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Abstract: This paper presents a new approach for robust adaptive control, using fractional order systems as parallel
feedforward in the adaptation loop. The basic adaptive algorithm used here is Model Reference Adaptive
Control (MRAC), which do not require explicit parameter identification. The problem is that such a control
system may diverge when confronted with finite sensor and actuator dynamics, or with parasitic disturbances.
One of the classical robust adaptive control solutions to these problems, makes use of parallel feedforward and
simplified adaptive controllers based on the concept of positive realness.
This control scheme is based on the ASPR property of the plant. We show that this condition implies also
robust stability in case of fractional order controllers. A simulation example of a SISO robust adaptive control
system illustrates the interest of the proposed method in the presence of disturbances and noises.

1 INTRODUCTION

Adaptive control has proven to be a good control so-
lution for the partially unknown systems or varying
parameter systems. In this domain Model reference
adaptive control (MRAC) became very popular since
it presents a very simple algorithm with easy im-
plementation and does not require identifiers or ob-
servers in the control loop (Astrom and Wittenmark,
1995; Landau, 1979). However such algorithm shows
its limits in noisy or disturbed environment, which
may make it inefficient or uncompetitive. Unfortu-
nately very few industrial control processes are not
subject to theses practical problems, which can dam-
age the quality of product and the good process oper-
ating.
The use of simple parallel feedforward in the adap-
tation loop appeared as a robust solution since the
80’s. Many works have used this approach towards
robust control systems (Bar-Kana, 1987; Naceri and
Abida, 2003). In the last decade a great interest was
given to fractional order systems, which have shown
good robustness performances, several robust control
methods based on these systems have been developed,

like CRONE Control (Oustaloup, 1991) and frac-
tional adaptive control (Vinagre et al., 2002; Ladaci
and Charef, 2006; Ladaci et al., 2007).
In this paper we present a fractional robust adaptive
control solution for disturbed applications, based on
the idea of Bar-kana (Bar-Kana, 1987), which uses the
basic stabilizability property of the plant and simple
parallel feedforward in order to satisfy the desired ”al-
most positive realness” condition that can guarantee
robust stability of the nonlinear adaptive controller.
The main contribution of this work is to improve the
feedforward approach robust performances by using
fractional order filters. This result is illustrated by a
simulation example of a test in bad realistic condi-
tions like finite bandwidth of actuators, input and out-
put disturbances and no assumed natural damping.
This paper is structured as follows:
In section 2 definitions of fractional order systems are
presented. Section 3 introduces the principles of ro-
bust adaptive control based on the concept of ’pos-
itive realness’ condition and then the main result in
fractional order case is presented in section 4. The
implementation in Model Reference Adaptive Con-
trol scheme is introduced in section 5 and a simulation
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example is given in section 6. The paper is concluded
in section 7.

2 FRACTIONAL ORDER
SYSTEMS

The analysis in Bode plot of many natural pro-
cesses, like transmission lines, dielectric polarisation
impedance, interfaces, cardiac rhythm, spectral den-
sity of physical wave, some types of noise (Van-
DerZiel, 1950; Duta and Hom, 1981), has allowed
to observe a fractional slope. This type of process
is known as 1/ f process or fractional order system.
During the last decade, a great interest was given by
researchers to the study of these systems (Sun and
Charef, 1990) and their application in control systems
(Oustaloup, 1991; Hotzel and Fliess, 1997; Ladaci
and Charef, 2006; Ladaci et al., 2007).
A SISO fractional order system can be represented by
the following transfer function,

X(s) =
bmsβm +bm−1sβm−1 + ...+b0sβ0

ansαn +an−1sαn−1 + ...+a0sα0
(1)

Where,

• αi , β j : real numbers such that,
{

0≤ α0 < α1 < ... < αn
0≤ β0 < β1 < ... < βm

• s: Laplace operator.

for the purpose of this work, let us introduce the fol-
lowing definitions,

Definition 1 The fractional order transfer function
X(s) given in (1) is called proper if:βm ≤ αn
It is called stricly proper if:βm < αn

Definition 2 (Desoer and Vidyasagar, 1975) The
fractional order transfer function Matrix MX(s)
whose elements are of the form (1) is proper (strictly
proper) if and only if all elements of MX(s) are
bounded at∞ (tend to zero at∞, resp.).

We use in the sequel a description equation into
frequency domain of a single pole fractional order
process, given as follows:

Y(s) =
1

(s+ pT)α (2)

with

• α: fractional exponent, 0≤ α ≤ 1

• pT : fractional pole which is the cut frequency.

Many previous works have shown that fractional
systems present best qualities, in response time and in
transition dynamic stability (Sun and Charef, 1990).
All the control theory developed by Oustaloup es-
pecially on CRONE control was based on fractional
order systems robustness in presence of uncertainties
and perturbations (Oustaloup, 1991).

3 CONCEPT OF POSITIVE
REALNESS CONDITION

Robustness is defined relatively to a certain property
and a set of models. A property (generally stability
or performance level) is said to be robust if all
the models belonging to the set satisfy it. Robust
adaptive stabilization means that all values involved
in the adaptation process namely, states, gains and
errors are bounded in the presence of any bounded
input commands and input or output disturbances
(Bar-Kana and Kaufman, 1985; Kwan et al., 2001).

In this paper we are interested by a particular con-
figuration of feedforward controllers combined with
MRAC control and fractional order systems giving a
fractional robust adaptive control method.
The use of a simple feedforward in the adaptation
loop (see Figure 4) improves the robust stability of the
control system. This approach is based on the con-
cept of the ”positive realness” condition (Bar-Kana,
1989); witch can guarantee stable implementation of
adaptive control configuration. Let us present these
definitions:

Definition 3 The m× m transfer function matrix
Gs(s) is called strictly positive real (SPR) if (Landau,
1979; Bar-Kana, 1989):

1. All elements of Gs(s) are analytic inℜ(s) ≥ 0.
2. Gs(s) is real for real s.
3. Gs(s)+GT∗

s (s) > 0 for ℜ(s) ≥ 0 and finite s.

We also show that (Shaked, 1977) for a fractional or-
der transfer function matrixGs(s),

Gs(s) is SPR ⇔ G−1
s (s) is SPR (3)

Indeed, by using theSPR property if we write (Bar-
Kana, 1989),

Gs(s) = A+ jB ⇒ GT∗
s (s) = AT − jBT

Since by definition

Gs(s)+GT∗
s (s) = A+AT + j(B−BT) > 0
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we getB = BT andA > 0 (not necessary symmetric).
Then whenever

ℜ [Gs(s)] = A > 0

we get

G−1
s (s) = (A+BA−1BT)−1− jA−1B(A+BA−1BT)−1

and
ℜ

[

G−1
s (s)

]

= (A+BA−1BT)−1 > 0

which proves (3).

Definition 4 (Bar-Kana, 1987)
Let Ga(s) be a m×m transfer matrix. Let us assume
that there exists a positive definite constant gain ma-
trix, K̃e such that the closed-loop transfer function

Gc(s) =
[

I +Ga(s)K̃e
]−1

Ga(s) (4)

is SPR. Ga(s) is called ”almost strictly positive real
(ASPR)”.

Now if we consider a fractional order proper or
strictly properASPR transfer matrixGs(s).
Then the following statements are equivalent,

Gs(s) = [I +Ga(s)Ke]
−1Ga(s) is SPR (5)

Gs(s) = [I +Ga(s)Ke]
−1 is SPR (6)

G−1
s (s) = G−1

a (s)+Ke is SPR (7)

ℜ
[

G−1
a (s)+Ke

]

ℜ(s)≥0 > 0 (8)

G−1
s (s) is asymptotically stable and

Ke is sufficiently large (9)

Because∃M such thatℜ
[

G−1
a (s)

]

ℜ(s)≥0 > M > −∞,
and then anyKe > −M will do (Bar-Kana, 1989).

Ga(s) is strictly minimum phase and

Ke is sufficiently large (10)

All the above algebraic manipulation, as done to
obtain (3) and definitions 3 and 4, apply to fractional
systems as well. Here we can generalize as fellows
the result of (Bar-Kana, 1989) to the fractional order
case.

Lemma 1 Let a fractional order transfer function
matrix Ga(s) be ASPR and let K̃e be any gain that
satisfies (4). Then Ga(s) is SPR for any gain Ke that
satisfies Ke > K̃e.

It is obvious thatASPR fractional order systems,
which are minimum phase proper systems maintain
stability with high gains. The high gain stability is
important when nonstationary or nonlinear (adaptive)
control is used, because the robustness of the control
system is maintained if, due to specific operational
conditions, the time-varying gains become too large.

Remarks

1. The ASPR plant must also be proper.

2. The open loop is not necessarily stable (the plant
will actually be stabilized by the fictitious gain
Ke), however all the zeros must be placed in the
left half plane. The plant must be minimum phase
to obtain positivity.

3. We can easily show (Bar-Kana, 1987) that if a sys-
tem is ASPR, then it can be stabilized by any con-
stant or time variable output gainKe, if it is large
enough, i.e.Ke > K̃e.

But in this method, instead of using high gain regula-
tion we will use a simple parallel feedforward config-
uration which can by a similar way satisfy the positive
realness conditions.
The idea of using feedforward in parallel with the
controlled plant is based on the following Lemma of
Bar-Kana,

Lemma 2 (Bar-Kana, 1989) Let the plant be de-
scribed by the m×m transfer function Gp(s) of order
n. Let C(s) be any dynamic stability output feedback
controller. Then

Ga(s) = Gp(s)+C−1(s) (11)

is ASPR if C−1(s) is proper or strictly proper.

We can adapt the proof of (Bar-Kana, 1989; Bar-
Kana, 1986)) to the fractional case.

4 MAIN RESULT

At this stage we propose a fractional order feedfor-
ward configuration of the form:

F(s) =
Fp

(

1+ s
s0

)α (12)

with a real fractional power 0< α < 1, to improve the
robustness of the adaptive algorithm, in presence of
perturbations, as such systems do not amplify much
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Figure 1: Closed-loop system.

G(s)

K−1

1+qsα ys(s)
ya(s)

yp(s)

Ga(s)
Gs(s)

Ke

uc(s)
+

−

Figure 2: The fictitious SPR configuration.

these random signals. This configuration could be
considered as the inverse of an improper fractional
PDµ controller, which was used in control systems
with good proven performances (Oustaloup, 1983;
Hotzel and Fliess, 1997; Podlubny, 1999).
We can formulate the main result of this paper in the
following theorem.

Theorem 1 Let G(s) be any m× m strictly proper
transfer matrix of arbitrary MacMillan degree. G(s)
is not necessarily stable or minimum phase. Let

H f (s) = K(1+qsα) (13)

be some stabilizing controller for G(s). Then the aug-
mented controlled plant

Gf
a(s) = G(s)+H−1

f (s) = G(s)+
K−1

1+qsα (14)

is ASPR.

Proof of Theorem 1:
From definition 4, ifGa(s) is ASPR then the closed-
loop transfer function

Gc(s) =
[

I +Ga(s)K̃e
]−1

Ga(s)

is ASPR.

SinceH−1
f (s) from (13) is strictly proper (relative

degree α > 0), then Lemma 2 implies that the
augmented systemGf

a(s) as defined in (14) isASPR,
which proves Theorem 1.

The stabilizing controllerH f (s) can also be mod-
elized as follows,

H f (s) = K(1+qs)α (15)

Figure 1 represents the feedback control system cor-
responding to the control (13).
From Definition 4 and the fact that the transfer func-
tion Gf

a(s) is ASPR, we know that it can be stabilized
by a gainK̃e. Figure 2 illustrates the feedforward con-
figuration. In addition, the stabilization is robust, it
holds for any gainKe > K̃e.

Many previous works (Hotzel and Fliess, 1997;
Podlubny, 1999) have proposed PDµ improper con-
trollers of the form (13):

C(s) = Kp +Kis
α (16)

which can stabilize many realistic plants for sufficient
high values ofK.
A feedforward of equivalent effect is chosen as fol-
lows:

F(s) = C−1(s) =
Fp

(

1+ s
s0

)α (17)

WhereFp = K−1, such that the augmented plant be-
comes:

Ga(s) = Gp(s)+F(s) (18)

As K should be very large, soFp are small coeffi-
cients, guaranteeing thatGa(s) be ASPR. And dur-
ing the control design we can takeGa(s)≈ Gp(s) as a
practical approximation.

5 IMPLEMENTATION IN MRAC
SCHEME

Model Reference Adaptive Control (MRAC) is one
of the more used approaches of adaptive control, in
which the desired performance is specified by the
choice of a reference model. Adjustment of param-
eters is achieved by means of the error between the
output of the plant and the model reference output.
Let us introduce the basic ideas of this approach rep-
resented in Figure 3.

We consider a closed loop system where the con-
troller has an adjustable parameter vectorθ. A model
which output isym specifies the desired closed loop
response. Lete be the error between the closed loop
system outputy and the model oneym, one possibility
is to adjust the parameters such that the cost function:

J(θ) =
1
2

e2 (19)
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Figure 3: Direct Model Reference Adaptive Control.

be minimised. In order to makeJ small it is reason-
able to change parameters in the direction of negative
gradientJ, so:

dθ
dt

= −γ
δJ
δθ

= −γe
δe
δθ

(20)

or
dθ
dt

= γϕe (21)

whereϕ =− δe
δθ is the regression (or measures) vector

and γ is the adaptation gain. This aproach is called
M.I.T. rule.
The introduction of a simple feedforward in the
MRAC adaptation loop us represented in figure 4
improves the robust stability performance against
the controller gain fluctuations in presence of per-
turbation and noises (Naceri and Abida, 2003).
Previous works (Sobel and Kaufman, 1986), showed
that the ASPR property of a process, allows the
implementation of very simple adaptive controllers
that garantee robust stability of the closed loop in
presence of bounded input or output disturbances.
The feedforward transfer function is choosen like in
(12) where the gainFp is a small coefficient.

F

ProcessActuatorController

uc

ymReference
Model

Adjustment

Mechanism

yu

Figure 4: Simple feedforward in MRAC scheme.

6 SIMULATION EXAMPLE

Without any loss of generality we will apply this ro-
bust adaptive control method, both in the case of inte-
ger and fractional order feedforward, to a SISO model

of a DC motor controlled in respect of velocity, given
by:

Gp(z) =
0.8513z+5.099 10−6

z2 +2.442 10−7z+1.37 10−11 (22)

with a sampling periodTs = 0.3sec, and an actuator
model of the form:

A(z) =
0.007667z+0.007049
z2−1.763z+0.7772

(23)

The plant is subject to random input and output per-
turbations of amplitudes 2 and 0.05 respectively.
The reference modelGm is given by:

Gm(z) =
0.9411z+0.1208

z2 +0.05679z+0.005092
(24)

6.1 Integer Order Feedforward Case

The feedforward trunsfer fuctionF is given by:

F(z) =
3.2394 10−7

z−0.9997
(25)

with a regulation parameterγ = 0.001 we obtain the
results of Figure 5.

6.2 Fractional Order Feedforward Case

The fractional order feedforward trunsfer functionF
is given in Laplace domain by:

F(s) =
0.001

(s+500)0.6 (26)

For the purpose of our approach we need to use an
integer order model approximation of the fractional
order feedforward model in order to implement the
adaptation algorithm, for this aim we have used the
so-called singularity function method (Charef et al.,
1992).
The fractional transfer function (26) is approximated
to a linear transfer function and sampled to give the
following formula:

F̂(z) =
0.001(z−4.78 10−97)

z2−2.407 10−96z+1.001 10−207 (27)

with a regulation parameterγ = 0.005, we obtain the
results of Figure 6.

6.3 Remarks

• The command signalu is more polish in the frac-
tional case witch is a very useful property in reg-
ulation problem.
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(a)

(b)

(c)

Figure 5: Process output with integer feedforward
(a) Process outputy(t), (b) Control signalu(t), (c) Error
signale(t).

• The proposed fractional order configuration of
feedforward maintains stability and at less the
same level of performances, witch confirms the
interest of integrating fractional strategy in robust
adaptive control.

(a)

(b)

(c)

Figure 6: Process output with fractional feedforward
(a) Process outputy(t), (b) Control signalu(t), (c) Error
signale(t).

7 CONCLUSION

In this paper we have presented a new robust adap-
tive control strategy, by introducing simple fractional
feedforward configuration in the MRAC algorithm.
The concept of positive realness condition which is
the basis of this robust control strategy is extended to
fractional order control systems. The idea was to take
benefit of the high performance quality of fractional
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order systems confirmed in many precedent research
works. The stability proofs of this adaptive control
scheme developed for integer order filters in control
literature still holds for such systems. Simulation re-
sults have shown a better filtering ability of command
and output signals, and more robustness against ad-
ditive perturbations, than in the integer order feedfor-
ward configuration case.
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exemples. InActes d’AGIS’97, pages 53–58, Angers.

Kwan, C., Dawson, D., and Lewis, F. (2001). Robust adap-
tive control of robots using neural network: Global
stability. Asian Journal of Control, 3(2):111–121.

Ladaci, S. and Charef, A. (2006). On fractional adaptive
control. Nonlinear Dynamics, 43:365–378.

Ladaci, S., Loiseau, J., and Charef, A. (2007). Fractional
order adaptive high-gain controllers for a class of lin-
ear systems.Communications in Nonlinear Science
and Numerical Simulations. Elsevier, In Press.

Landau, Y. (1979).Adaptive Control : The model reference
Approach. Marcel Dekker, New York.

Naceri, F. and Abida, L. (2003). A novel robust adaptive
control algorithm for ac drives.Computers and Elec-
trical Engineering.

Oustaloup, A. (1983).Systmes asservis d’ordre fraction-
naire. Masson, Paris.

Oustaloup, A. (1991).La commande CRONE. Herm̀es,
Paris.

Podlubny, I. (1999). Fractional order systems and piλdµ

controllers.IEEE Transactions on Automatic Control,
44(1):208–214.

Shaked, U. (1977). The zero properties of linear passive
systems. IEEE Transactions on Automatic Control,
22(6):973–976.

Sobel, K. and Kaufman, H. (1986). Direct model refer-
ence adaptive control for a class of mimo systems.in
C. Leondes (ed.) Control and Dynamic Systems- Ad-
vances in Theory and Applications, 24.

Sun, H. and Charef, A. (1990). Fractal system-a time do-
main approach.Annals of Biomedical Ing.

VanDerZiel, A. (1950). On the noise spectra of semicon-
ductor noise and of flikker effects.Physica.

Vinagre, B., Petras, I., and Chen, Y. (2002). Using fractional
order adjustment rules and fractional order reference
models in model-reference adaptive control.Nonlin-
ear Dynamics, 29:269–279.

ICINCO 2007 - International Conference on Informatics in Control, Automation and Robotics

420


