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Abstract: We develop a machine learning approach to content-based image categorization and retrieval. We represent
images by histograms of their spectral components associated with a bank of filters and assume that a training
database of labeled images – that contains representative samples from each class – is available. We employ a
linear dimension reduction technique, referred to as Optimal Factor Analysis, to identify and split off “optimal”
low-dimensional factors of the features to solve a given semantic classification or indexing problem. This
content-based categorization technique is used to structure databases of images for retrieval according to the
likelihood of each class given a query image.

1 INTRODUCTION

In this paper, we investigate machine learning tech-
niques for dimension reduction and optimal discrim-
ination, and apply them to content-based categoriza-
tion and retrieval of images. Large image libraries –
such as those found in the World Wide Web and in
surveillance and medical databases – are generating a
pressing demand for intelligent and scalable systems
that can be trained to index and retrieve images ac-
cording to their contents in a fully automated manner.
Classical approaches based on “expert” annotations
are simply not a viable option in the presence of mas-
sive amounts of data.

For the image categorization problem, we shall as-
sume that a training database containing labeled im-
ages representing various different classes is available
and the goal is to learn optimal low-dimensional fea-
tures or “signatures” that can be used to assign a new
query image to the correct class. In content-based im-
age retrieval, the objective is to find the topℓ matches
in a database to a query image, where the numberℓ
is prescribed by the user. In the proposed approach,
retrieval and categorization are closed related. We
will use a categorization algorithm to organize a large
database according to features learned from a training

set. Given a query imageI, we will use this organi-
zation to estimate the probability thatI is associated
with a given class and we will retrieve images accord-
ing to these probabilities.

The problem of classifying images in a database
into semantic categories arises in many different lev-
els of generality: for example, the problem can be as
broad as separating images that depict an indoor or
outdoor scene, or it may involve much more specific
categorization into classes such as cars, people, and
flowers. As the breadth of the semantic categories
may vary considerably, the development of general
strategies poses significant challenges. This moti-
vated us to approach the problem in two stages. First,
we extract “stable” features that are able to capture a
large amount of information about the structure and
semantic content of an image. Subsequently, we use
learning techniques to identify the factors that have
the highest discriminating power for a particular clas-
sification problem.

The histogram of an image carries very useful in-
formation, however, it tends to have only limited dis-
criminating ability because it encodes the statistics of
pixel values, but ignores their relative positions in the
image. To remedy the situation, we propose to use
histograms of various spectral components of an im-

36

Mio W., Zhu Y. and Liu X. (2007).
A LEARNING APPROACH TO CONTENT-BASED IMAGE CATEGORIZATION AND RETRIEVAL.
In Proceedings of the Second International Conference on Computer Vision Theory and Applications - IU/MTSV, pages 36-43
Copyright c© SciTePress



age as they retain a significant amount of informa-
tion about texture patterns and edges. The statistics
of spectral components have been used in the past pri-
marily in the context of texture analysis and synthe-
sis. In (Zhu et al., 1998), it is demonstrated that mar-
ginal distributions of spectral components suffice to
characterize homogeneous textures; other studies in-
clude (Portilla and Simoncelli, 2000) and (Wu et al.,
2000). To provide some preliminary evidence of the
discriminating power of spectral histogram (SH) fea-
tures, in Section 3, we report the results of a retrieval
experiment on a database of 1,000 images represent-
ing 10 different semantic categories. The relevance of
an image is determined by the nearest-neighbor cri-
terion applied to a number of SH-features combined
into a single vector. Even without a learning compo-
nent, we already obtain performances comparable to
those exhibited by many existing retrieval systems.

Learning techniques will be employed with a
twofold purpose: (a) to identify and split off the most
relevant factors of the SH-features for the discrimina-
tion of various categories of images; (b) to lower the
dimension of the representation to reduce complex-
ity and improve computational efficiency. We adopt
a learning strategy that will be referred to as Optimal
Factor Analysis (OFA) – a preliminary form of OFA
was introduced in (Liu and Mio, 2006) as Splitting
Factor Analysis. Given a (small) positive integerk,
the goal of OFA is to find an “optimal”k-dimensional
linear reduction of the original image features for a
particular categorization or indexing problem. Image
categorization and retrieval will be based on the near-
est neighbor classifier applied to the reduced features,
as explained in more detail below. We employ OFA
in the context of SH-features, but it will be presented
in a more general feature learning framework.

Image retrieval strategies employing a variety of
methods have been investigated in (Wang et al.,
2001), (Carson et al., 1999), (Rubner et al., 1997),
(Smith and Li, 1999), (Yin et al., 2005), (Hoi et al.,
2006). Further references can be found in these pa-
pers. Some of these proposals employ a relevance
feedback mechanism in an attempt to progressively
improve the quality of retrieval. Although not dis-
cussed in this paper, a feedback component can be
incorporated to the proposed strategy by gradually
adding to the training set images for which the quality
of retrieval was low.

A word about the organization of the paper. In
Section 2, we describe the histogram features that will
be used to characterize image content. Preliminary re-
trieval experiments using these features are described
in Section 3. Section 4 contains a discussion of Opti-
mal Factor Analysis, and Sections 5 and 6 are devoted

to applications of the machine learning methodology
to image categorization and retrieval. Section 7 closes
the discussion with a summary and a few remarks on
refinements of the proposed methods.

2 SPECTRAL HISTOGRAM
FEATURES

Let I be a gray-scale image andF a convolution filter.
The spectral componentIF of I associated withF is
the imageIF obtained through the convolution ofI
andF, which is given at pixel locationp by

IF(p) = F ∗ I(p) = ∑
q

F(q) I(p−q), (1)

where the summation is taken over all pixel locations.
For a color image, we apply the filter to its R,G,B
channels. For a given set of bins, which will be as-
sumed fixed throughout the paper, we leth(I,F) de-
note the corresponding histogram ofIF . We refer to
h(I,F) as the spectral histogram (SH) feature of the
imageI associated with the filterF . If the number of
bins isb, the SH-featureh(I,F) can be viewed as a
vector inRb. Figure 1 illustrates the process of ob-
taining SH-features. Frames (a) and (b) show a color
image and its red channel response to a Laplacian fil-
ter, respectively. The last panel shows the 11-bin his-
togram of the filtered image.

(a) (b)

(c)

Figure 1: (a) An image; (b) the red-channel response to a
Laplacian filter; (c) the associated 11-bin histogram.

If F = {F1, . . . ,Fr} is a bank of filters, the SH-
features associated with the familyF is the collec-
tion h(I,Fi), 1 6 i 6 r, combined into the singlem-
dimensional vector

h(I,F) = (h(I,F1), . . . ,h(I,Fr)), (2)
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wherem = rb. For a color image,m = 3rb. Banks of
filters used in this paper typically include Gabor filters
of different widths and orientations, gradient filters,
and Laplacian of Gaussians.

3 SH-FEATURES FOR
RETRIEVAL

To offer some evidence that SH-features are desirable
for image retrieval, we perform a preliminary retrieval
experiment using the Euclidean distance between his-
tograms. To be able to compare the results with those
reported in (Wang et al., 2001), we use the same sub-
set of the Corel data set consisting of 10 semantic cat-
egories, each with 100 images. We refer to this data
set as Corel-1000. The categories are listed in Table
1 and three samples from each category are shown
in Figure 2. As the examples suggest, even within a
semantic category, significant variations are observed
among the images.

Table 1: Image categories in Corel-1000.

1 African People & Villages
2 Beach Scenes
3 Buildings
4 Buses
5 Dinosaurs
6 Elephants
7 Flowers
8 Horses
9 Mountains & Glaciers
10 Food

We utilize a bank of 5 filters and apply each fil-
ter to the R, G, and B channels of the images to ob-
tain a total of 15 histograms per image. Each his-
togram consists of 11 bins so that the SH-feature vec-
tor h(I,F) has dimension 165. For a query image
I from the database, we calculate the Euclidean dis-
tances betweenh(I,F) andh(J,F), for everyJ in the
database, and rank the images according to increas-
ing distances. For comparison purposes, as in (Wang
et al., 2001), we calculate the weighted precision and
the average rank, which are defined next. The re-
trieval precision for the topℓ returns, isnℓ/ℓ, where
nℓ is the number of correct matches. The weighted
precision for a query imageI is

p(I) =
1

100

100

∑
ℓ=1

nℓ

ℓ
. (3)

For a query imageI, rank order all 1,000 images in
the database, as described above. The average rank

r(I) is the mean value of the ranks of all images that
belong to the same class asI. Figures 3(a) and 3(b)
show the mean values

p̄i =
1

100 ∑
I∈Ci

p(I) and r̄i =
1

100 ∑
I∈Ci

r(I), (4)

of the weighted precision and average rank within
each classCi, 16 i 6 10. High retrieval performance
is reflected in high mean precision and low mean rank.
Note that even without a learning component, the re-
sults obtained using SH-features and SIMPLIcity are
essentially comparable. Both perform considerably
better than color histograms with the earth mover’s
distance (EMD) investigated in (Rubner et al., 1997).
In Figure 3, color histograms 1 and 2 refer to EMD
applied to histograms with a different number of bins.
The results for SIMPLIcity and color histograms have
been reported in (Wang et al., 2001).

4 OPTIMAL FACTOR ANALYSIS

We introduce Optimal Factor Analysis (OFA), a lin-
ear feature learning technique whose goal is to find
a linear mapping that reduces the dimension of the
data representation while optimizing the discrimina-
tive ability of theK-nearest neighbor (KNN) classi-
fier as measured by its performance on given train-
ing data. We assume that a given ensemble of data
in Euclidean spaceRm is divided into training and
cross-validation sets, each consisting of labeled rep-
resentatives fromP different classes of objects. For
an integerc, 1≤ c ≤ P, we denote byxc,1, . . . ,xc,tc
andyc,1, . . . ,yc,vc the training and cross-validation el-
ements that belong to classc.

If A : Rm → Rk is a linear transformation, the
quantity

ρ(yc,i;A) =
minc6=b, j ‖Ayc,i−Axb, j‖p

minj ‖Ayc,i−Axc, j‖p + ε
(5)

provides a measurement of how well the nearest-
neighbor classifier applied to the transformed data
identifies the cross-validation elementyc,i as belong-
ing to classc. Here,ε > 0 is a small number used
to prevent vanishing denominators andp > 0 is an
exponent that can be adjusted to regularizeρ in dif-
ferent ways. In this paper, we setp = 2. A large
value ofρ(yc,i;A) indicates that, after the transforma-
tion A is applied,yc,i lies much closer to a training
sample of the class it belongs to than to those of other
classes. A valueρ(yc,i;A) ≈ 1 indicates a transition
between correct and incorrect decisions by the near-
est neighbor classifier. The special case of the func-
tion ρ, wherep = 1, was used in the development of
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Figure 2: Samples from the dataset Corel-1000: three imagesfrom 10 classes, each consisting of 100 images.
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Figure 3: (a) Plots of ¯pi andr̄i, 16 i 6 10. The methods are labeled as follows: (▽) spectral histogram; (∗) SIMPLIcity; (◦)
color histogram 1; (+) color histogram 2.

Optimal Component Analysis (Liu et al., 2004). Note
that expression (5) can be easily modified to reflect
the performance of the KNN classifier.

The idea is to choose a transformationA that max-
imizes the average value ofρ(yc,i;A) over the cross-
validation set. To control bias with respect to partic-
ular classes, we scaleρ(yc,i;A) with a sigmoid of the
form

σ(x) =
1

1+ e−βx
(6)

before taking the average. We identify linear maps
A : Rm → Rk with k×m matrices, in the usual way,
and define a performance functionF : Rk×m → R by

F(A) =
1
P

P

∑
c=1

(
1
vc

vc

∑
i=1

σ(ρ(yc,i;A)−1)

)
. (7)

Scaling an entire dataset does not change deci-
sions based on the nearest-neighbor classifier. This is
reflected in the fact thatF is (nearly) scale invariant;
that is,F(A) ≈ F(rA), for r > 0. Equality does not
hold exactly ifε 6= 0, but in practice,ε is negligible.
Thus, we fix the scale and optimizeF over matricesA
of unit Frobenius norm. Let

S =
{

A ∈ Rk×m : ‖A‖2 = tr(AAT ) = 1
}

(8)

be the unit sphere inRk×m. The goal of OFA is to
maximize the performance functionF overS; that is,
to find

Â = argmax
A∈S

F(A). (9)

Due to the existence of multiple local maxima ofF ,
the numerical estimation of̂A is carried out with a
stochastic gradient search. We omit the details since
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the optimization strategy is similar to that employed
in (Liu et al., 2004), but much simpler because the
search is performed over a sphere instead of a Grass-
mann manifold.

4.1 An Interpretation of OFA

We interpret the dimension reduction via a linear map
A : Rm →Rk and the Euclidean metric in the reduced
space in terms of the originalm-dimensional features.
If A is a rankr matrix, take a singular value decom-
position

A = UΣV T , (10)
whereU and V are orthogonal matrices of dimen-
sionsk andm, respectively, andΣ is a k×m matrix
whoser× r northwest quadrant is diagonal with posi-
tive eigenvalues and whose remaining entries are all
zero. LetH be ther-dimensional subspace ofRm

spanned by the firstr columns ofV and denote the
orthogonal projection of a vectorx ∈ Rm onto H by
xH . Then,

Ax ·Ay = yT (AT A)x = yT Kx = yT
HKxH , (11)

for anyx,y ∈ Rm, whereK = AT A is a positive semi-
definite symmetric matrix. In particular,

‖Ax−Ay‖2 = (xH − yH)T K(xH − yH). (12)

This means that the Euclidean distance between fea-
ture vectors in the reduced spaceRk can be interpreted
as the distance between the projected vectorsxH and
yH in the original feature space with respect to the
new metric

d(xH ,yH) =
√

(xH − yH)T K(xH − yH) . (13)

Note that the subspaceH is spanned by the eigenvec-
tors ofK associated with its non-zero eigenvalues, so
that (13) does define a metric onH. Thus, OFA can
be viewed as a technique to learn from a training set
an optimal subspace of the feature spaceRm for di-
mension reduction and an inner product whose asso-
ciated metric is optimal for categorization based on
the nearest-neighbor classifier.

4.2 A Leave-One-Out Strategy

In applications of OFA to image retrieval, or in sit-
uations where the training set is not very large, a
leave-one-out strategy is adopted during the optimiza-
tion process. In other words, for a candidate linear
mapA, the valueF(A) of the performance function
is replaced with the average value ofF over several
passes, as follows. In each pass, the cross-validation
set consists of a single element taken from the train-
ing set andF(A) is calculated according to (7). Then,
the average value over the entire training set is used
to quantify performance in the optimization process.

5 IMAGE CATEGORIZATION

We report the results of several image categorization
experiments with the Corel-1000 data set described
in Section 3. In each experiment, we placed an equal
number of images from each class in the training set
and used the remaining ones as query images to be
indexed by the nearest neighbor classifier applied to
a reduced feature learned with OFA. Initially, an im-
age is represented by an SH-feature vectorh(I,F) of
dimension 165 obtained from the 11-bin histograms
associated with 5 filters applied to the R, G, and B
channels; OFA was used to reduce the dimension to
k = 9. Table 2 shows the categorization performance:
T denotes the total number of images in the training
set, and categorization performance refers to the rate
of correct indexing using all 1,000− T images out-
side the training set as queries.

Table 2: Results of categorization experiments with the
Corel-1000 data set.T is the number of training images
and the dimension of the reduced feature space is 9.

T Categorization Performance
600 84.5%
400 84.3%
200 73.9%

6 IMAGE RETRIEVAL

We now use the classifier learned for content-based
image categorization to retrieve images according to
their contents. We begin with the remark that the clas-
sifier was optimized to categorize query images cor-
rectly according to the nearest neighbor criterion, but
not necessarily to rank matches to a query image cor-
rectly according to distances in feature space. Thus,
in contrast with the retrieval strategy based solely on
distances adopted, e.g., in (Wang et al., 2001) and
(Hoi et al., 2006), we propose to exploit the strengths
of the image categorization classifier in a more essen-
tial way.

Let A : Rm →Rk be the optimal linear dimension-
reduction map learned with OFA. IfI is an image and
h(I,F) ∈ Rm is the associated SH-feature vector, we
let x denote its projection toRk; that is,

x = Ah(I,F). (14)

If there areP classes of images, for eachi, 1 6 i 6
P, let xi be the reduced feature vector of the training
image in classi, which is closest tox. To eachi, we
assign a probabilityp(i|I) thatI belongs to classi, as
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Figure 4: (a) Average precision within each class; (b) average rank. The methods are labeled as follows: (▽) spectral
histogram; (∗) SIMPLIcity; (△) OFA-400.

follows:

p(i|I) =
e−‖x−xi‖2

∑P
j=1 e−‖x−x j‖2 . (15)

Given a query imageI and a positive integerℓ, the
goal is to retrieve a ranked list ofℓ images from the
database. We assume that all images in the database
have been indexed according to content using the clas-
sifier learned with OFA. Rank the classes according
to the probabilitiesp(i|I). We retrieve images as fol-
lows: select as many images as possible from the most
likely class; once that class is exhausted, we proceed
similarly with the second most likely class and iter-
ate the procedure untilℓ images are obtained. Within
each class, the images are retrieved and ranked ac-
cording to their Euclidean distances toI as measured
in the reduced feature space.

6.1 Experimental Results

We report the results of retrieval experiments with the
Corel-1000 dataset. To quantify performance in an
objective manner, we only use query images that are
part of the database. Since each class contains 100
images, the maximum possible number of matches to
a query image is 100, where a match is an image that
belongs to the same class. We first compare retrieval
results using OFA learning with those obtained with
SIMPLIcity and spectral histograms, as described in
Section 3. We calculated the mean values ¯pi andr̄I of
the weighted precision and rank as defined in (4). The
plots shown in Figure 4 show a significant improve-
ment in retrieval performance with a learning compo-
nent. OFA was used with 400 training images.

We further quantify retrieval performance, as fol-
lows. For an imageI and a positive integerℓ, let mℓ

be the number of matching images among the topℓ
returns. Define

pℓ(I) =
mℓ(I)

ℓ
and rℓ(I) =

mℓ(I)
100

, (16)

which are the precision and recall rates forℓ returns
for imageI. The average precision and average recall
for the topℓ returns are defined as

pℓ = ∑I pℓ(I)
1000

and rℓ = ∑I rℓ(I)
1000

, (17)

respectively. Here, the sum is taken over all 1,000 im-
ages in the database. Note that, for a perfect retrieval
system,pℓ = 1, for 16 ℓ 6 100, and gradually decays
to p1000= 0.1; similarly rℓ = 1, for ℓ≥ 100 decaying
to r1 = 0.01.

Table 3 shows several values of the average pre-
cision and average recall based on a 9-dimensional
classifier learned withT training images. The full
average-precision-recall plots are shown in Figure 5.
Figure 6 shows the top 10 returns for a few images
in the database for a classifier trained withT = 400
images. In each group, the first image is the query
image, which is also the top return.

7 CONCLUSION

We represented images using histograms of their
spectral components for content-based image cate-
gorization and retrieval. A learning technique was
developed to reduce the dimension of the represen-
tation and optimize the discriminative ability of the
nearest-neighbor classifier. Several experiments were
carried out and the results indicate a very significant
improvement in retrieval performance over a number
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Figure 5: Corel-1000: plots of the average-precision× average-recall for 600, 400, and 200 training images.

Table 3: Retrieval results withT training images. Average retrieval precision (pℓ) and recall (rℓ) for the topℓ matches.

T = 600

ℓ 10 20 40 70 100 200 500

pℓ 0.842 0.0842 0.843 0.843 0.832 0.466 0.198

rℓ 0.084 0.168 0.337 0.590 0.832 0.930 0.992

T = 400

ℓ 10 20 40 70 100 200 500

pℓ 0.840 0.0840 0.840 0.841 0.828 0.460 0.199

rℓ 0.084 0.168 0.336 0.589 0.828 0.919 0.996

of existing retrieval systems. Refinements to obtain
sparse representations and incorporate kernel tech-
niques to cope with nonlinearity in data geometry, re-
trieval strategies for real-time execution, as well as a
user feedback component will be investigated in fu-
ture work.
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Figure 6: Examples of top ten returns. In each group, the firstimage is the query, which is also the top return.
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