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Kernel machines (e.g. SVM, KLDA) have shown state-of-the-art performance in several visual classification

tasks. The classification performance of kernel machines greatly depends on the choice of kernels and its
parameters. In this paper, we propose a method to search over the space of parameterized kernels using
a gradient-based method. Our method effectively learns a non-linear representation of the data useful for
classification and simultaneously performs dimensionality reduction. In addition, we introduce a new matrix
formulation that simplifies and unifies previous approaches. The effectiveness and robustness of the proposed
algorithm is demonstrated in both synthetic and real examples of pedestrian and mouth detection in images.

1 INTRODUCTION

Kernel methods (Schlkopf and Smola, 2002; Shawe-
Taylor and Cristianini, 2004) are increasingly used for
data clustering, modeling and classification problems
because of their state-of-the-art performance, simplic-
ity, and lack of local minima problems. Kernel ma-
chines such as SVM, KPCA, or KLDA project data
into (usually) high dimensional feature spaces, where
linear decision surfaces correspond to non-linear de-
cision surfaces in the original input space. The per-
formance of any kernel machine mostly depends on
the type of kernel and its parameters. The kernel
explicitly defines a similarity measure between two
samples and implicitly represents the mapping of the
input space to the feature space. In general, differ-
ent problems require different feature spaces, and a
domain-specific kernel is a useful feature for an algo-
rithm to have. In this paper, we propose a method to
learn a non-linear mapping of the data (i.e. a kernel)
useful to improve classification in kernel machines.
Fig. 1 shows the main point of this paper. We
have synthetically generated 2 multimodal three di-
mensional Gaussian classes. Two of the dimensions
are relevant for classification and the other dimension
is high-variance random Gaussian noise. Our algo-

rithm finds a low dimensional non-linear embedding
De la Torre F. and Vinyals O. (2007).
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Figure 1: Learning a non-linear mapping optimal for classi-
fication. Top left: original data. Top right: useless features
for classification. Bottom left: meaningful projections that
preserve discriminability. Bottom right: final non-linear
learned mapping.

of the data where the data is linearly separable. In
this particular example, our algorithm automatically
finds that the best mapping is a quadratic one, while
discarding the undesirable dimension not relevant for
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where o, > 0 Vz, the columns of D € R9*"(see nota-
tion ') contain the original data points, d denotes the
dimension of the data, n the number of samples and
p the degree of the polynomial. Each element ij of
the matrix T, ;; = d’Ad ; contains the dot weighted
product between the sample i and j. Each element ij
of the matrix T represents the cosine of the angle be-
d/ ad;

d’ad;d] ad,”
Tk exponentiates each of the entries in T. K is a
positive combination of T®¥, and if A is positive def-
inite, Ky will be a valid kernel because of the closure

tween the samples i and j (i.e. f;; =

Bold capital letters denote a matrix D, bold lower-case
letters a column vector d. d; represents the j column of the
matrix D. d;; denotes the scalar in the row i and column
j of the matrix D and the scalar i-th element of a column
vector d;. All non-bold letters will represent variables of
scalar nature. diag is an operator that transforms a vector
to a diagonal matrix or takes the diagonal of the matrix into
a vector. dm(A) is a matrix that contains just the diagonal
elements of A. o denotes the Hadamard or point-wise prod-
uct. 1, € R¥*L is a vector of ones. I € Rk is the iden-
tity matrix. 7r(A) = Y ;a;; is the trace of the matrix A and
|A| denotes the determinant. ||A||r = rr(ATA) designates
the Frobenious norm of a matrix. A®% denotes point-wise
power, i.e. a{f]- Vi, j.
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< =Y7, (gl):, (1— &iTﬁj)i, which has an
identical form of the expansion proposed in eq. 1 if
A; =1, Vt. Observe that our kernel expansion is more
flexible and it will learn a mapping useful for classi-
fication from training data. However, K| and K; are
not translational invariant kernels.

3.1 Dealing with High Dimensional
Data

For high dimensional data (e.g. images) A € R¥*4 is
a big matrix that captures the correlation relation be-
tween the features. In our context, working with these
very high dimensional matrices presents two prob-
lems: computational tractability (storage, efficiency
and rank deficiency) and generalization.

In order to be able to generalize better and to not
suffer from storage/computational limitations, we fol-
low recent work (de la Torre and Kanade, 2005) and
factorize the matrix A as a low dimensional subspace
plus a noisy term (scaled identity matrix). That is,
we approximate each matrix A; as A; ~ B,B,T + A1y
where A, > 0 € R and B, € R¥*X, It is worthwhile to
point out two important aspects of the previous fac-
torizations. Factorizing the covariance as the sum of
outer products and a diagonal matrix is an efficient
(in space and time) manner to reduce the dimension-
ality of the data. Firstly, observe that to compute
Ad; ~ B(B”d;) + Ad; storing/computing the full d x d
covariance is not required. Secondly, the original ma-
trix A has d(d + 1)/2 free parameters, and after the
factorization the number of parameters is reduced to
k(2d — k+1)/2 (assuming orthogonality of B), and
hence is not so prone to over-fitting.
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4 LEARNING FROM AN IDEAL
KERNEL

In the previous section, we have proposed a possi-
ble expansion of a parameterized kernel. Ideally, we
would like to directly optimize the kernel parameters
to minimize the Bayes classification error; however,
this is usually a hard task because the underlying dis-
tribution of the data is unknown and usually some sort
of bounds are optimized instead. In this section, we
explore the use of a ideal reference kernel to learn the
kernel parameters.

In the ideal case, we would like to estimate the
parameters of the kernel (A, o) to produce a block di-
agonal matrix (assuming samples are ordered). That
is, in all the samples that belong to the same class the
kernel function should output a similarity of 1 and 0
otherwise. This ideal matrix can be computed with
the matrix G as F = GG”. A reasonable measure of
distance between the ideal kernel and the parameter-
ized one is given by:

Ei(A,0) =||[F—K(A, )| o
tr(K(A,0)K(A,0)7) —2tr(K(A,)F)  (2)

This measure of distance between kernels is
closely related to the one proposed by (Cristianini
et al., 2001). Cristianini et al. propose to mini-
mize the alignment between kernels with: E; (A, o) =

1r(K(A,0)F)

1r(K(A,0)K(A,Q))
convenient to optimize and very similar (but not
equivalent) to maximization of E;. Recall that if
we take the log E; and change the sign, E, o
0.5l0g(tr(K(A,a)?)) — logtr(K(A, o)F).

One drawback of eq. 2 is that it enforces the same
similarity measure (i.e. 1) for two samples of the
same class that are near or far away in the input space.
This behavior can produce over-fitting and it can re-
move important information regarding class discrim-
inability. Moreover, we can have an unbalanced prob-
lem where a particular class has more samples than
another one, and we would like a mechanism to com-
pensate for that. Furthermore, any real data set con-
tains a number of outliers that can bias the solution.
To account for these situations, we introduce a new
distance matrix W € R™*” that will weight individ-
ually each pair-wise points. For instance, to account
for outliers we will weight all the rows and columns
of the outlying data as 0, or to compensate for the fact
that two samples have large dissimilarity in the input
space, we enforce a small link between these samples

id;-d;i3
egwij=e P

. Minimization of E;| is more

Vi # j. To incorporate W in the



PARAMETERIZED KERNELS FOR SUPPORT VECTOR MACHINE CLASSIFICATION

i 5)
94 = 20,tD(My — M;3)D” Vi
M, = (K; —F) o701 o we2
M, = dm(T,)~ M, dm(T,)~2
M; = dm(T,) " 2diag((dm(T,)"2M; 0 T))1,)

The major problem with the update of eq. 5 is to
determine the optimal 1. In our case, 1 is determined
with a line search strategy (Fletcher, 1987). Similarly,
for high dimensional data the gradient w.r.t B, is:

B;l+1 =B'—n BESI(;,(Z) (6)

95t = 20,D(My —M;3)D' B, Vi

At this point, it is worthwhile to mention that the com-
plexity of the updates is O(d + n?), far less expensive
than SDP approaches. A, is optimized using the fimin-
con function from Matlab (C) to ensure positiveness.

Once all A, Vt have been updated, o values can be
optimized using quadratic programming. After rear-
ranging, eq. 4 can be expressed as:

Es(at) o< ol Zou—2pTar 00> 0 (7)

where z;; = Y wiki ki, and p; = ¥ wi fuki,. Re-
call that k;; corresponds to the ij element of K. We
use the quadprog function from Matlab (©) to opti-
mize w.r.t.0l to ensure positiveness.

5.2 Initialization and Other Issues

Minimizing eq. 4 w..t to &,Ay,---,A, is a non-
convex optimization problem prone to many local
minima. Without a good initial estimation, the pre-
vious optimization scheme easily converges to a local
minima. To get a reasonable estimation, we initial-
ize each of the parameters Ay,---,A, with the LDA
solution and the means of the clusters resulting from
k-means clustering. The o values are initialized with
the same uniform value. Moreover, we start from sev-
eral random initial points and select the solution with
minimum error after convergence.

To avoid over-fitting problems and for computa-
tional convenience, we train the algorithm stochasti-
cally. That is, we randomly select subsets of training
data, run few iterations of the gradient descent algo-
rithm, select other random subset of data and proceed
this way until convergence.

6 EXPERIMENTS

In this section, we report comparative results of our
algorithm with standard SVM approaches in image
classification problems. In all the experiments we
have used the C-SVM implementation (Chang and
Lin, 2001).

6.1 Synthetic Data

Consider fig. 1, where 200 samples have been gener-
ated from four 3D Gaussians (50 each) from 2 differ-
ent classes (“exclusive or” (XOR) problem). For each
of the Gaussians, the z coordinate is random noise of
high variance.

In this case, we learn a common matrix A € R3*3
and the o values. After convergence, the rank of the
matrix A is 3 with eigenvalues [} = 1.9860 [, =
0.6843 I3 = 0.0009, the small eigenvalue corre-
sponds to the eigenvector aligned with the z direc-
tion, where the non-discriminative information lies.
That is, the null space of A contains the random non-
discriminative directions. Even more interesting is the
interpretation of the o parameters. All the o param-
eters are close to 0 except for the powers of 2. This
is because, for samples within the same cluster, the
cosine of the angle will be approximately 1; between
the samples of a different cluster but of the same class
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Figure 2: Top row: examples of pedestrian images. Bottom
row: examples of misclassified pedestrians.

the cosine will be —1; between clusters of different
classes will be approximately 0. Hence, by convert-
ing the negative —1 values to 1 by powering to an
even number, we will achieve the ideal matrix.

6.2 Pedestrian Detection

Detecting people in images is key to a number
of applications, ranging from intelligent vehicles to
surveillance systems or robotics. In this experi-
ment, we will make use of a challenging database on
pedestrians recently published (Munder and Gavrilla,
2006). This database is especially hard because the
non-pedestrian examples are the false positives of a
shape-based pedestrian detector. The database con-
sists of three training data sets and 2 testing data sets.
Each data set has 4800 images (18 x 36 pixels) with a
pedestrian in the middle and 5000 non-pedestrian ex-
amples. Fig. 2 shows a few images of this database.

Since the amount of available data for training is
large (= 20000 samples), we use the stochastic ver-
sion of the algorithm in chunks of 400 samples. We
use 2 of the training sets for learning the parameters
and the third one to tune the C parameter in the C-
SVM algorithm. Also, for the RBF kernel, we use the
third data set to tune the scale parameter. The 2 test-
ing data sets are used just for testing purposes. Fig.
3.a shows the error versus the number of iterations
and fig. 3.b the classification accuracy versus the it-
erations. As expected, the error decreases on average
due to the stochastic behavior of the minimization and
it also provides (on average) a better classification ac-
curacy. In this case, we have augmented the data vec-
tor as [d;1] to take into account the mean value. The
matrix W was set to all ones.

Having 3 training sets and 2 data tests, we have
a total of 6 different ways to compute a ROC curve
(Munder and Gavrilla, 2006). In fig. 4, we show
the ROC mean mean curve. Fig. 2 shows some true
positives (top row) and some false positives (bottom
row) given by our algorithm. In table 1 we show the
recognition performance in comparison with the lin-
ear and RBF kernel. The multiband filter concatenates
the graylevel and the derivatives in x and y direction.
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Figure 3: a) Error versus iterations for two values of k (di-

mension of the subspace). b) Classification accuracy versus

iterations.
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Figure 4: Roc curves for linear, RBF and our kernel expan-

sion for SVM classifier.

6.3 Mouth Detector

In the last experiment, we test the performance of our
algorithm to detect the mouths in 14 images taken
with a regular digital camera (see fig. 5). The kernel
has been learned from a set of 200 mouths (positive
examples) taken from the IBM ViaVoice AV database
(Neti et al., 2000), after aligning the data with Pro-
crustes (Cootes and Taylor, 2001) (see fig. 5). The
200 negative examples are selected from patches of
the face that do not contain the mouth.

Given an image with one or more frontal faces,
and an estimate of the scale factor, we search over all
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Features Linear | Exponential | Ours
Graylevel 73.9 76.4 84.2
Multiband | 72.4 79.1 84.9

)

Figﬁre 5: a) Some training exampleé of the IBM Database.
b) First row the same images with our learned kernel (3/3).
Second row some test images using the RBF SVM (1/3).
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Figure 6: Roc curves of RBF versus our algorithm.

possible locations of the image. Evaluating the kernel
at each location (x,y) can be computationally expen-
sive. For a particular position (x,y) computing the
projection B/'d; is equivalent to correlating the im-
age with each basis of the subspace B;, and stacking
all the values for each pixel. For large regions, this
correlation is performed efficiently in the frequency
domain using the Fast Fourier Transform (FFT) (i.e.
C; =blI=IFFT(FFT(b;)o FFT(I))). This fast
search is another advantage of our formulation. Fig. 6
shows the average ROC curve over 14 images for our
kernel and RBF kemezl. The parameters of the RBF
=I1%; =X

kernel (i.e. e 202 . 2, o and the C in the C-SVM
are tuned with a cross validation procedure. Similarly
the C parameter in the C-SVM is tuned with cross-
validation. Fig. 5.b shows some examples of the
detection performance of the RBF-SVM versus our
learned kernel. In the first row, our learned kernel de-
tects two out of three mouths, whereas in the second
row RBF only detects one.
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