass cylinder [7]: the sensor can be seen in Fig. 4(a).A single omnidirectional
image gives a360o view of the environment, as can be seen in Fig. 4(b).

(a) (b)

Fig. 4. (a) The omnidirectional sensor composed by the retina-likecamera and the hyperbolic
mirror. (b) A sample image acquired with the omnidirectional retinal sensor.

3 Methods

3.1 Log-Polar Omnidirectional Image

The pixel coordinates of the output image of the retinal sensor are polar coordinates
(ρ, ϑ), that are related to the usual cartesian coordinates(x, y) via:

ρ = log
(

√

x2 + y2
)

ϑ = arctan
(

y

x

)
(1)

There are two main issues to be considered while dealing withlog-polar images. The
first is that there is a singularity in the transformation near the origin, where the pixel
dimension tend to zero. The transformation can thus be considered exact only in the re-
gion outside the fovea, whereas inside the fovea the mappingdepends on the particular
arrangement of the retinal sensor.
The second point is the consideration that given the sampling in polar coordinates in-
duced by the sensor, moving from the center toward the periphery of the image, the
mapping is not bijective from(ρi, ϑi) → (xi, yi), but rather one point in the log polar
image correspond to a sector of annular ring:

(ρi, ϑi) → {(x, y)|ρ ∈ [ρi, ρi+1[∩ϑ ∈ [ϑi, ϑi+1[} (2)

This means that from the center of the image toward its outer boundary, the resolution
decreases, as a pixel in the log-polar image gather information from a bigger area than
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a pixel, e.g., in the fovea.
An interesting property of the retinal sensor appears when it is coupled with an hyper-
bolic mirror, so to provide an omnidirectional sensor. In fact the space-variant resolution
of the sensor, if matched with the hyperbolic projection provide an omnidirectional im-
age of nearly constant resolution. Moreover, the image acquired by this omnidirectional
sensor is already in the form of a panoramic cylinder, without need of further transfor-
mations [12, 10].

3.2 Fourier Signature

In image-based navigation the main problem is the storage ofreference images and
the comparison of these images with those acquired during the localization. In [9] was
shown the effectiveness of using a small number of Fourier coefficients to characterize
an image: that method both reduce drastically the dimensionof the information to be
stored and proved to be enough to discriminate different images, without the need of
image alignment as in [1] [5] [8].
The Fourier signature is computed in two steps. First, we calculate the 1-D Fourier
transform of every line of the log-polar image and we store ina matrix the Fourier
coefficients line by line. Then, we keep only a subset of the Fourier coefficients, those
corresponding to the lower spatial frequencies, as signature for the image.
To fully exploit the further dimensionality reduction imposed by the retina-like sensor,
we have to recall that in the fovea the effective physical pixels (and therefore the amount
of information) is 1 in the center, that is mapped in first lineof the log-polar image, 4
in the second innermost ring, mapped in the second line, and so on until the number
of pixels in the ring match that of the periphery, where the amount of pixels per ring is
constant. A number of physical pixels smaller than the number of image pixels induces
a smaller band on the signal than it would be possible given the image dimension.
This leads to the consideration that in the foveal region we need to retain less Fourier
coefficients than in the periphery to achieve a storage efficiency without loosing any
information. The choice is therefore to decrease linearly the number of coefficients
used to build the signature: from thekmax per line in the periphery (rowsNfov + 1 to
N in the log-polar image), to the 1 coefficient of the first line of the image. Hence for
the rowy:

k(y) =

{

⌈kmax−1
Nfov−1 · y +

kmax−Nfov

kmax−1 ⌉ if y ≤ Nfov

kmax if y > Nfov

(3)

with ⌈x⌉ meaning the ceiling ofx.

3.3 Dissimilarity Measure

Given an imageI, and the discrete set of its Fourier coefficients for the liney, ay,k,
with y = 1, . . . , N , we can define the Fourier signature as the vectorF containing the
juxtaposition of all Fourier coefficients of the signature for each line:

F(I) =
[

a1,1, . . . , a1,k(1), . . . , aN,1, . . . , aN,k(N)

]

(4)
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A distance between two imagesIi andIj can be evaluated as theL1 norm between the
two vectors of their Fourier signature:

d(Ii, Ij) = |F(Ii) − F(Ii)|1 (5)

When a database of images is available, and a new image have tobe compared with
those in the database to find the best match, is often more intuitive to use a measure of
relative distance of the image under examination from one inthe database, given all the
images in the database:

p(Ii, Ij) = 1 −
d(Ii, Ij)

maxi,j(d(Ii, Ij))
(6)

This is a normalized distance in the database, assuming values in the interval[0, 1], and
can therefore be viewed as a probabilitya posterioriof an imageIi to be equal to image
Ij , with j = 1, . . . , N , and N the number of images in the database.

4 Results and Discussion

To test the proposed measure, an image database was built by acquiring a frame from
different positions in an indoor environment, using the retinal omnidirectional camera
described previously. The acquisition sites were 15 locations 20cm apart.
First of all, we made experimentations to evaluate which is the minimum number of
Fourier coefficients necessary to construct a Fourier signature that retains all and only
the necessary information. Hence, we calculated the similarity of each input image
against all the reference image of the dataset varying the number of coefficients per row
(kmax) of the Fourier signature. Since the Nyquist frequency of each row isfNy = N

2 ,
the maximum number of coefficients of the DFT which yield effective information is
N
2 . Therefore, we madekmax ∈ K = [1, . . . , N

2 ].

For eachkmax ∈ K we first evaluated the similarity measure Eq. (6) of each image
in the reference database from every other image in the reference database. By this
mean, we show that Eq. (6) is an effective measure to distinguish different images, and
can therefore be used to provide a good localization performance in autonomous robot
navigation tasks. In Fig. 7 we show three successive sample images (relative distance
equal to 15cm) from the reference database, and the similarity value of an input image
taken at a location corresponding to the second reference image. The similarity value
yields a correct match between input and reference.

In Fig. 5 and Fig. 6, it is shown the values of the similarity value for different values
of kmax of an image in the reference database with every other image.In both figures,
the similarity peak corresponds to the correct image, and the similarity values decrease
around the peak, the higherkmax, the sharper the decrease.
The choice ofkmax influences the trade off between dissimilarity accuracy andimage
storage efficiency. A good measure of the accuracy of the proposed measure is the mini-
mum difference between1−d(Ii, Ij) for i 6= j. This is equivalent to evaluate aclassifier
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Fig. 5. Similarity measurep(I5, Ij) for j = 1, . . . , N , for kmax = 1, 63, 126. It is clear that the
correct image always yields a similarity measure of 1, whereas the decreasing in the similarity is
sharper for high values ofkmax.
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Fig. 6. Similarity measurep(I10, Ij) for j = 1, . . . , N , for kmax = 1, 63, 126. It is clear that the
correct image always yields a similarity measure of 1, whereas the decreasing in the similarity is
sharper for high values ofkmax.

margin, in the separation between two different images. In Fig. 8, we show that after a
monotonic increase in this margin whith the number of coefficients, it reaches a kind of
plateau afterkmax ≃ 20.

The storage efficiency achieved is clear when comparing the number of Fourier
coefficients needed to form the Fourier signature of a log-polar image with the number
of the equivalent cartesian image, which has dimension1090x1090 pixels. In Fig. 9
we show for differentkmax the dimension of the Fourier signature for the equivalent
cartesian image, for the log-polar image withkmax coefficients per row, and for the log-
polar image withk(y) coefficients per row, meaning that we have a reduced number of
coefficients in the foveal rings. It is well apparent the storage reduction that can be
achieved using a retina-like sensor.
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(a) Reference Image 1 (b) Reference Image 2

(c) Reference Image 3 (d) Input Image

Fig. 7. Three reference image taken 15 cm apart, to be confronted with an input image acquired
at location (b). Withkmax = 10, the similarity value of the input image with image (a) is 0.59,
with (b) is 0.96, and with (c) is 0.54: the correct match has the highest similarity value.

5 Conclusions

In this paper we show that retinal omnidirectional images can be successfully used
to localize an autonomous robot with the image-based navigation approach. Within
this approach, the direct comparison of images is not robust, is too computationally
cumbersome, and the storage of the whole images requires an excessive memory space.
Representing the images with their Fourier signature has been proved a viable way to
overcome these problems. In this paper, we showed that coupling this technique with
log-polar sensor yields a further dimensionality reduction with sufficient accuracy.
The reduction is achieved by exploiting the different bandwidth of each ring of the
retina-like sensor with respect to the constant bandwidth of a cartesian sensor, where
each row contains the same number of photosensitive element. This allows to keep a
decreasing number of Fourier coefficients in the signature,moving from the periphery
toward the center of the sensor.
Despite the storage requirement reduction, we show that using a simpleL1 norm on
difference of signature vectors have an excellent discriminatory power in distinguishing
images taken at different sites.
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Fig. 8. Minimum difference in the proposed similarity measurep(Ii, Ij) for every different im-
age in the database, and forkmax = 1, . . . , 126. The solid line represent the mean minimum
differenceµ, and the gray area represent the variability of this valueµ± σ.
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