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Abstract: Writing good behaviors for mobile robots is a hard task that requires a lot of hand tuning and often fails to
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consider all the possible configurations that a robot may face. By using reinforcement learning techniques a
robot can improve its performance through a direct interaction with the surrounding environment and adapt its
behavior in response to some non-stationary events, thus achieving a higher degree of autonomy with respect
to pre-programmed robots. In this paper, we propose a novel reinforcement learning approach that addresses
the main issues of learning in real-world robotic applications: experience is expensive, explorative actions
are risky, control policy must be robust, state space is continuous. Preliminary results performed on a real
robot suggest that on-line reinforcement learning, matching some specific solutions, can be effective also in
real-world physical environments.

INTRODUCTION the application of RL algorithms to real-world robotic
problems is quite limited. The difficulty to gather ex-

A lot of research efforts have been spent in robotics Perience, the necessity to avoid dangerous configura-
to identify control architectures with the aim of mak- tions, the presence of continuous state variables are
ing the writing of control programs easier. Although Some of the features that make the application of RL
many advances have been made, it is often difficult techniques to robotic tasks complex.
for a programmer to specify how to achieve the de- In this paper, we analyze the main issues that must
sired solution. Furthermore, it is hard to take into be faced by learning robots and propose a set of tech-
consideration all the possible configurations the robot niques aimed at making the RL approach more ef-
may face or the changes that may occur in the envi- fective in real robotic tasks. In particular, our main
ronment. contributions are the introduction of thewer bound
Reinforcement Learning (RL) (Sutton and Barto, update strategy, which allows to learn robust poli-
1998) is a well-studied set of techniques that allow cies without the need of a complete exploration of the
an agent to achieve, by trial-and-error, optimal poli- whole state-action space, and the useietcewise-
cies (i.e., policies that maximize the expected sum of constant policiesvith reward accumulation, which al-
observed rewards) without any a priori information lows to efficiently learn even in presence of coarse
about the problem to be solved. In the RL paradigm, discretizations of the state space. Experimental re-
the programmer, instead of programming how the sults carried out with a real robot show that the pro-
robot should behave, has just to specify a reward func- posed learning techniques are effective in making the
tion that models how good is an action when taken in learning process more stable than traditional RL algo-
a given state. This level of abstraction allows to write rithms.
specifications for the robot behavior in a short time In the next section, we will briefly review the
and to obtain better and more robust policies with re- main approaches proposed in literature to overcome
spect to hand-written control code. the problems described above. In Section 3, we intro-
Despite the huge research efforts in the RL field, duce the RL framework and present the details of our
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algorithm. The results of the experimental validation, same moves thus performing more updates that speed
carried out on a real robot with a soccer task, are re- up the propagation of the rewards and the conver-
ported in section 4. We draw conclusions and propose gence to the optimal value function. Although this
future research directions in section 5. approach succeeds in speeding up the learning pro-
cess, it still requires an expensive exploration phase
to gather enough information. To overcome this prob-
2 REINFORCEMENT LEARNING lem, Lin. adopts a human j[eacher to show the ropot
several instances of reactive sequences that achieve
ON ROBOTS the task in order to bias the exploration to promising
regions of the action space. The same goal is pursued
Given the complexity of the development of robotic iy (Mmill an, 1996), but instead of a teacher it requires
applications, the possibility to exploit learning tech- 3 set of pre-programmed behaviors to focus the ex-
niques is really appealing. In particular, the reinforce- pjoration on promising parts of the action space when
ment Iearning research field prOVided a number of al- the robot faces new situations. In this paper, we fol-
gorithms that allow an agent to learn to behave Opti' low the approach proposed by (Smart and Kae]b“ng,
mally by dire_ct_interactioln with the environment with- 2002), which effectively provides prior knowledge by
out any a priori information. splitting the learning process in two phases. In the
Up to now, excluding a few notable exceptions, first phase, example trajectories are supplied to the
the application of the RL approach has been successyopot (by automatic control or by human guidance)
ful only in small gridworlds and simple simulated through a control policy and the RL system passively
control problems. The success obtained in more com-watches the experienced states, actions and rewards
plex domains (Tesauro, 1995; Sutton, 1996) is mainly with the aim of bootstrapping information into the
due to ad-hoc solutions and the eXpIOitation of domain value-function. Once enough data has been Co"ected,
dependent information. the second phase starts and the robot is completely
Several difficulties prevent the use of pure RL controlled by the RL algorithm. In problems with
methods in real world robotic applications. Since di- sparse reward functions, without any hint, the robot
rect experience is the main source of information for would take a huge number of steps before collect-
an RL algorithm, the learning agent needs to repeat- jng some significant reward, thus making the learning
edly interact with the world executing each available process prohibitive. At the opposite, the “supervised”
action in every state. While in software domains it phase is an initialization of the learning process so
is possible to perform a large number of trials and that it can initially avoid a fully random exploration of
to place the agent in arbitrary states, in real robotic the environment. Furthermore, differently from imi-
domains there are several factors (limited battery ca- tation learning methods, this approach allows to sup-

pacity, blocking states, mechanical or electrica_l faults, ply prior knowledge without knowing anything about
etc.) that make learning from scratch not feasible. inverse kinematics.

Several works in the robotic area have studied dif- o ) )
ferent solutions to reduce the amount of direct expe- ~ Leaming in real-world environments requires to
rience required by RL algorithms. A typical solution deal with dangerous actions that may harm the robot
consists of performing extensive training sessions us-Of humans, and with stalling states, i.e., configura-
ing a physical simulator (Morimoto and Doya, 2000). tions that prevent the robot from autonomously go-
When the simulated robot achieves a good perfor- INg on with the learning process. Again, example tra-
mance the learned policy is applied on the physical jectories can be_ effeptwe to provide safe policies that
robot and the learning process goes on with the aim avoid harmful situations. Another way to reduce the
of adjusting it to the real conditions. Although this sk of performing dangerous actions is to use mini-
approach can be really effective, for many robotic do- max learning (like theQ-learning algorithm (Heger,
mains it is too hard to realize good enough simulation 1994)), where the robot, instead of maximizing the
environments. Furthermore, it may happen that the expected sum of discounted rewards, tries to maxi-
approximation introduced in the simulation is such mize the value of the worst case. This kind of pes-
that the knowledge gathered in the simulated learning Simistic learning has lead to good results in stochas-
phase is almost useless for the real robot. Another ap-tic (Heger, 1994), partially observable (Buffet and
proach that was originally proposed for robotic tasks, Aberdeen, 2006), and multi-agent (Littman, 1994)
but that has found common application in other do- problems, showing also to be robust with respect to
mains, is experience replay (Lin, 1992). The idea changes in the problem parametrization, thus allow-
is that the robot stores data about states, actions,ing the reuse of the learned policy in different oper-
and rewards experienced, and fictitiously repeats theating conditions. Unfortunately, algorithms likg-
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learning need to perform an exhaustive search through  Furthermore, each MDP satisfies the Markov
the action space, but this is not feasible in a real-world property:
robotic context. In the following sections, we propose P (%1%, 8) = P (S4]S 8, S1, 31, -~ 50, 80),

avariantto th@—learning that is able to find safe poli- (1)
cies without requiring the complete exploration of the hat js, the probability of getting in stasat timet -+ 1
action space. depends only on the state and action at the previous

Another relevant issue in real-world robotic appli-  time step and not on the history of the system.
cations is that both the state and action spaces are  a deterministic policyrt: s — 4 is a function that
continuous. Usually, this problem is faced by Us- maps each state in the environment to the action to

ing function approximators such as state aggregation, pe executed by the agent. The action value function
CMAC (Sutton, 1996) or neural networks, in order to Q"(s) measures the utility of taking acti@in states

approximate the value function over the state space. s following a policyrthereafter:
Although these techniques obtained relevant results
in supervised learning, they require long hand tun-
ing and may result in highly unstable learning pro-
cesses and even divergence. Although state aggrega- , . ]
tion is one of the most stable function approximator, Wherey< [0,1) is adiscount factor that weights recent
its performance of state aggregation is strictly related "€Wards more than those in the future. _
to the width of the aggregated states and algorithms 1 he goal of the agent is to learn the optimal policy

like Q-learning may have very poor performance even T that maximizes th_e expected dis_counted reward_ in
in simple continuous problems, unless a very fine dis- each state. The action value function corresponding

cretization of the state space is used. In this paper, wel© the optimal policy can be computed by solving the
propose a learning technique that allows to achieve following Bellman equation (Bellman, 1957):

good policies even in presence of large state aggrega- Q*(s,a) = R(s,a) +yz ?(s,a,8)maxQ*(s,a).
tions, thus exploiting their generalization properties g ¥

to reduce the learning times. _ : _ 3)
Thus, the optimal policy can be defined as the greedy

action in each state:

3 THE ALGORITHM TC(S) = argmaxQ’(s,a). 4

Q(s,a) =R(s,a)+E

tims(t),n(s(t)))} @

. . . . e ' Q-learning (Watkins and Dayan, 1992) is a model-
As @scussed In previous 'sectlo'n.s, learning in noisy free algorithm that incrementally approximates the
continuous state spaces is a difficult task for many go|ytion through a direct interaction with the environ-
different reasons. In this section, after the introduc- ment. At each time step, the action value function

tion of the formal description of the RL framework, Q(s,a) is updated according to the reward received by
we detail a novel algorithm based on the idea of the the agent and to the estimation of the future expected
computation of a lower bound for a piecewise con- reward:

stant policy. Q¢isa) = (1-a)Qsa)+a I’-I—yl’l'];lXQk(S/7a/) ’

3.1 TheReinforcement Learning wherer = R(s,a) anda is the learning rate. In the
Framework following, we will refer to the term in square brackets
as thetarget value
RL algorithms deal with the problem of learning how U(s,a,d) = R(sa) +ymaka(s’,a’) (5)
to behave in order to maximize a reinforcement signal a
by a direct interaction with a stochastic environment. When o decreases to 0 according to the Robbins-
Usually, the environment is formalized as a finite state Monro (Sutton and Barto, 1998) conditions and each
discrete Markov Decision Process (MDP): state-action pair is visited infinitely often, the algo-
1. Asetof states = {s1,%,---sn} rithm_is proved to converge to the optimal actilon value
2. Asetof actionst = {ar,a, --au} function. Usually, at each time step the action to be
» ) executed is chosen according to an explorative pol-
3. Atransition modeb (s,a,s) that gives the proba- ¢y that balances a wide exploration of the environ-
bility to get to states’ from statesby taking action  ent and the exploitation of the learned policy. One

a of the most used exploration policiesigreedy (Sut-
4. A reward functionz (s, a) that gives the value of  ton, 1996) that chooses the greedy action with proba-
taking actiora in states bility 1 — € and a random action with probabiligy

216



PIECEWISE CONSTANT REINFORCEMENT LEARNING FOR ROBOTIC APPLICATIONS

3.2 Local Exploration Strategy average situation, such as in Q-learning. Although ef-
fective in principle, this approach cannot always be
In order to avoid an exhaustive exploration of the ac- applied in real world applications. THeobust Rein-
tion space, a more sophisticated exploration policy forcement LearnindRRL) paradigm (Morimoto and
can be adopted. As suggested in (Smart and Kael-Doya, 2001) relies on an estimation of the dynam-
bling, 2002), a “supervised” phase performed using a ics and of the noise of the environment in order to
sub-optimal controller is an effective way to initial- compute the min-max solution of the value function.
ize the action value function. This way, the learning Unfortunately, the model of the environment is not
process is bootstrapped by a hand-coded controlleralways available and the estimation of its dynamics
whose policy is optimized when the control of the often requires many learning episodes. A model-
robot is passed to the learning algorithm. Even if this free solution, theQ-learning algorithm, proposed in
technique is effective to avoid an initial random explo- (Heger, 1994) can learn a robust controller through a
ration, thee-greedy exploration policy used thereafter direct interaction with the environment. The update
does not guarantee that many useless, and potentiallfformula for the action value function is:
dangerous, actions are explored. To reduce this prob- - _ v
lem, we propose to adopiacal e-greedy exploration Q“"(s,@) =min [Q (s,a),U(s, a,s’)} , (7)
policy. Since the learning process is initialized using
a sub-optimal controller, it is preferable to perform an WhereU(s,a,s) is the target value. If the action value
exploration in the range of the greedy action, instead function is initialized to the highest possible value
of completely random actions. Therefore, with prob- (i.e.,Q(s,a) = T"f?,x), this algorithm is proved to con-
ability £ a locally explorative action is drawn from a  verge to the min-max value function and policy, that is
uniform probability distribution over &-interval of the policy that receives the highest expected reward in

the greedy actioa* 1: the worst case. Although this algorithm is guaranteed
. s s to find a robust controller, it can be applied only to
aexp~U(a —ga +9) (6) simulated environments, since the optimistic initial-

Even if thelocal e-greedy exploration policy is not ization of the action value function makes the agent

guaranteed to avoid dangerous explorative actions,© explore randomly all the available actipns until at
in many robotic applications it is likely to be safer €ast the best action converged to the min-max value
and to converge to the optimal policy in less learn- fpnctlon. Thus, it is not s_wta_ble for r0b0t|_c applica-
ing episodes than usuaigreedy policy. In fact, itis  tions where long exploration is too expensive.

based on the assumption (often verified in robotic ap- ~ Another drawback oQ-learning is that it finds an
plications) that the optimal policy can be obtained by optimal policy for the worst case even if caused by

small changes to the sub-optimal controller. non-stationary transitions. In fact, in real-world appli-
cations very negative conditions may occur during the
3.3 Qug-learning learning process because of very limited and uncon-

trolled situations possibly caused by non-stationarity

As showed in many works (e.g., (Gaskett, 2003; in the environment and,wit@-learning, these condi-
Morimoto and Doya, 2001)) traditional Q-learning tions are immediately stored in the action value func-
is often ill-suited for robotic applications character- tion and cannot be removed anymore.

ized by noisy continuous environments with several  In order to keep the robustness of a min-max con-
uncertain parameters in which non-stationary tran- troller, to reduce the exploration and to avoid effects
sitions may occur because of external unpredictable Of non-stationarity as much as possible, we propose
factors. Many techniques (Gaskett, 2003; Morimoto Qus-learning, a novel algorithm for the computation
and Doya, 2001; Heger, 1994) improve the stability Of alower bound for the action value function. Instead
and the robustness of the learning process, on the ba.0f @ minimization between the current estimation and
sis of the concept of maximization of performance in the target value (Eq. 5), we adopt the following update
the worst case, i.e., thmin-maxprinciple. This prin- rule:

ciple deals with the problems introduced by highly

uncertain and stochastic environments. In fact, the [ U(sasd) ifU(sas)<Q¥sa)

controller obtained at the end of the learning process (s.8) = { (1—a)QX(s,a) +au(s,a,s) otherwise

is optimized for the worst condition and not for the

1in case of problems with multiple actuators, the explo- As '.t can be notlc_:ed, Whefn the worst case is visited
rative action is obtained by the composition of explorative the action value estimation is set to the target value as
actions for each actuator. in Q-learning. On the other hand, if the target received
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by the agent is greater than the current estimation, theThus, the value of)(s, a) is updated using its own es-
usual Q-learning update rule is used. As a result, the timation. If the state is sufficiently large, the agent
action value function may not take into consideration is likely to remain in the same state for many steps
the worst case ever visited in the learning process, and the Q-value tends to converge to its Iirﬁrﬁv
when this is the result of rare events not following the until either the state is left or another action is cho-
real dynamics of the system (e.g., collisions against sen. As a result, the policy continuously changes and
moving obstacles). As learning progresses the learn-the learning process may experience instability. This
ing ratea decreases (according to Robbins-Monro phenomenon is much more relevant whania-max

conditions) thus granting the convergence ofhe- based update rule is adopted; in that case, the conver-
learning algorithm since it becomes more and more gence to the limit is even faster.
similar to Q-learning?. As it can be noticed, this al- In order to avoid the negative effect of the self-

gorithm does not require any particular initialization update rule, we introduce a novel learning algo-
of the action value function as i@-learning and this  rithm: the Piecewise Constant Q-learnin@wcC-Q-
can reduce the exploration needed to learn a nearlylearning). The main difference with respect to the tra-
optimal solution. Furthermore, this algorithm is ef- ditional Q-learning is about the way the action value
fective in case of continuous state spaces in which thefunction is updated. When the robot enters a state
transitions between states may be affected also by theand selects an actiom PWC-Q-learning makes the
policy the robot is performing (Moore and Atkeson, robot repeatedly execute the same actiamd it ac-
1995). In this situation, the worst case depends on thecumulates the reward until a state transition occurs.
policy and not only on the dynamics of the environ- Only at that time, the update is performed according
ment, thus it is necessary to evaluate the action valueto the SMDP Q-learning rule (Sutton et al., 1999):

function according to the current policy and not with Q“sa) = (1-a)Qsa)+

respect to the worst possible case. Therefore, while N

Q-learning would converge to the worst case indepen- a [ VW maXQk(Sl7a/)
dently from the policyQ| g-learning learns the action i; a

value function for the worst case of the current policy. whereN is the number of times in which the agent has

performed action selection in the stateAs it can be

noticed, in this ways is always different frons and

no self-update is performed. As a result, the PWC-Q-

learning is more stable and guarantees a more reliable

learning process than the original Q-learning.
Furthermore, the PWC-Q-learning algorithm

34 PWC-Q-learning

Although the previous algorithm is effective in noisy
or non-stationary environments, it may experience
bad results (see Section 4) when applied to problems
e s oo e malches o h iitaons cused by e discreza-
R Is that are aPsiderallas aolleqated statestlon on the resolution of the controller fchat_ can be ac-
Into interva ggreg tually learned. In fact, when the learning is over, the

#}giﬁ%gfg&i %gg:srstﬁed;agrekgiat'%n ésrt ai%%tiﬁé learned policytmaps each state into one single action
learning process is likelv to fail. In fgctpa v)(/er fine that must be kept constant until a different state is per-
gp y ) i Y ceived. Therefore, in this case a learning algorithm as

:ﬁﬁ%:tgouncﬁna;hgi;a;?n?rﬁ)a(;?;zl;egﬁgi%gmzkes?rl]%zPWC—Q—Iearning that evaluates the real utility of an
9 ’ ction throughout a state is more suitable, and does

gﬁ;;:ggfr:igf St?éizgsstﬁistirsog?t;wF;ac':gg};:qe;ﬁﬁse ot allow any change in the action as in Q-learning.
gp ' P While Q-learning needs a very fine discretization

appiicatoniloggtiotic problgms. - : to reduce the instability caused by the loss of the
The reason for Q-learning to fail in learning on Markov property, PWC-Q-learning (as shown in the

l‘iaoa?fiﬁly (::JsccerggZ?r?atsé?)trft?nlljszjusstlncmér;grlﬁii tga'ttessexperimental section) proved to be more stable even
gp y y P P in coarsely discretized continuous state spaces. By

\rA(l)IktJrlJT t;?(i;&rge rset":ije' aglgir?g;l?;gln%cgcsg ;he using coarse discretizations it is also possible to re-
9 y ' duce the duration of the learning process.

rewardr and remains in the very same state, the ac- Finally, PWC-Q-learning can be merged with the

tion value function is updated as: computation of the lower bound action value function
Q“Y(s,a) = (1—a)Q¥(s,a)+a {r +yQ¥(s, a)} (8) introduced in Section 3.3 in order to obtain a learn-
ing algorithm that is robust in highly stochastic and

2Let us notice that whea = 0 Q_g-learning is the same  noisy environments and that, at the same time, can be
as theQ-learning successfully applied to continuous robotic problems.
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o direction of the tangential velocitythe direction
along with the robot translates. Its value is ex-
pressed in degrees and it is discretized into 24
evenly spaced values® 15°,30°,...,345;

e rotational velocity associated to the speed at
which the robot changes its heading. Its value
is expressed in percentage of the maximum rota-
tional velocity and it is discretized into 9 values:
—20,—15,-10,-5,0,5,10,15, 20.

The total number of available actions i296.
The reward function is such that the robot receives

4 EXPERIMENTAL RESULTS —1 as reward at each step except when its distance

from the ball is below 56mand the angle falls in the
_ ) range[—15° : 15°], in which case the reward is10

To verify the effectiveness of the proposed approach 4nq'the trial ends. At the beginning of each learn-

we made real robotic experiments with the aim of g tria| the robot starts form the center kickoff po-

measuring speed and stability of the learming pro- gition and performs learning steps until it succeeds in
cess, and opt|r_nal|ty and rppustness of the learned po"reaching the ball which is positioned at 250 Once

icy. The experimental activity has been performed on g i) is finished, the learning process is suspended,

a real robot belonging to the Milan RoboCup Team 5, the robot autonomously performs a resetting pro-
(MRT) (Bonarini et al., 2006), a team of soccer robots o4y re moving towards the starting position.

that participates Fq the _Middle Size League of the The sparsity of this reward function, although
RoboCup competition (Kitano etal., 1997). The robot 5ing easier its definition and preventing the in-
used for the experiments is a holonomic robot with (.54,,ction of biases, requires a long exploration pe-

three omnidirectional wheels that can reach the max- riod before catching some positive rewards and prop-

imum speed of Bmy/s (see Figure 1). The robot is 54416 the associated information to the rest of the state
equipped with a omnidirectional catadioptric vision space. In this task, the robot would clueless wan-

sensor able to detect objects (e.g., ball, robots) up 10 yer around the field with little hope of success and

a distance of aboutrball around the robot. high risk of bumping against objects around the field.
Preliminary experiments have been carried out on g4 this reason, as mentioned in Section 2, we split

the task “go to ball’, in which the robot must leam ¢ jearning process into two phases. The first phase
how to reach the ball as fast as possible. Although we ¢qngists of “supervised” trials, i.e., trials in which the
have chosen a quite simple task, the large discretiza-rop ot is controlled by hand-written behaviors and the
tion adopted, the non-staponanty of the enwr_onment RL algorithm only observes and records the actions
(due to battery consumption during the learning pro- (4uen in the visited states and the associated rewards.
cess), the noise affecting robot's sensors and actua-g, the pasis of the observed data, the RL algorithm

tors, and the limited amount of experience make the , ,ji§s a first approximation of the value function that
results obtained significant to evaluate the benefits of ;| pe exploited in the second phase. The acquired

the PWCQyg-learning algorithm. The state space of qjicy allows to make a safe exploration of the en-

this task is (;haracterlzed by two continuous state vari- ironment, thus considerably speeding up the learn-
ables:_ thedistanceand theangle_at which the robot _ing process towards the optimal policy. In the second
perceives the ball. The ball distance has been dis-ppase the hand-written controller is bypassed by the
cretized into five intervals{o : 50),[50 : 100,[100: g} system which chooses which action must be exe-
200),[200 : 350,350 : 600, while the angle has been ¢ 104 by the robot in each state, and, on the basis of

evenly split into 24 sectors 15wide, thus obtaining  the collected reward and the reached state, performs
a state space with 120 states. As far as the actiongn_jine updates of its knowledge.

space is concerned, thanks to its three omnidirectional |, {he following, we present comparative exper-
wheels, the robot can move on the plane with three iments among Q—I,earningQLB—Iearning (see Sec-
degrees of freedom mapped to three action variables: i, 3.3), and PWQD p-learning (see Section 3.4).

e module of the tangential velocjtyassociated to  The “supervised” phase has been performed only
the speed at which the robot translates. Its value once and then the collected data have been reused
is expressed in percentage of the maximum tan- in all the experiments. It consists of 60 trials with
gential velocity and it is discretized into 6 values the ball placed in different positions around the robot
0,20,40,60,80,100; within 400cm  Since the actions produced by the

Figure 1: The RoboCup robot used for the experiments.
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Figure 2: Performance of Q-learnin@g-learning and PW@, g-learning on the “go to ball” task.

hand-written controller (based on fuzzy rules) are runs of Q-learning an®@ g-learning. Both of them
continuous, and given that the RL algorithms work show a quick learning in the first trials, but then they
with discrete actions, we replace each action pro- alternate good trials to bad trials without appearing to
duced by the controller with the one with the clos- converge to a stable solution. Trials that reach 200
est value among those in the discrete set of the RL steps typically mean that the robot, in some regions,
system. Given the low complexity of the task, the has learned a policy that stops the movement of the
hand-written behavior is, on purpose, highly subopti- robot. As explained above, this irrational behavior is
mal (with only low speed commands) in order to bet- due to self-updates (see Equation 8). Unsurprisingly,
ter highlight the improvements obtained by the learn- this problem is more frequent in th@ g-learning

ing processes in such a noisy environment. algorithm. The third plot displays the performance
of PWC-Qg-learning algorithm averaged over three
different runs. Here, the number of steps needed to
reach the ball decreases quite slowly, but, unlike the
other algorithms, the policy improves more and more
reaching performance close to the best hand-coded
policy, without any trial reaching the 200 steps limit.

In Figure 2 are reported the learning plots of the
three algorithms during the second learning phase.
The performance of the algorithms is measured by
the number of steps (each step lastsg0required
to reach the ball. Every five trials the learning process
is suspended for one trial; in this trial the robot exe-
cutes the policy learned so far. Only the exploitation It is worth briefly describing the policy learned by
trials are shown in the graphs. When the robot is not the robot with the PWGQ3, g-learning algorithm: in
able to reach the ball within 200 steps, the trial ends. the first trials the robot gradually learns to increase
For each graph are also reported the average perfordits speed in different situations until it learns to reach
mance of the suboptimal hand-coded policy followed the ball at the maximum speed. Although this pol-
by the controller £ 152 steps) and the average per- icy allows to complete some trials in very few steps
formance of our best hand-coded poliey 48 steps). (even less than 40 steps), it is likely to fail, since a
It is worth noting that, due to noise in the sensing and coarse discretization gives control problems at high
actuating systems and to the low accuracy of the reset-speed, especially in regions where a good accuracy is
ting procedure, also the performance of fixed policies required. The problem is that, when the robot trav-
is affected by a high variance (standard deviation of els fast, it may not be able to go straight to the ball,
about+10 steps). The parametrization is the same and in general it hits the ball, thus needing to run af-
for each learning algorithm: the learning rate i 0  ter it for many steps. Given the risk aversion typical
and decreases quite quickly, thgreedy exploration  of minimax approaches, the PWQg-learning algo-
starts at b and decreases slowly, the discount factor rithm quickly learns to give up with fast movements
is 0.99. The action values stored in the Q-table are when the robot is near to the ball. The final result
initialized with a low value £100), so that the values is that the robot starts at high speed and slows down
of the actions performed during the supervised trials when the ball gets closer, thus managing to reach the
become larger, thus biasing the exploration to regions termination condition without touching the ball.
near to the example trajectories. Given the stochastic-
ity (due to sensor noise) and the non-stationarity (due
to battery discharging), each experiment has been re-

peated three times for each algorithm, for a total of gan to partially lose its grip on the engine axis, thus

1,350 trials and more than 13000 steps. causing the robot to turn slightly right instead of mov-
In the first two graphs we have reported typical ing straightforward. Our learning algorithm managed

During one of the experiments another interest-
ing characteristic of the PWQ g-learning algorithm
emerged. After about 100 trials, one of the wheels be-
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