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Abstract: This paper presents a state-space methodology for enhancing the robustness of multivariable MPC 
controlled systems through the convex optimization of a multivariable Youla parameter. The procedure 
starts with the design of an initial stabilizing Model Predictive Controller in the state-space representation, 
which is then robustified under modeling errors considered as unstructured uncertainties. The resulting 
robustified MIMO control law is finally applied to the model of a stirred tank reactor to reduce the impact of 
measurement noise and modelling errors on the system. 

1 INTRODUCTION 

Model predictive control strategies are widely used 
in industrial applications, resulting in improved 
performance, with a practical implementation of the 
controller which remains simple. However, starting 
with a controller design based on a ‘nominal’ model 
of the system, the question of its robustness towards 
model uncertainties or disturbances acting on the 
system always occurs in an industrial environment. 

Some methods in the literature deal with 
robustness maximisation, but in the transfer function 
formalism (Kouvaritakis et al., 1992), (Yoon and 
Clarke, 1995), (Dumur and Boucher, 1998), and 
mainly applied to SISO systems, which makes the 
generalization to multivariable systems much more 
complicated. 

The purpose of this paper is to present a 
methodology enhancing the robustness of an initial 
MIMO predictive controller towards model 
uncertainties. The state-space design allows the 
robustification process to be handled in a convenient 
way. A two-step procedure is followed. An initial 
MIMO MPC controller is first designed, its robust-
ness is then enhanced via the Youla parametrization, 
without significantly increasing the complexity of 
the final control law. The Youla parametrization 
allows formulating frequency constraints as convex 
optimization, the entire problem being solved with 
LMI (Linear Matrix Inequality) techniques. 

The paper is organized as follows. Section 2 
reminds the main steps leading to the MPC 
controller in the state-space representation. Section 3 
gives the background material required to formulate 
the robustification strategy, from the Youla 

parametrization to the robustness criteria under 
unstructured uncertainties. The elaboration of the 
robustified controller in state-space representation 
for this type of uncertainties is further proposed in 
Section 4. Section 5 provides the application of this 
control strategy to a stirred tank reactor. Section 6 
presents some conclusions and further perspectives. 

2 MIMO MPC IN STATE-SPACE 
FORMULATION 

This section focuses on the design of an initial 
MIMO MPC law. Compared to approaches proposed 
in the literature based on transfer function 
formalism, the state-space representation framework 
chosen here (Camacho and Bordons, 2004) leads to 
a simplified formulation and reduced computation 
efforts for MIMO systems. Consider the following 
discrete time MIMO LTI system: 
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where nn×∈RA , mn×∈RB , np×∈RC  are the 
system state-space matrices, 1×∈ nRx  describes the 
MIMO system states, 1×∈ mRu  is the input vector 
and 1×∈ pRy  is the output vector. 

Next step is to add an integral action to this 
state-space representation which will guarantee 
cancellation of steady-state errors: 

 

)()1()( kkk uuu Δ+−=  (2) 
 

283
Stoica C., Rodríguez-Ayerbe P. and Dumur D. (2007).
IMPROVED ROBUSTNESS OF MULTIVARIABLE MODEL PREDICTIVE CONTROL UNDER MODEL UNCERTAINTIES.
In Proceedings of the Fourth International Conference on Informatics in Control, Automation and Robotics, pages 283-288
DOI: 10.5220/0001651002830288
Copyright c© SciTePress



 

This results in an increase of the system states as: 
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where the extended state-space representation 
[ ]TTT

e kkk )1()()( −= uxx  is characterized by: 
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The control signal is derived by minimizing the 
following quadratic objective function: 
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where the future control increments )( ik +Δu  are 
supposed to be zero for uNi ≥ . The signal w  
represents the setpoint. It is assumed in further 
developments that the same output prediction 
horizons ( 1N , 2N ) and the same control horizon 

uN  is applied for all input/output transfer functions. 
JQ~  and JR~  are weighting matrices. The predicted 

output vector has the following form: 
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where the input vector can be written as: 
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The state estimate is derived from the observer: 
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The multivariable observer gain K  is designed 
through a classical method of eigenvectors, 
arbitrarily placing the eigenvalues of ee CKA −  in 
a stable region, as detailed in (Magni, 2002). The 
observer gain K  is obtained from the extended 
state-space description and will be used for further 
mathematical calculation in the robustification 
procedure. However this design aspect is not crucial 
since the convex robustification method should lead 
to an optimal set of these eigenvalues. Moreover the 
input/output transfer function is not influenced by 
the eigenvalues placement used to find K  (Boyd 
and Barratt, 1991). 

The objective function can be rewritten in the 
matrix formalism (Maciejowski, 2001): 
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where ))(~,),(~( 21 NNdiag JJJ QQQ = , 
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Using these notations, the output vector )(kY can be 
written in the following matrix form, with the 
definition of the vector )(kΘ  as a tracking error: 
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The objective function is now given by: 
22 )()()(

JJ
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which analytical minimization provides: 
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Applying the receding horizon principle, only the 
first component of each future control sequence is 
applied to the system, meaning that the first m  lines 
of )(kUΔ  are used: 
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with [ ] JJJNmmm u
QΦΦQΦR0Iμ T1T
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−

ΔΔ− += . 
The system model, the observer and the 

predictive control can be represented in the state-
space formulation according to Figure 1. The control 
signal depends on the control gain [ ]21 LLL =  and 
the setpoint filter wF : 
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with μΨL =1 , μΦL =2 , ),,( ,1, pwww diag FFF =  
related to the structure of μ  and )(kw . 
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Figure 1: Block diagram of MIMO MPC. 

3 ROBUSTNESS USING THE 
YOULA PARAMETER 

This section overviews a technique that improves the 
robustness of the previous multivariable MPC law in 
terms of the Youla parameter, also named Q 
parameter. Any stabilizing controller (Boyd and 
Barratt, 1991), (Maciejowski, 1989) can be 
represented by a state-space feedback controller 
coupled with an observer and a Youla parameter. 
This part focuses on the main steps leading to the 
multivariable Q parameter (here with p  inputs and 
m  outputs) that robustifies the MPC law described 
in Section 2. 

3.1 Stabilizing Control Law 

The whole class of stabilizing control law can be 
obtained from an initial stabilizing controller via the 
Youla parametrization. The first step considers 
additional inputs u′  and outputs y′  with a zero 
transfer between them ( 022 =T  in Figure 2).  
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Figure 2: Class of all stabilizing multivariable controllers. 

The Youla parameter is then added between y′  and 
u′  without restricting closed-loop stability. In this 
case, the transfer from u  to y  remains unchanged. 
As a result, the closed-loop function between w  and 
z  is linearly parametrized by the Q parameter, allo-
wing convex specification (Boyd and Barratt, 1991): 
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where 211211 ,, TTT  depends on the input vector 
w and output vector z  considered. 

3.2 Robustness Under Frequency 
Constraints 

Practical applications always deal with neglected 
dynamics and potential disturbances, so that 
robustness under unstructured uncertainties must be 
addressed as shown in Figure 3. 
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Figure 3: Unstructured uncertainty. 

According to the small gain theorem 
(Maciejowski, 1989), robustness under unstructured 
uncertainties uΔ  is maximized as: 
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where the weighting term TW  reflects the frequency 
range where model uncertainties are more important. 
For multivariable systems, the ∞H  norm can be 
calculated as the maximum of the higher singular 
values. The following theorem formulates the 
previous ∞H  norm minimization. 

Theorem (Clement and Duc, 2000) and (Boyd et al., 
1994): A discrete time system given by the state-
space representation ),,,( clclclcl DCBA  is stable 
and admits a ∞H  norm lower than γ  if and only if: 

 

0/0
TT

T
1

T

1
1

T
11 <

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

>=∃

−

IDC0
DI0B
C0XA
0BAX

XX

γ
γ
clcl

clcl

clcl

clcl

 (17) 

This expression can be transformed into a LMI, 
which variables are 1X , γ  and the Q parameter 
included in the closed-loop matrices, as shown in 
(Clement and Duc, 2000). As a result, the 
optimization problem is formulated as the 
minimization of γ  under this LMI constraint. 

4 ROBUSTIFIED MIMO MPC 

The previous robustification strategy based on the 
Youla parameter is now applied to an initial MIMO 
state-space MPC calculated as shown in Section 2. 
The robustness maximization under additive 
unstructured uncertainties is also equivalent to the 
minimization of the influence of a measurement 
noise b  on the control signal u  (Figure 4); the 
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transfer (15) between w  and z  corresponds to the 
transfer from b  to u . The ∞H  norm of this transfer 
will be further minimized using LMI tools. 
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Figure 4: Stabilizing MIMO MPC via Q parametrization. 

4.1 Stabilizing Control Law 

Consider the MIMO linear discrete time system in 
the state-space representation, including an integral 
action (3). After adding an auxiliary input vector u′  
and output vector y′  (Figure 4), the multivariable 
control signal is computed as described in Section 2: 

 

)()(ˆ)()( kkkk ew uxLwFu ′−−=Δ  (18) 
 

with the following observer: 
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To calculate the closed-loop transfer function, the 
initial state is increased, adding the prediction error: 
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Considering only the terms related to )(kb  as they 
are part of the minimization process, the following 
state-space system is derived: 
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with LBAA ee −=1 , ee KCAA −=2 , LBA e=3 . 
 

According to the theory given in Section 3.1, the 
Youla parameter can be added to robustify the initial 
controller, since the transfer between )(ky′  and 

)(ku′  is zero (without measurement noise, the 
multivariable output y′  depends only on )(kε , 
which is independent from )(kex  and )(ku′ ). 

4.2 Robustness Under Frequency 
Constraints 

Next step is the definition of the weighting uW  as a 
diagonal high-pass filter in state-space formulation: 
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Including the uW  weighting, a new extended 
state-space description can be emphasized: 
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As described in Section 3.2, a multivariable Youla 
parameter ∞ℜ∈ HQ  is added for robustification 
purposes leading to a convex optimization problem. 
Since this problem leads to a Q parameter which 
varies in the infinite-dimensional space ∞ℜH , a 
sub-optimal solution considers for each input/output 
pairs ),( ji  a finite-dimensional subspace generated 
by an orthonormal base of discrete stable transfer 
functions such as a polynomial or FIR filter: 
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In the state-space formalism, this MIMO Youla 
parameter can be obtained using a fixed pair 
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Adding this Youla parameter leads to the following 
closed-loop state-space description: 
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This state-space representation is the crucial point of 
the robustification method. With the result of the 
theorem in Section 3, the first step to transform (17) 
into a LMI consists in multiplying it to the right and 
to the left with positive definite matrices 

),,,(diag 1 IIIXΠ =  and TΠ as in (Clement and 
Duc, 2000). This leads to the following inequality: 
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which is not yet a LMI because terms such as clAX1  
and clBX1  are not linear in 1X , QC  and QD . To 
overcome this problem, the following bijective 
substitution is introduced (Clement and Duc, 2000): 
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Next step to the LMI is to multiply (29) on the right 
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with TΓ . After technical manipulations, the 
following LMI is obtained: 
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The whole problem results in the minimization 
of γ  subject to the LMI  constraint (31): 

 

γ
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5 APPLICATION TO A STIRRED 
TANK REACTOR 

The previous robustification methodology is applied 
now to the simplified MIMO model of a stirred tank 
reactor presented in the transfer function formalism 
in (Camacho and Bordons, 2004): 
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where 1Y  and 2Y  are the effluent concentration and 
the reactor temperature, 1U  and 2U  are the feed 
flow rate and the coolant flow, respectively. 

 

Starting from the state-space representation of 
this 2 inputs/ 2 outputs model discretized for a 
sampling time 03.0=eT min, an integral action is 
added leading to an extended state-space model. For 
simplicity reasons of multivariable MPC, the same 
prediction horizons 11 =N , 32 =N  and 2=uN  
were used for all outputs and control signals, and the 
same weights as in (Camacho and Bordons, 2004) 

uNJR I05.0~
=  and 112

~
+−= NNJQ I . 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 
0

0.1

0.2

0.3

0.4

0.5

Time (minute) 

1y  

2y

Setpoint 
Before robustification 
After robustification 

 
 

Ti
m

e 
R

es
po

ns
es

 

 
Figure 5: 1y  and 2y  before and after robustification. 
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Figure 6: 1u  and 2u  before and after robustification. 
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Figures 5 shows the time responses obtained for 
a step reference of 0.5 for 1y , and 0.3 for 2y , and 
the disturbance rejection for a step disturbance of 
0.05 applied to 1u  at 2=t min. Figure 6 shows the 
control signals 1u  and 2u . 

For robustness under additive uncertainties at 
high frequency, a high-pass filter is used for each 
control signal, as described in Section 4.2 which 
transfer form is 3.0/)7.01( 1

2
−−= qIWu . Using 

the optimization procedure based on LMIs gives a 
multivariable Youla parameter as a 22×  matrix of 
polynomials of order 20=Qn . 

Figure 7 shows the singular values analysis of 
transfer from b  to control signals u  (from 
Figure 4). The greatest value of maximal singular 
values represents the ∞H  norm. We can remark that 
this ∞H  norm has been reduced. In this way the 
stability robustness is improved with respect to high-
frequency additive unstructured uncertainties. 
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Figure 7: Singular values before and after robustification. 
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Figure 8: 1y  and 2y  before and after robustification. 

Figures 5 and 6 show that after robustification 
the input/output behaviour is unchanged, but the 
disturbance is rejected more slowly by the 
robustified controller. In fact, the robustified 
controller has a slower disturbance rejection, but a 
higher robust stability. To support this, a high 
frequency neglected dynamics of the actuator 1u  has 
been considered. Thus the transfer between 11 / uy  
corresponds to )07.01)(7.01/(1 ss ++ . Figure 8 

illustrates that the initial controller behaviour is 
destabilized by this uncertainty, but the robustified 
controller remains stable; it also shows the influence 
of the considered unstructured uncertainty to 2y . 

6 CONCLUSIONS 

This paper has presented a new MIMO complete 
methodology which enables robustifing an initial 
multivariable MPC controller in state-space 
formalism using the Youla parameter framework. In 
order to improve robustness towards unstructured 
uncertainties, a ∞H  convex optimization problem 
was solved using the LMIs techniques. The major 
advantage of the developed structure is the state-
space formulation of this MPC robustification 
problem for MIMO systems with a reduced 
computational effort compared to the transfer 
function formalism. This method can also be applied 
to non square systems, which otherwise are more 
difficult to control. This technique enables also the 
use of time-domain templates to manage the 
compromise between stability robustness and 
nominal performance. 
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