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Abstract. The ability to store and retrieve information is critical in any type of
neural network. In neural network, the memory particularly associative memory,
can be defined as the one in which the input pattern leads to the response of
a stored pattern (output vector) that corresponds to the input vector. During the
learning phase the memory is fed with a number of input vectors that it learns and
remembers and in the recall phase when some known input is presented to it, the
network exactly recalls and reproduces the required output vector. In this paper,
we improve and increase the storing ability of the memory model proposed in
[1]. Besides, we show that there are certain instances where the algorithm in [1]
does not produce the desired performance by retrieving exactly the correct vec-
tor from the memory. That is, in their algorithm, a number of output vectors can
become activated from the stimulus of an input vector while the desired output is
just a single correct vector. We propose a simple solution that overcomes this and
can uniquely and correctly determine the output vector stored in the associative
memory when an input vector is applied. Thus we provide a more general sce-
nario of this neural network memory model consisting of memory element called
Competitive Cooperative Neuron (CCN).

1 Introduction

The ability to store and retrieve information is critical in any type of neural network. In
neural network, the memory, particularly associative memory, can be defined as the one
in which the input pattern or vector leads to the response of a stored pattern (output vec-
tor) that corresponds to the input vector. That is, when an input vector is presented, the
network recalls the corresponding output vector associated with the input vector. There
are two types of associative memoriastoassociative andheteroassociative memory.
In the case of autoassociative memory, both input and output vectors range over the
same vector space. For example, a spelling corrector maps incorrectly spelled words
(e.g“matual”) to correctly spelled words (“mutut). Heteroassociation involves the
mapping between input and output vectors over a different vector space. For example,
given a name (“Joh?) as input, the system will be able to recall its corresponding
phone number (“657 9876”) stored in memory.

In the context of neural network, an associative memory consists of neurons (known
as conventional McCulloh-Pitts [7] neurons) that are capable of processing input vector
and recalling output vector. These conventional model neurons use inputs from each
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source that are characterized by the amplitude of inputdsgin this way each neuron
can receive, process, and recall only one component of a nmsdovector. Towards
realizing the concept of associative memory, one of the contyrused techniques uses
correlation matrix memory [3] which encodes all input and output vector pdigs, z7

(k = 1,2,3--- ,n) into a correlation matrix\/ = Y _, yyx} . Later in the recall
phase the matriX\/ is decoded to extract the output vector when the correspgndi
input vector is introduced to the network. The limitationcofrelation matrix memory,
in terms of memory capacity, is that it requires exaetlyeurons to recal components
of a vector. In this paper we study the problem of increasiegory storage and recall
capacity of a general associative memory and offer an ideiapifovides and ensures
more storage and correct recall ability of the memory modak(layer Competitive
Cooperative Neuron (CCN) network model) proposed in [1]r Proposed method
improves the architecture of the CCN network where we neéd 8meurons (CCNSs)
to store and recalN R memories wherd? is the number of zones (defined later) of a
CCN.

The organization of the paper is as follows. First in secBipwe provide the general
description of a competitive cooperative neuron (CCN),dntion 3 we show how a
network of such neurons can be formed and how they work by detrating with
an example. Our main results, that is, the improvement o€@sl network model are
given in section 5 which overcomes shortcomings of the mddétliscussed in section
4). We conclude in section 6.

2 Description of a CCN

Here we provide the concise description of the CCN, the neiadeferred to [1] for de-
tails. In order to increase memory storage and recall cgpafan associative memory
compared to correlation matrix memory, the paper [1] intices a novel type of model
neuron called competitive and cooperative neuron (CCNhasuilding block of an
associative memory. This model offers two new aspects: ©tieait the input signals
are characterized by a two-dimensional (2-D) parametaepeesenting the amplitude
and frequency of signals. The other aspect of the CCN is ltieat€uron receives input
signals at several distinct and autonomous receptor zénemdel of a CCN is given
in Fig. 1.

The CCN consists of a number of zon&sand each zone € R collects in-
put from many sourcesy(r) = {S1(r), S2(r), S3(r) - - - }. Each input signal (source)
Si(r) = (Fy(r), A;(r)) has two aspects- the frequengy(r) € [0, 1] which encodes
the information [4] and the amplitudéd,(r) € [0, 1]-the strength of the signal. Each
zone is sensitive to a small range of frequencies (band)c&hter of the band of input
r of a CCNn at timet is denoted byB(n,r,t) and the tolerance level i8(n,r,t).
After each attempt to learn a specific memory, a band thatfiigmtly close to the
winning signal is preserved when the CCN fires. A zone acddgtsnput if the fre-
guencies that are within its band and the amplitude of it edsea certain threshold
T(n,r,t) € [0,1]. That is, a signal wins if4;(r) > 7(n,r,t) > 0 and F;(r) €
[B(n,r,t) — T(n,rt),B(n,rt) + T(n,rt)]. Each input zone propagates the win-
ning signal to the cell body. Finally, the CCN fires if the camdnl amplitude of the
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Fig. 1. ACCN Model: the CCN on the left has five autonomous zones, each ofwklais a narrow
bandwidth of frequencies that it can detect. Each zone receiveput signals. In each zone, only
the input signals that have a frequenfy. that falls within the zone’s badwidth participate in the
competition and the winner is the signal with the highest effective amplitutiehé winning
signals are propagated to the cell's body, where they cooperate andlthe activated if the
cumulative amplitude is greater than the cell’s threshold.

winning input signals from all the zones exceeds the thiesh(n,t) of the CCN
body, that is,Zf:1 A(i(r) > v(n,t). As the CCN is activated (fired) it sets the cen-
ter of the frequency band of an active zan® its corresponding winning signal, i.e.,
B(n,r,t) = Fju)(r). In our case, as the CCN fires we determine the output vector
of it whose components are the winning signals of all the gafehe CCN. Also, the
output vector can be changed by using Hebbian learning fbpol. Initially, we start
with a CCN body threshol@(n,t), which is greater than or equal to the sum of the
zone thresholds, i.ev(n,t) > " 7(n,r,t), so thatin order for the CCN to fire, either
all the zones must be active or some of them must receive sstrenyg signal.

When fired, the CCN decreases tolerance levels in contriputimes where the
tolerance level is the maximum value of the difference betwine band and the win-
ning signal frequency that results in the firing. This is titaation when we say the
CCN specializes or learns. During training, the CCN alsaekeses the threshold for
the amplitude in active zones and also decreases the tidesfttbe CCN body which
allows for a clean but weaker signal to activate a zone. WherC@N is trained and
it receives input in some but not all zones it uses that inpuetall the previous in-
puts to the idle zones. For example [1], if a CCN has three g@mal it fired when
the input was the vector that represents the triple (Red eGv&trawberry), then the
next time it receives only “Red” and no input from the othenes, it will fire (“Red”,
“Sweet”,“Strawberry”) provided that the amplitude of tmput signal (“Red”) exceeds
the cell’'s threshold.

2.1 CCN Network Model

A simple one-layer feedforward network with three CCNs ameé input sources is
shown in Fig. 2. Each CCN has three receptor zones represeytine vertices of the
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triangles. The number of inputs to the different zones iswaessarily the same, but it
can be made the same by adding zero-weight input signals.

inputy o input,

T inputas
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neuron(1)
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inputs, output(2)

inputss output(1)

Fig.2. A simple one-layer feedforward network with three CCNs and three isputces is
shown. Each CCN has three receptor zones represented by thesseftie triangles.

3 How a CCN Network Works

In order to understand the function of the network explainbdve, consider a one
layer feed-forward network of CCN witlv CCNs where each CCN € N has3
zones. Assume the centers of the frequency bdds r1,t), B(n,re,t), B(n,rs,t)
of zonesl, 2 and3 of CCN n are set t00.150, 0.450, and 0.750 respectively. Let
the tolerance level” for all zones be).050. The range of frequencies for each zone
becomegB — T, B + T1, i.e, [0.100, 0.200], [0.400, 0.500] and [0.700, 0.800] and let
the thresholds of zonds 2, and3 ber; = 0.20, » = 0.15, 73 = 0.15 respectively and
the CCN body threshold = 0.32.

Assume that we want the network to store and recall vectamsisting of name,
gender and id of students. Let the input vector(B8arah”, “Female”, “4781234")
which is represented by frequencig@s130, 0.416,0.725). Let 0.20 be the amplitude
of each of the components of the vector. As the input vectsuiing first component
of the input vector to zoné&, second component to zorReand so on) is applied to
the network, all the zones become active and the CCN stdrtg fimce0.20 + 0.20 +
0.15 > 0.32. Ifit does not fire then the tolerance level of inactive zoteas be increased
gradually to accommodate the frequency (anti Hebbian legi®]). Now as the CCN
fires the threshold to each zone is reduced to some minimush (vsome minimum
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value required to activate the corresponding zone) andhitesstiold to the cell body
is also reduced to some minimum value. Let the cell body Huleksbe reduced to
v = 0.18. Now the center of the frequency band of each zone will begassi the
frequency of its winning signal, i.e., frequenci@s130, 0.416, and0.725) are assigned
to zonesl, 2, and3, respectively and the output vector becor(e$30, 0.416, 0.725).

Now in the recall phase if we apply only inptSarah” to zonel and no in-
put from the other zones, the CCN will fire (because the tholesh.20 of signal
“Sarah” is greater than the CCN threshdld 8) and produce the whole output vec-
tor (0.130,0.416,0.725) representing the vectdr“Sarah”, “Female”, “4781234”).
Therefore, if there aré& (R-dimensional vector) zones in a CCN, then a single input
signal to a zone will result il recalled featuresi{ — 1, if we exclude the activating in-
put) from the other zones, which is more efficient than réuglbnly one feature from
every input compared with the correlation matrix memorygémeral, if there arév
CCNs each withR zones (i.e, a CCN can store and recalka dimensional vector)
in a one-layer feed forward CCN network then it is able to Hdotal N R memories.
This is because, after the training is complete a signal ife@sndn the previous exam-
ple, only input componentSarah”) to a zone in a CCN will be strong enough to fire
the CCN and recall all the other signals (components) ofratbees of that CCN. As
a whole, onlyN input signals taV CCNs will suffice to recallV R memories. On the
other hand, the correlation matrix memory ne@d® CCNs to recallN R memories.
Therefore the achievement of performance in terms of stf@atlires/number-of-CCNs
ratio is higher in CCN network as compared to correlationrimatemory [3].

4 Limitationsin CCN

First, we show that there are certain instances where egi€€CN model [1] fails to
produce the expected output result. Then we offer an impnewe to the architecture
of the network model such that stipulated performance camnbared. The associative
network consisting of the proposed CCNs functions well lifame input vector can be
attracted to at most one CCN of the network during trainirgsTs only possible when
no two CCNs have all the centers of the frequency baBds (r, t)) are equal. The net-
work may suffer serious limitation in manipulating (stayiand recalling) data when all
the centers of the frequency bands of a CCN coincide with #mgrcCCN. Mathemat-
ically this situation can be expressed as that if therefammnes of a CCN then there
exist at least two CCNs; andn; such thatB(n;,r1,t) = B(nj,r1,t), B(ni,re,t) =
B(nj,r2,t),- -, B(ni,rr,t) = B(nj,rg,t).

Under this circumstances, the network reaches a situatlmrevthe same input
vector, M is stored in different CCNs. This is because the inpdt, stimulates and
fires all those CCNs which have the same centers of frequeauogtsbof their zones.
Here we show how storage capacity decreases for the case stabve. In general,
if the associative memory network has CCNs and each CCN hds zones we can
store and recallV memory vectors (totaN R memories) where each memory vector
M, consists ofR-components (features). In this way, we can say this is etpnt to
recall exactlyN R memories in total. Lef be the number of CCNs that have the same
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centers of frequency bands of in their zones. This meangttbed is a memory vector
M, whose input can simultaneously fifleCCNSs.

As M, is stored in all theS CCNs, their centers of frequency bands will be as-
signed the corresponding frequencies\f (each component af/, is represented by
a frequency) and no other vectdf,, (M, # M,) can be stored in any of th& CCNs.
So we have onlyV — S CCNs left to storeV — 1 vectors. IfS > 1, then we can not
store all the remaining vectors (remainiig— 1 vectors, since only one memory vector
M, is stored) to the memory. Therefore, this case does not aitote store and recall
N vectors. In the worst case, if all thf CCNs have the same centers of frequency
bands then we can store only one vector in the whole netwatiead of NV vectors.
Thus the performance degrades downl & percent which is quite worst for large
values ofN. In general, ifS; is the number of CCNs having the same centers of fre-
quency bandi, - -, f4, Sz is the number of CCNs with the same centers of frequency
bandf?--- f3 andS, is the number of CCNs with the same centers of frequency band
f7,--+, fr then we can achieve/N percent of vectors to be stored and recalled cor-
rectly whereS; + S, + --- + S, = N. The following example demonstrates such a
case.

Suppose the network is required to store input vedtors, 0,0}, {1, 1,0, 0}, {1, 0,
1,0} and recall when any of the vectors is presented to the netwadume we have a
network consisting of three CCNs each with four zones. Leffittst, second and third
CCN's band centers afel1,0.2,0.1,0.1; 0.1,0.2,0.1,0.1 and0.2, 0.2, 0.1, 0.1, respec-
tively. Let 0 and1 be encoded by the frequenci@d and0.2 respectively. Therefore,
we obtain the equivalent representation of the four inpotars as{0.1,0.2,0.1,0.1},
{0.2,0.2,0.1,0.1} and{0.2,0.1,0.2,0.1}, respectively. As we apply the inp{.1, 0.2,
0.1,0.1} to activate some CCN, we find all the zones of CaNand2 become active
and they (both CCNs) fire. Thus, the input vedior1, 0, 0} is stored in both of them. In
this way, the two CCNs are stimulated and their centers gifeacy bands are assigned
the frequencie$.1,0.2,0.1,0.1. When the second input patteff.2,0.2,0.1,0.1} is
presented it stimulates the third CCN and causes it to firddryng the input frequen-
cies to the corresponding centers of frequency bands. Nothédast input there is no
CCN that can be activated since all the CCNs are alreadyctttdo the two previous
input vectors. Although we have three CCNs to store andlrfgale vectors according
to the algorithm presented in the paper [1], we cannot stareerthan two input pat-
terns in the associative memory for this particular examplais the performance of
the proposed technigue degrades in this case.

5 Solution Proposed for CCNs

In this section, we outline the improvement in the architeztof the CCN neural net-
work to remedy the situation illustrated above. This isiioked so that at most one CCN
can be stimulated (attracted) by a single input pattern.riibdified network is shown
in Fig. 3.

The mainidea is to connect every CCN to all other CCNs angagsdices to them.
These indices, beginning from 1 to the number of CCNs, wilbbsigned arbitrarily
among the CCNs. It is assumed that the CCN with the lowesiih@s the highest
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Fig.3. An improved simple one-layer feedforward network with three CCNs tange input
sources is shown. CCNs are connected to each.

priority and priority will decrease with the increase ofiices. After an input pattern is
applied to the network, if a CCN gets stimulated (caHdtive) then it sends its index
to all other CCNSs. If it is not active then it refrains from slamg its index. We ensure
that the highest priority active CCN will be the one to beaatted to the input if there
are more than one such active CCNs.

As each active CCN sends its index to all other, every acti@&Compares the
index it receives from other active CCNs and if any of the éediis smaller than its
own index then it does not update its center of frequency bEmid means that although
it is a candidate for the input to store, it withdraws its ddiady and let other higher
priority CCNs to be attracted to the input. In this way, orllg smallest indexed CCN
wins and processes the input and changes its centers okfregiands of its zones
to the corresponding winning frequencies. In general, wisd& one-to-one function
f 8§ — N, whereS denotes the set of CCNSs in the network. ISe€ S denote the set
of CCNs simultaneously attracted to a input. It is obviows there will be exactly one
C' € Swheref(C") # f(C") (C" € S — {C'}). By following the above procedure
to exchange the indices among the CCNs, we can obtain exawhactiveC’ which
has the smallest index among the indices of the CCN$ @#ince f is one-to-one. For
example, in a network of 11 CCNSs, if CCNs with indic&s7, 11 become active for
some input pattern, then the CCRand11 will withdraw because they find the index
2 is smaller. As a result, CCR will take over and become stimulated and attracted to
the input. The introduction of priority ensures that at ainyet when an input pattern
is presented in the network at most one CCN will be attractetthat input. Thus we
eliminate the chance of firing more than one CCNs by a singlativvhich overcomes
the problem mentioned in earlier section.
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6 Conclusion

Motivated by the resemblance of a pyramidal cell [6] foundain, the authors of
[1] proposed a new type of model neuron (called CCN) to iraitéie behavior of a
pyramidal cell. The pyramidal cell is believed [2] to prosdmth the frequency and
the amplitude of the input signals and there is some sort wipetition among inputs.
Attempts are made to follow the physical structure and fionetl behavior of the pyra-
midal cell to some extent in the CCN, such as competition antba inputs and finally
select the winner. In this paper, we provide an improvemerthé CCN model [1]
which is more generalized and can handle situation where iBea chance of getting
activated more than one CCN. Furthermore, we can also iseits@ memory with our
proposed modification to the architecture of the CCN. Thastiodified neuron model
can increase the memory capacity substantially as denavedtin this paper.
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