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Abstract: This paper presents a new approach for robust adaptive control, using fractional order systems as parallel

1

Adaptive control has proven to be a good control so-
lution for the partially unknown systems or varying
parameter systems. In this domain Model reference
adaptive control (MRAC) became very popular since
it presents a very simple algorithm with easy im-
plementation and does not require identifiers or ob-
servers in the control loop (Astrom and Wittenmark,
1995; Landau, 1979). However such algorithm shows
its limits in noisy or disturbed environment, which
may make it inefficient or uncompetitive. Unfortu-
nately very few industrial control processes are not
subject to theses practical problems, which can dam-
age the quality of product and the good process oper-
ating.

The use of simple parallel feedforward in the adap-
tation loop appeared as a robust solution since the
80's. Many works have used this approach towards
robust control systems (Bar-Kana, 1987; Naceri and
Abida, 2003). In the last decade a great interest was
given to fractional order systems, which have shown
good robustness performances, several robust contro
methods based on these systems have been develope
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feedforward in the adaptation loop. The basic adaptive algorithm used here is Model Reference Adaptive
Control (MRAC), which do not require explicit parameter identification. The problem is that such a control
system may diverge when confronted with finite sensor and actuator dynamics, or with parasitic disturbances.
One of the classical robust adaptive control solutions to these problems, makes use of parallel feedforward and
simplified adaptive controllers based on the concept of positive realness.

This control scheme is based on the ASPR property of the plant. We show that this condition implies also
robust stability in case of fractional order controllers. A simulation example of a SISO robust adaptive control
system illustrates the interest of the proposed method in the presence of disturbances and noises.

INTRODUCTION like CRONE Control (Oustaloup, 1991) and frac-

tional adaptive control (Vinagre et al., 2002; Ladaci
and Charef, 2006; Ladaci et al., 2007).

In this paper we present a fractional robust adaptive
control solution for disturbed applications, based on
the idea of Bar-kana (Bar-Kana, 1987), which uses the
basic stabilizability property of the plant and simple
parallel feedforward in order to satisfy the desired "al-
most positive realness” condition that can guarantee
robust stability of the nonlinear adaptive controller.
The main contribution of this work is to improve the
feedforward approach robust performances by using
fractional order filters. This result is illustrated by a
simulation example of a test in bad realistic condi-
tions like finite bandwidth of actuators, input and out-
put disturbances and no assumed natural damping.
This paper is structured as follows:

In section 2 definitions of fractional order systems are
presented. Section 3 introduces the principles of ro-
bust adaptive control based on the concept of 'pos-
itive realness’ condition and then the main result in
fractional order case is presented in section 4. The
jmplementation in Model Reference Adaptive Con-
H'ol scheme is introduced in section 5 and a simulation
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example is given in section 6. The paper is concluded  Many previous works have shown that fractional
in section 7. systems present best qualities, in response time and in
transition dynamic stability (Sun and Charef, 1990).
All the control theory developed by Oustaloup es-
2 FRACTIONAL ORDER pecially on CRONE control was based on fractional
order systems robustness in presence of uncertainties
SYSTEMS and perturbations (Oustaloup, 1991).

The analysis in Bode plot of many natural pro-

cesses, like transmission lines, dielectric polarisation 3 CONCEPT OF POSITIVE

impedance, interfaces, cardiac rhythm, spectral den-

sity of physical wave, some types of noise (Van- REALNESS CONDITION

DerZiel, 1950; Duta and Hom, 1981), has allowed

to observe a fractional slope. This type of process Robustness is defined relatively to a certain property
is known as If process or fractional order system. and a set of models. A property (generally stability
During the last decade, a great interest was given byor performance level) is said to be robust if all
researchers to the study of these systems (Sun andhe models belonging to the set satisfy it. Robust
Charef, 1990) and their application in control systems adaptive stabilization means that all values involved
(Oustaloup, 1991; Hotzel and Fliess, 1997; Ladaci in the adaptation process namely, states, gains and

and Charef, 2006; Ladaci et al., 2007). errors are bounded in the presence of any bounded
A SISO fractional order system can be represented byinput commands and input or output disturbances
the following transfer function, (Bar-Kana and Kaufman, 1985; Kwan et al., 2001).
X(s) = bmsP™ + bn_1Pm-1 + ... 4 bsPo (1) In this paper we are interested by a particular con-
apsin +a, 191+ ...+ ags¥o figuration of feedforward controllers combined with
Where MRAC control and fractional order systems giving a
’ fractional robust adaptive control method.
e aj, B;: real numbers such that, The use of a simple feedforward in the adaptation

loop (see Figure 4) improves the robust stability of the

{ 0<0do<0y<...<0p control system. This approach is based on the con-

0<Bo<Pr<...<Pm cept of the "positive realness” condition (Bar-Kana,
e s Laplace operator. 1989); witch can guarantee stable implementation of
. . adaptive control configuration. Let us present these
for the purpose of this work, let us introduce the fol- definitions:
lowing definitions, '
Definition 1 The fractional order transfer function
X(s) given in (1) is called proper iffm < oy, Definition 3 The mx m transfer function matrix
It is called stricly proper if:Bm < an Gs(s) is called strictly positive real$PR) if (Landau,

1979; Bar-Kana, 1989):

Definition 2 (Desoer and Vidyasagar, 1975) The

fractional order transfer function Matrix M(s) 1. All elements of &s) are analytic in(I(s) > 0.
whose elements are of the form (1) is proper (strictly 2. Gy(s) is real for real s.

proper) if and only if all elements of Ms) are 3. Gs(s)+GI*(s) > 0for O(s) > O and finite s.
bounded ato (tend to zero ato, resp.).

We also show that (Shaked, 1977) for a fractional or-

We use in the sequel a description equation into der transfer function matris(s),

frequency domain of a single pole fractional order

process, given as follows: Gs(s) is SPR < Ggl(s)is SPR 3)
Y(s) = 1 @ Indeed, by using th&PR property if we write (Bar-
(s+ pr )@ Kana, 1989),
with Gs(s) = A+ B = G*(s) = AT — jBT
e «: fractional exponent, & a <1 Since by definition
e pr: fractional pole which is the cut frequency. Gs(s) +GL*(s) =A+AT +j(B-B") >0
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we getB = BT andA > 0 (not necessary symmetric).
Then whenever

0[Gs(s)] =A>0
we get
Gsl(s)= (A+BA BT 1 jalBA+BA1BT) !
and
0[Gs(s)]=(A+BA BT >0
which proves (3).

Definition 4 (Bar-Kana, 1987)

Let G4(s) be a mx m transfer matrix. Let us assume
that there exists a positive definite constant gain ma-
trix, Ke such that the closed-loop transfer function

Go(s) = [ + Ga(s)Ke] " Gal(s) (4)

is SPR G4(s) is called "almost strictly positive real
(ASPR)".

Now if we consider a fractional order proper or
strictly properASPR transfer matri>xGs(s).
Then the following statements are equivalent,

Gs(S) = [I + Ga(9)Ke] 1Ga(s)isSPR  (5)
Gs(s) = [I + Ga(9)Ke] * is SPR (6)
Gsl(s) = G;1(s) +Keis SPR 7)
0 [Ga*(s) +Ke] g0 > 0 ®)
Gl(s) is asymptotically stable and
Ke is sufficiently large (9)
BecauseiM such thatd [Gz*(s)] ngso > M > —,
and then anKe > —M will do (Bar-Kana, 1989).
Ga(s) is strictly minimum phase and
Ke is sufficiently large (10)

All the above algebraic manipulation, as done to
obtain (3) and definitions 3 and 4, apply to fractional

It is obvious thatASPR fractional order systems,
which are minimum phase proper systems maintain
stability with high gains. The high gain stability is
important when nonstationary or nonlinear (adaptive)
control is used, because the robustness of the control
system is maintained if, due to specific operational
conditions, the time-varying gains become too large.

Remarks

1. The ASPR plant must also be proper.

2. The open loop is not necessarily stable (the plant
will actually be stabilized by the fictitious gain
Ke), however all the zeros must be placed in the
left half plane. The plant must be minimum phase
to obtain positivity.

. We can easily show (Bar-Kana, 1987) that if a sys-
tem is ASPR, then it can be stabilized by any con-
stant or time variable output gak, if it is large
enough, i.eKg > Ke.

But in this method, instead of using high gain regula-
tion we will use a simple parallel feedforward config-
uration which can by a similar way satisfy the positive
realness conditions.

The idea of using feedforward in parallel with the
controlled plant is based on the following Lemma of
Bar-Kana,

Lemma 2 (Bar-Kana, 1989) Let the plant be de-
scribed by the nx m transfer function G(s) of order

n. Let 0s) be any dynamic stability output feedback
controller. Then

Ga(s) = Gp(s) +C*(9) (11)
is ASPRif C~1(s) is proper or strictly proper.

We can adapt the proof of (Bar-Kana, 1989; Bar-
Kana, 1986)) to the fractional case.

4 MAIN RESULT

systems as well. Here we can generalize as fellows

the result of (Bar-Kana, 1989) to the fractional order
case.

Lemmal Let a fractional order transfer function
matrix Gy(s) be ASPR and letKe be any gain that
satisfies (4). Then £s) is SPRfor any gain k that
satisfies K > K.
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At this stage we propose a fractional order feedfor-
ward configuration of the form:

Fo
7T N\O
(1+ %)
with a real fractional power & a < 1, to improve the

robustness of the adaptive algorithm, in presence of
perturbations, as such systems do not amplify much

F(s) = (12)
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u(s
Gew(s) © The stabilizing controlleHs (s) can also be mod-
Uc(s) elized as follows,

T?{K(Hqg*)%{ G(s) F—— Hi(s) = K(1+q9° (15)

Figure 1 represents the feedback control system cor-
responding to the control (13).

From Definition 4 and the fact that the transfer func-
tion G;(s) is ASPR, we know that it can be stabilized

Figure 1: Closed-loop system.

Gs(S) Ga(9) by a gainKe. Figure 2 illustrates the feedforward con-
K a figuration. In addition, the stabilization is robust, it
+ N G Yp(S) holds for any gairke > Ke.
uc(s

Chd Many previous works (Hotzel and Fliess, 1997,

1 Ya(S) Podlubny, 1999) have proposed ®nproper con-

T+q& ys(o- trollers of the form (13):

C(s) = Kp+Kis" (16)

Figure 2: The fictitious SPR configuration. which can stabilize many realistic plants for sufficient

high values oK.
these random signals. This configuration could be A feedforward of equivalent effect is chosen as fol-
considered as the inverse of an improper fractional lows:

PD* controller, which was used in control systems F(s) :Cfl(s) W Fo (17)
with good proven performances (Oustaloup, 1983; (1+§)°‘
Hotzel and Fliess, 1997; Podlubny, 1999). o
We can formulate the main result of this paper in the WhereF, = K~1, such that the augmented plant be-
following theorem. comes:

Ga(s) = Gp(s)+F(s) (18)

Theorem 1 Let G(s) be any mx m strictly proper  As K should be very large, s, are small coeffi-
transfer matrix of arbitrary MacMillan degree. G) cients, guaranteeing th&,(s) be ASPR. And dur-

is not necessarily stable or minimum phase. Let ing the control design we can tal&(s) ~ Gp(s) as a
Hi(s) = K(1+q€") (13) practical approximation.
be some stabilizing controller for(S). Then the aug-
mented controlled plagk 5 IMPLEMENTATION IN MRAC
K-t SCHEME
f T
Gi =G +H I =GO+ -5 (14
: Model Reference Adaptive Control (MRAC) is one
is ASPR. . :
of the more used approaches of adaptive control, in
which the desired performance is specified by the
_ choice of a reference model. Adjustment of param-
Proof of Theorem 1. _ eters is achieved by means of the error between the
From definition 4, ifGa(s) is ASPR then the closed- it of the plant and the model reference output.
loop transfer function Let us introduce the basic ideas of this approach rep-

> -1 resented in Figure 3.
Ge(s) = [I +Ga(s)Ke] " Gals) We considerga closed loop system where the con-
is ASPR. troller has an adjustable parameter ve€oA model
which output isyy, specifies the desired closed loop
Sincer‘l(s) from (13) is strictly proper (relative ~ response. Leé be the error between the Clos_ec_i_loop
degreea > 0), then Lemma 2 implies that the System outpuy and the model ongn, one possibility

augmented syste@;(s) as defined in (14) iASPR, is to adjust the parameters such that the cost function:
which proves Theorem 1. 1
J(0) = Ee2 (19)
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Reference Ym
] f a DC motor controlled in respect of velocity, given
Model 0
Parameters of the Controllef . by
echanam || 0.851% 1 5.099 106
} +5.
@ = 2 Zmr107+13700 @2
Ue +2. z+1
Controller |1 Process y with a sampling periods = 0.3se¢ and an actuator
model of the form:
0.00766Z-+ 0.007049 5
Figure 3: Direct Model Reference Adaptive Control. (2) = 2_-176%+0.7772 (23)

The plant is subject to random input and output per-
turbations of amplitudes 2 andd® respectively.
The reference modé&, is given by:

be minimised. In order to mak&small it is reason-
able to change parameters in the direction of negative

gradient], so:
0.94117+0.1208

doe 3J de Gm(2) = (24)

Uy ver 2>+ 0.0567%+ 0.005092

at ~ e~ e (20)
or 46 6.1 Integer Order Feedforward Case

4 = Ve (21)
The feedforward trunsfer fuctidr is given by:

whered = —% is the regression (or measures) vector 2
andy is the adaptation gain. This aproach is called F(z2) = 8.23AM0 (25)
M.LT. rule. z—-0.9997

The introduction of a simple feedforward in the with a regulation parametgr= 0.001 we obtain the
MRAC adaptation loop us represented in figure 4 results of Figure 5.

improves the robust stability performance against

the controller gain fluctuations in presence of per-

turbation and noises (Naceri and Abida, 2003). g 2 Fractional Order Feedforward Case
Previous works (Sobel and Kaufman, 1986), showed

that the ASPR property of a process, allows the Thg fractional order feedforward trunsfer functibn
implementation of very simple adaptive controllers g given in Laplace domain by:

that garantee robust stability of the closed loop in

presence of bounded input or output disturbances. () = 0.001 (26)
The feedforward transfer function is choosen like in (s+500)06

(12) where the gaif, is a small coefficient. For the purpose of our approach we need to use an
integer order model approximation of the fractional

R‘Ji;‘z’l‘“e L order feedforward model in order to implement the
ml‘ﬂ: adaptation algorithm, for this aim we have used the
Ue |Mechanis so-called singularity function method (Charef et al.,
) 1992).
| F | The fractional transfer function (26) is approximated
‘ u Ly toa Ii_near transfer function and sampled to give the
Controller‘ ‘ ActuatorH Process‘ fO”OWIng formula:
97
| . - e 0.001(z S)éf.78 10771 @
Figure 4: Simple feedforward in MRAC scheme. 22 —2.407 10%°z+1.001 10
with a regulation parametgr= 0.005, we obtain the
results of Figure 6.
6 SIMULATION EXAMPLE 6.3 Remarks

Without any loss of generality we will apply thisro- e The command signal is more polish in the frac-
bust adaptive control method, both in the case of inte-  tional case witch is a very useful property in reg-
ger and fractional order feedforward, to a SISO model ulation problem.
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sortie réelle du I .C.C avec P.E.IN.S AC.FF

0 50 100 150 200

temps en sec

250 300 350 400 450

@
Signal de commandeP .E.IN.S.AC FF
1.5
|
0.5
0
EX
-1
s
Y 50 100 150 200 250 300 350 400 450
temps ensec
Ecart entre sortie du modéle et sortie réelle PEIN.S AC FF
25
2
15
1
05
0
0.5
-1
1.5
-2

0 50 100 150 200 250

temps en sec

(©

Figure 5: Process output with integer feedforward
(a) Process outpuf(t), (b) Control signalu(t), (c) Error
signale(t).

300 350 400 450

e The proposed fractional order configuration of
feedforward maintains stability and at less the
same level of performances, witch confirms the
interest of integrating fractional strategy in robust
adaptive control.

sortie réelle du M .C.C avec P.EIN.S.AC.FF

0 50 100 150 200 250 300 350 400 450

temps en sec

(@)

Signsl 8= commandsP E.IN.S AC.FF

a 50 100 150

200 250 300 350 400 450
(b)
Ecart entre sortie du modéle et sortieréelle P.E.IN.5 AC FF
1
0.5
Q
-0.5
-1
-1.5
= a 0 100 150 200 250 300 350 400 450
(©)
Figure 6: Process output with fractional feedforward

(a) Process output(t), (b) Control signalu(t), (c) Error
signale(t).

7 CONCLUSION

In this paper we have presented a new robust adap-
tive control strategy, by introducing simple fractional
feedforward configuration in the MRAC algorithm.
The concept of positive realness condition which is
the basis of this robust control strategy is extended to
fractional order control systems. The idea was to take
benefit of the high performance quality of fractional
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order systems confirmed in many precedent researchPodlubny, I. (1999). Fractional order systems anttipi

works. The stability proofs of this adaptive control
scheme developed for integer order filters in control
literature still holds for such systems. Simulation re-
sults have shown a better filtering ability of command

and output signals, and more robustness against ad-

ditive perturbations, than in the integer order feedfor-
ward configuration case.
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