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Abstract: Decision level management is a crucial aspect in an Automatic Signature Verification (ASV) system, due to 
its nature as the centre of decision making that decides on the validity or otherwise of an input signature 
sample. Here, investigations are carried out in order to improve the performance of an ASV system by 
applying multiple classifier approaches, where features of the system are grouped into two different sub-
sets, namely static and dynamic sub-sets, hence having two different classifiers. In this work, three decision 
fusion methods, namely Majority Voting, Borda Count and cascaded multi-stage cascaded classifiers are 
analyzed for their effectiveness in improving the error rate performance of the ASV system. The 
performance analysis is based upon a database that reflects an actual user population in a real application 
environment, where as the system performance improvement is calculated with respect to the initial system 
Equal Error Rate (EER) where multiple classifiers approaches were not adopted. 

1 INTRODUCTION 

There is a wide diversity of information available to 
characterize human signatures, which offers an 
opportunity to create an Automatic Signature 
Verification (ASV) system with a high degree of 
flexibility and sophistication. For example an ASV 
system can be built out of static and dynamic 
features (Lee et al., 1996), heuristics and spectral 
based features (Allgrove and Fairhursty), global and 
local features (Sansone and Vento, 2000), as well as 
parametric and non-parametric features (Kegelmeyer 
and Bower, 1997). However, it is probably 
ineffective in terms of the error rate to combine 
disparate forms of signature information in a single 
classifier, due to the possibility of features 
incompatibility that is caused by different nature of 
features. Thus, here, multiple classifiers approaches 
are adopted, where each individual classifier 
operates on of a pool of features of the same type, 
and the overall system is built out of a combination 
of these classifiers.  

The rationale for adopting a multiple classifier 
approach in increasing the performance of an ASV 
system is that such an approach makes it possible to 
compensate for the weakness of each individual 

classifier while preserving its own strengths 
(Sansone and Vento, 2000), (Allgrove and 
Fairhursty). Kittler (Kittler et al., 1998), (Kittler, 
1999) in his research has pointed out that in order to 
achieve system performance improvement, the 
system should be built up from a set of highly 
complementary classifiers in terms of error 
distribution. This means that the classifiers should 
not be strongly related in their miss-clarification, 
indicating a requirement for selecting classifiers that 
are error- independent of each other.  

However, some studies have questioned the need 
of such classifier error independence in obtaining 
system improvement (Demirecler and Altincay, 
2002), (Kuncheva et al., 2000). Demirekler and 
Altincay (Demirecler and Altincay, 2002) in their 
investigations have noted that independent multiple 
classifier may not necessarily yields the best system 
performance. Therefore, the investigation on error 
distribution between different classifiers prior to the 
implementation of the multiple classifiers approach 
is not considered here. The only prior work carried 
out is the analysis of individual classifier 
performance, which is discussed in section 4.  
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2 USER DATABASE 

The work reported here is based on a test set that is 
aligned with the guidance of good practice drafted 
by the UK Biometric Working Group which requires 
scenario evaluation to be carried out on a database 
that reflects an actual user population in a real 
application environment (August, 2002). The 
database used in the verification was compiled as 
part of the KAPPA Project in January, 1994 where a 
large cross section of the general public were invited 
to take part in data collection trials carried out at a 
major Post Office branch over a  few months period 
of time (Canterbury, 1994).  

More than 5000 samples were collected, where 
the minimum number of samples submitted per 
subject is 3, and some users are reported to have 
submitted more than 40 samples. Each user is 
assigned with a unique identifier (ID) number, 
where all samples of the same individual are stored 
under the same user ID entry. The data collected do 
not include any attempted forgeries, which do not 
allow for investigations on forged signatures. 
Signature samples were captured using a digitizing 
tablet, connected to a PC. The tablet captured 
information in the form of signing co-ordinates and 
timing data, as well as pen-up or pen-down data 
indication. 

3 SYSTEM DESIGN AND TEST 
METHODOLOGY 

A relatively simple straightforward prototype system 
is constructed based on a pool of 22 global 
normalized features, consisting of 8 static and 14 
dynamic features (as listed in Table 1 and Table 2 
respectively), a simplification of Cornell ASV 
system (Lee et al., 1996).  

Table 1: The Static Classifier’s Feature Set. 

Feature Feature Description 
S1 Normalized [first x - max. x] 
S2 Normalized [first x - min. x] 
S3 Normalized [last x - max. x] 
S4 Normalized [last x - min. x] 
S5 Normalized [first y - max. y] 
S6 Normalized [first y - min. y] 
S7 Normalized [last y -max. y] 
S8 Normalised [last y - min. y] 

 
Though the database adopted is built in an online 

mode that captured dynamic information of the 
signing operation, the testing is carried out purely 

using offline batch processing. Hence the test results 
are repeatable for the same test scenario due to the 
fixed nature of the database. 

Table 2: The Dynamic Classifier’s Feature Set. 

Feature Feature Description 
D1 Normalized time 
D2 Normalized max. speed 
D3 Avg. speed / max. speed 
D4 Normalized x zero velocity 
D5 Normalized x positive velocity 
D6 Normalized x negative velocity 
D7 Normalized y zero velocity 
D8 Normalized y positive velocity 
D9 Normalized y negative velocity 

D10 Avg. speed / max x velocity 
D11 Avg. speed / max y velocity 
D12 Min. x velocity / avg. x velocity 
D13 Min. y velocity / avg. y velocity 
D14 Normalized min. acceleration 

 
The evaluation is carried out on two different 

modes, as defined by the UK Biometric Working 
Group (August, 2002), which are: 

 genuine claim of identity 
A test is carried out to compare a user 

signature sample with his / her genuine 
reference data under the same ID. Hence any 
invalid verification gives rise to False Rejection 
Rate (FRR). 

 impostor claim of identity 
A test is carried out to compare a user 

signature sample with a different subject 
reference data under different IDs. Hence any 
valid verification gives rise to False Acceptance 
Rate (FAR). Formally, such ‘forgeries’ are 
unskilled, with no deliberate attempt to 
reproduce another person’s signature. This type 
of forgery is known as ‘random’ forgery (Gnee, 
2000). Another type of forgery which is 
‘skilled’ forgery is not considered here due to 
the unavailability of forged signature samples.  

At the initial stage, a system prototype (i.e. 
without the implementation of multiple classifiers 
that combines all features in the ASV system) is 
created in order to provide for testing as well as 
benchmarking for the envisaged optimization 
investigations. In the verification process of the 
system prototype, each feature cast a binary accept 
or reject vote, whereas the validity of a genuine 
signature sample is decided based on the number of 
accumulated accept votes cast by all features that is 
compared against an overall system_threshold (i.e. 
the ASV system operate based on a threshold voting 
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mechanism). This system_threshold is adjusted until 
the ASV system reached its Equal Error Rate (EER), 
which is recorded here occurred at 8.31%. Thus, the 
8.31% EER figure remains the analysis benchmark 
when comparing the system performance with the 
implementation of multiple classifiers approaches.  

4 INDIVIDUAL CLASSIFIER 
PERFORMANCE ANALYSES 

For the individual classifier performance analyses, 
the features are grouped based on the static / 
dynamic nature of each feature. For each classifier i, 
where i is the classifier index, a corresponding 
classifier threshold (i.e. classifier_i_threshold) is 
maintained which controls the degree of classifier i's 
sample acceptance. Here, the total number of 
accepted features in classifier i is compared against 
the classifier_i_threshold, which follows the 
classification rule in equation 1. The 
classifier_i_threshold is adjusted until the classifier 
Equal Error Rate (EER) is achieved.  

If (x_total_classifier_i_feature accepted   
>= classifier_i_threshold) 

Then tested signature is assumed to be genuine;  
otherwise it is assumed as a forgery                  (1) 

Table 3: Results of Individual Classifiers’ Performance 
Analyses.  

Estimated EER (%)  
for  Dynamic Classifier 

Estimated EER (%)  
for Static Classifier 

9.93 16.48 

The result of individual classifier performance 
analyses is as listed in Table 3. The figures indicate 
that the dynamic classifier in this ASV system that is 
built up from a sub-set of 14 dynamic features has 
higher identifying and / or discriminating capability 
compared to that of the static classifier, which is 
built up from a sub-set of 8 features. This 
information regarding the non-uniformity of the 
classifiers’ performance provides some insights on 
the selection of a suitable combining strategy in the 
subsequent envisaged analyses of section 5. The 
results in table 3 also show that both classifiers 
perform poorer on their own, as compared to the 
performance of the prototype system which 
combines all features which is recorded at 8.31% of 
the system EER. Thus, the next step is to investigate 
the possibility of increasing the ASV system error 
rate performance when the decisions cast by both 

static and dynamic classifiers are combined based on 
several multiple classifier approaches.  

5 SYSTEM OPTIMIZATION BY 
USING MULTIPLE 
CLASSIFIERS APPROACHES 

The main concern in using multiple classifiers is 
selecting the combining strategy, a process what is 
commonly referred to as ‘decision fusion’. Decision 
fusion can be defined as a formal framework that 
expresses the means and tools for the integration of 
data originating from different classifiers (Arif and 
Vincent, 2003). For the last few decades, there has 
been extensive research in the various types of 
decision fusion methods. Clearly there is no one 
universally best combiner existing that would suit all 
applications. A study carried out by Demirekler and 
Altincay (Demirecler and Altincay, 2002) has 
discussed the impact of decision fusion method on 
the choice of classifier. For example, for a given set 
of classifiers N, there is a sub-set of class1ifiers N’ 
that yields the best performance under a given 
combination rule c, where an addition of another 
classifier will only degrade the system performance. 
Lei, Krzyzak and Suen (Lei et al., 1992) in their 
research have defined three types of multiple 
classifiers combining strategy based on the 
classifiers’ output: 
 combination is made according to the output of a 
unique label 
Each classifier produces an output label (e.g. a 
signature sample is accepted or rejected by 
classifier i, where i is the classifier index), which 
is processed and integrated by the system in order 
to produce a final label 

 combination is made based on ranking 
information 
Each classifier produces a ranked set of labels 
(e.g. a signature sample that has high probability 
of being genuine is then given a high acceptance 
rank, where else a signature sample that has a high 
probability of being forged is then given a low 
acceptance rank), and the ranking of the labels is 
added up and processed at the final stage.  

 combination is made according to measurements 
output 
Each classifier produces measurement level of 
information, instead of definite decision (e.g. the 
acceptance degree of an input signature sample), 
which is processed and integrated by the system in 
order to produce the final decision. 
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In this work, several decision fusion methods 
that represent each of the above said decision 
combiner types are analyzed for their effectiveness 
in improving the error rate performance of the ASV 
system. These include majority voting, Borda Count 
and multi-stage cascaded classifiers respectively.  

5.1 System Optimization by Using 
Majority Voting 

In a voting algorithm, each classifier is required to 
produce a soft decision (i.e. a vote) which is added 
up and analyzed in order to arrive at a hard decision 
about an input sample (Lam and Suen, 1997). In an 
Automatic Signature Verification (ASV) system, the 
decision takes the form of either one of the two 
verification classes, namely ‘sample accepted’ or 
‘sample rejected’.  

One of the main advantages of a voting system is 
that it allows for a wide variety of classifier types to 
be combined without much concern about the 
underlying classifier processing methodologies. 
Basically, it treats individual classifiers as ‘black 
boxes’ and needs no internal information on the 
implementation (Lin et al., 2003), which in turn 
offers a great deal of system flexibility, generality 
and simplicity.  

There are many different forms of voting system 
such as threshold voting, majority voting, plurality 
voting and others. An example of a threshold voting 
system is the decision-making mechanism applied in 
this ASV prototype system where a signature sample 
is classified as genuine only if the total number of 
acceptance votes exceeds the defined system 
threshold. On the other hand, both majority voting 
and plurality voting systems require more than half 
of the candidates’ votes and most votes respectively 
(Lin et al., 2003). However, in a two-class 
recognition problem, a plurality voting mechanism 
operates in a similar way to that of a majority voting 
mechanism (i.e. the class with the most votes also 
receives more than half of the candidates’ votes). 
Therefore, the literature on pattern recognition 
generally does not differentiate between these two 
voting systems. Here, such a mechanism is referred 
to as a majority voting approach in order to avoid 
confusion.  

Since the ASV system is built up of only two 
classifiers (i.e. static and dynamic classifier), in 
order to satisfy the requirement of the majority 
voting definition, the final decision is based on 
whichever class that receives two votes (i.e. more 
than 1 which is more than half the number of the 
total votes). However, a conflict exists when both 

classes obtained equal number of votes (i.e. one vote 
each). Demirekler and Altincay (Demirecler and 
Altincay, 2002) suggested that in order to resolve the 
conflict, a random decision is selected among these 
classes. However such an approach is not considered 
here due to the uncertainty of random decision 
accuracy. Instead a probably more realistic approach 
is to resolve the conflict based on the statistical 
individual classifier performance analysis that is 
carried out previously in section 4. Here, since the 
dynamic classifier has a lower Equal Error Rate 
(EER), the resolving hard decision is based on the 
soft decision of the dynamic classifier. The rationale 
behind this is that the dynamic classifier has lower 
probability of making a classification error, and thus 
is more accurate and more reliable compared to the 
static classifier. 

5.2 System Optimization by Using 
Borda Count 

In a voting system, each classifier is required to cast 
a specific vote amongst one of the available accept-
reject classes. This can be ‘inaccurate’ in the case of 
sample status is uncertain, and such errors will have 
major impacts especially in a two-class verification 
situation, where the probability of error is high, that 
is 0.5. A Borda Count approach is capable of 
overcoming the ‘lack of depth’ problem of the 
voting system, by allowing each classifier to rank 
the classes indicating which the more likely 
candidates are.  This approach was presented in 
1770 by Jean-Charles of Borda, hence the name 
‘Borda Count’ (Arif and Vincent, 2003). According 
to him, the class with highest recognition probability 
receives the highest rank. Consequently, at the 
decision level, the ranks are added up and the final 
decision is decided based on the class with the 
highest accumulated rank.  

Erp and Schomaker (Erp and Schomaker, 2000) 
have analysed the effectiveness of Borda count in a 
great detail, and they claimed that it is an easy and a 
powerful method in combining rankings. They have 
also highlighted the possible limitation of this 
approach which results may be susceptible to 
extreme voting by some classifiers. Nevertheless, 
here, the Borda Count approach is adjusted, where 
the classes are divided into three categories which 
are: 

 class A - class ‘sample accepted’ 
 class U - class ‘sample status is uncertain’ 
 class R - class ‘sample rejected’ 

Here, since there are three classes (i.e. m is 3), 
therefore the class with the highest recognition 
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probability receives three ranks (i.e. highest ranks 
equal to m that is 3). The following alternative 
receives one less rank than the other (i.e. m-1=2, m-
2=1). Therefore all classes will at least receive 1 
rank from each classifier. The ranking is based on 
the number of accepted features within a specified 
range. The threshold for each range is adjusted until 
the system EER is achieved. Figure 1 illustrates the 
ranking mechanism of the designed Borda Count 
approach.  

 
   0     t1     t2     t3     N number of feature 

        accepted 
 
 
 
       R  =     3      2      1      1 
       U  =     2      3      3      2 
       A  =     1      1      2      3 
 

Where Class R = ‘sample rejected’ 
Class U = ‘sample status uncertain’  
Class A = ‘sample accepted’  

      t   = threshold 
              N = total number of feature in a classifier 
 

Figure 1: Borda Count Ranking Method. 

However, there is also a need in the Borda count 
approach for a mechanism to solve the conflict of 
having two classes with an equal number of highest 
accumulated ranks, similar to the case that needed to 
be addressed by implementing the majority voting 
approach. Here, when class U is tied with class A or 
class R, then the decision will be based on the class 
that is tied to class U. In addition to this, the system 
should also deal with the case when class U receives 
the highest accumulated ranks, since the final system 
decision can either be in the form of sample 
accepted or rejected. The solution applied here is 
simple, that is to be based on the class that receives 
the second highest mode. Should there be a tie 
between class R and class A, then the decision will 
be based on the results of the dynamic classifier, due 
to the lower EER of the dynamic classifier as 
compared to that of the static classifier (i.e. as 
analyzed in section 4). Here, an acceptance classifier 
threshold is maintained for the dynamic classifier 
that decides whether the sample is accepted or 
rejected. 

5.3 System Optimization by Using 
Multi-Stage Cascaded Classifiers 

In section 5.1 and section 5.2, the multiple classifier 
ASV system using the Majority Voting algorithm 
and the Borda count method as decision fusion 
strategies have been designed in order to analyze 
their effectiveness in optimizing the system error 
rate performance. For both methods, the vote / rank 
cast by each classifier is treated equally in a parallel 
decision making process, except for the mechanisms 
designed to resolve conflicts in handling ties in the 
case of equal number of highest votes / accumulated 
ranks between sample class rejected and sample 
class accepted. However, such approaches lack an 
ability to differentiate between different individual 
classifier’s performances, where clearly, as indicated 
in section 4, the dynamic classifier has lower 
recognition error rate compared to that of the static 
classifier. Here, an analysis of a multi-stage 
cascaded classifiers system is performed, where the 
soft decisions of individual classifiers are taken into 
account one after another in a pipeline prioritized 
nature. A theoretical discussion of such an approach 
is discussed in a detail by Pudil, Novovicova, Blaha, 
and Killter (Pudil et al., 1992). 

Sansone and Ventro (Sansone and Vento, 2000) 
in their studies have investigated the effectiveness of 
a three-stages cascaded multiple classifier system in 
an Automatic Signature Verification (ASV) system. 
They have grouped the features into two classifiers 
where each classifier is designed to tackle one type 
of forgery at a time. The first stage consists of a 
simple classifier that is devoted to eliminate random 
forgeries, where only signature samples that pass the 
first stage will be forwarded to the second stage that 
handles skilled forgeries. If the system fails to detect 
forgeries, then the sample is forwarded to the third 
stage that takes into account the confidence level of 
the previous two stages’ decisions. The rationale 
behind such an approach is that most classifiers are 
only good at detecting one type of forgery, and that 
the performance of the system decreases when 
attempting to eliminate all types of forgery 
simultaneously. Hence, the classifiers are arranged 
in a cascaded nature in order to handle one type of 
forgery at a time.  

Though this allows for higher system efficiency 
in handling different types of forgery, it does not 
necessarily increase the performance of the system 
in terms of error rate since the whole system 
decision making can be summarized as a parallel 
logical ‘AND’ function (i.e. a signature sample is 
accepted if and only if the signature sample pass all 
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three stages). Furthermore, since the test cases for 
this research do not include test for skilled forgery, 
such an approach is not suitable to be implemented 
in this analysis.  

Instead, here, the cascaded classifiers are 
arranged based on individual classifier’s 
performance of section 4. The classifier with the 
higher performance (i.e. the dynamic classifier) is 
given a higher priority where its soft decision is 
considered at the first stage.  

In order to not resemble the parallel logical 
‘AND’ function, three classes are maintained for the 
first stage, which are: 

 class A - class ‘sample accepted’ 
 class U - class ‘sample status is uncertain’ 
 class R - class ‘sample rejected’ 

Thus, two feature thresholds are maintained for 
the dynamic classifier. The first threshold (i.e. 
accept_threshold) is the minimum limit of number 
of features that must be accepted in order to cast the 
final decision of sample accepted. The second 
threshold (i.e. reject_threshold) is the maximum 
limit of the number of features that must be accepted 
to invoke the final decision of sample rejected. Only 
the signature samples that fall under class U (i.e. the 
total number of features accepted lies in between 
accept_threshold and reject_threshold) are 
forwarded to the second stage, otherwise the system 
will output a final ‘sample accepted’ or ‘sample 
rejected’ decision. The second stage consists of the 
static classifier. Here, samples whose statuses are 
undecided in the first stage are processed based on 
the soft decision of the second stage. The output of 
the second stage is in the form of a final decision 
‘sample accepted’ or ‘sample rejected’.  

6 EXPERIMENT RESULTS 

The results on all three multiple classifier 
approaches’ analyses are as shown in Table 4. 

Table 4: Results using Multiple Classifier Approaches. 

Multiple Classifier 
Combining Strategy 

System  
EER 

% of EER 
Improvement 

(1) Majority voting 9.93 -19.49 
(2) Borda Count 8.20 1.32 
(3) Multi-stage cascaded 

classifiers 7.57 8.90 

 
The system improvement is calculated with 

respect to the original system prototype performance 
without the use of multiple classifiers, which is at 

8.31% of the system EER. The results in Table 4 
show that the majority voting approach has negative 
impacts on the system performance (i.e. the system 
performance deteriorates). This indicates the failure 
of the majority voting system as a performance 
optimization tool for this ASV system. A possible 
explanation for it is the lack of discrimination within 
each single classifier (i.e. each classifier has a high 
level of classifier error rates) that leads to a 
generalized system response which is highly 
inaccurate. This may also be caused by the limitation 
on the number of classifiers involved in the voting 
system. 

Where as, for the Borda Count multiple classifier 
approach, the system has shows improvement in the 
overall system error rate, however the figure is 
relatively small that is around 1.32%. The only 
multiple classifier approach that have successfully 
increased the system EER to an acceptable level is 
the multi-stage cascaded classifier approach. The 
main advantage of this method as compared to the 
former two tools is that it recognizes the different 
error rate performances of different classifiers by 
evaluating the decision cast by each classifier in a 
cascaded prioritized manner and not in a parallel 
equal nature (i.e. one that produced the least error 
rate is given the highest priority). This could 
probably suggest its superiority in producing the 
lowest system error rate amongst the analyzed 
approaches.   

7 CONCLUSIONS 

In this study, three different types of multiple 
classifier approach are analyzed to determine their 
effectiveness as an alternative to the single classifier 
system that was previously implemented in the ASV 
prototype.  In a multiple classifier system, several 
classifiers are maintained, where the soft decisions 
of each classifier are combined according to a 
combining criterion. First, in order to execute this, 
the original pool of 22 features is divided into two 
sub-sets based on the nature of each feature, namely 
dynamic and static sub-sets. These in turn are treated 
as individual classifiers. A classifier performance 
analysis is carried out prior to the investigation of 
the multiple classifier approach. Here, a threshold 
voting algorithm is applied at the classifier level, 
where the corresponding threshold is adjusted until 
an Equal Error Rate (EER) is achieved. The results 
show that the dynamic classifier has lower EER 
compared to that of the static classifier, hence 
suggesting that the dynamic information used in this 
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ASV system is more accurate compared to the static 
information.  

The second step carried out here is the analyses 
of the effectiveness of three different types of 
combining strategy which are based on majority 
voting, Borda Count and a multi-stage cascaded 
classifier configuration In general the results 
demonstrate that a multiple cla ssifier approach is a 
possible optimisation tool for an ASV system. 
However, not all combining strategies are effective 
in order to achieve a performance increment. For a 
system with high individual classifiers error rates, a 
voting mechanism is unsuitable, due to the inability 
of individual classifier in determining the exact 
status of an input sample. Thus, for such a situation, 
a combining algorithm that allows a classifier to 
output an ‘uncertain’ status of a sample is highly 
desirable. It is also best to choose a combining 
strategy that acknowledges and treats decisions cast 
by different classifiers in a prioritized cascaded 
manner for a situation where different classifiers 
recorded considerably different error rate 
performances.  
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