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Abstract: This paper is addressed to dynamic control problem of nonholonomic differential wheeled mobile robot. It
presents a dynamic controller to mobile robot, which requires only information of the robot configuration, that
are collected by an absolute positioning system. The control strategy developed uses a linear representation of
mobile robot dynamic model. This linear model is decoupled into two single-input single-output systems, one
to linear displacement and one to angle of robot. For each resulting system is designed a dual-mode adaptive
robust controller, which uses as inputs the reference signals calculated by a kinematic controller. Finally,
simulation results are included to illustrate the performance of the closed loop system.

1 INTRODUCTION

The control of mobile robot is a well known prob-
lem with nonholonomic constraints. There are many
works about it, and several of these works use kine-
matic model. Dynamic model, which is composed by
kinematic model plus the dynamic of robot, is used in
a few works.

An adaptive controller that compensates for cam-
era and mechanical uncertain parameters and ensures
global asymptotic position/orientation tracking was
presented by Dixon (Dixon et al., 2001). Chang
(Chang et al., 2004) proposes a novel way to de-
sign and analysis nonlinear controllers to deal with
the tracking problem of a wheeled mobile robots with
nonholonomic constraints.

The exact mobile robot model is complex and the
model has a lot of parameters to be considered, so
we will use a simplified model that consider some of
them. But this isn’t the only problem, because some
parameters can suffer variations, as the mass and the
frictional coefficients. For example, when robot is do-
ing a task as to carry an object, the object mass isn’t
considered by the model. So, we are using an associ-
ation between a dual mode adaptive robust controller
(DMARC) and a kinematic controller to the robot lin-
ear model.

The DMARC controller was presented in (Cunha
and Araujo, 2004) and it proposes a connection be-
tween a variable structure model reference adap-
tive controller (VS-MRAC, proposed by Hsu and
Costa(Hsu and Costa, 1989)) and a conventional
model reference adaptive controller (MRAC). The
goal is to have a robust system with fast response and
small oscillations (characteristics of VS-MRAC), and
a smooth steady-state control signal (characteristics
of the MRAC).

2 NONHOLONOMIC MOBILE
ROBOT

The robot considered in this paper is a nonholonomic
direct differential-drive two-actuated-wheeled mobile
robot, which is showed in Fig. 1. The robot is of
symmetric shape and the center of mass is at the geo-
metric center C of the body. It has two driving wheels
fixed to the axis that passes through C. Each wheel is
controlled by one independent motor.

Based on Fig 1, we have that d is distance between
wheels, rd,e are right and left wheels radius, ωd,e are
right and left wheels angle velocity, ωr is the angle
robot velocity, vd,e are right and left wheels linear ve-
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Figure 1: Differential-drive two-actuated-wheeled mobile
robot.

locity, vr is the linear robot velocity, τd,e are right and
left wheels torque, τr is the robot torque, fd,e are right
and left wheels force, fr is the robot force, θp is the
angle of robot, xp is the x coordinate of C and yp is
the y coordinate of C.

2.1 Kinematic Model

The robot kinematic is described by equation (1),

q̇ =q Tvv (1)

q =

xp
yp
θp

 qTv =

cos(θp) 0
sin(θp) 0

0 1

 v =
[

vr
ωr

]
The relation between velocity vectors (ωat and v)

is given by the equation ωat =ω Tvv, with

ωTv =
[

1/rd d/2rd
1/re −d/2re

]
ωat =

[
ωd
ωe

]
This mobile robot has a nonholonomic constraint,

because the driving wheels purely roll and don’t slip.
This constraint is described by

∂yp

∂xp
=

sin(θp)
cos(θp

→ ẏp cos(θp)− ẋp sin(θp) = 0 (2)

2.2 Dynamic Model

The robot dynamic is represented by the following
equation

f = Mr v̇+Brv (3)
which is composed by matrix Mr and Br

f =
[

fr
τr

]
Mr =

[
m 0
0 J

]
Br =

[
βlin 0
0 βang

]
where βlin is the frictional coefficient to linear move-
ments, βang is the frictional coefficient to angle move-
ments, m is the robot mass and J is the inertia mo-
ment.

It’s very important to consider the following rela-
tion

f =ω T T
v τ (4)

with τ is the vector
[
τd τe

]T .
The DC motors dynamic is obtained of electrical

(5) and mechanical (6) equations,

i = Rme−RmKmωat (5)
τ = Kmi− Jmω̇at −Bmωat (6)

where the vectors are

i =
[

id
ie

]
Rm =

[
1/Rd 0

0 1/Re

]
e =

[
ed
ee

]

Km =
[

Kd 0
0 Ke

]
Jm =

[
Jd 0
0 Je

]
Bm =

[
βd 0
0 βe

]
and ed,e are armature motor voltages, Rd,e are wind-
ings resistances, Kd,e are constants of induced volt-
age, Jd,e are inertia moments of rotors, βd,e are mo-
tors frictional coefficients and id,e are armature mo-
tors currents.

Using equation (5) in (6) and the result in (4), and
the force f , from (4), in equation (3), gives

Kv = Mvv̇+Bvv (7)

where

Kv = ωT T
v RmKm

Mv = Mr +ω T T
v · Jm ·ω Tv

Bv = Br +ω T T
v (RmK2

m +Bm)ωTv

2.3 Linear Representation to Mobile
Robot Dynamic Model

A state-space model, with output vector Y = [S θp]T ,
is obtained from equation (7) and described by{

ẋ = Ax+Be
Y = Cx (8)

where S is the linear displacement and

x =

vr
ωr
S
θp

 A =

−M−1
v Bv

... 02×2

I2×2
... 02×2

 B =
[

M−1
v Kv

02×2

]

3 INVERSE SYSTEM

The right inverse system is used as an output con-
troller to force the original system output Y (t) to track
a given signal

[
US Uθ

]
. The inverse system, in

this paper, is applied to decouple the original MIMO
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Figure 2: Decoupling based on an inverse system.

(Multiple-Input Multiple-Output) system (8) into two
SISO (Single-input Single-Output) systems (Fig. 2).

To get a stable inverse system, it’s necessary as-
sume that the system discussed is minimum phase.
The inversion algorithm of Hirschorn (Hirschorn,
1979) is applied to decouple the system (8). Deriving
the output vector Y =

[
S θp

]T two times the result-
ing system is {

ẋ = Ax+Be
Ÿ = C2x+D2e (9)

where D2 is an invertibility matrix, so the inverse sys-
tem is { ˙̂x = Âx̂+ B̂û

e = Ŷ = Ĉx̂+ D̂û

Â = A−BD−1
2 C2 Ĉ = −D−1

2 C2

B̂ = BD−1
2 H2 D̂ = D−1

2 H2

û =
[
0 0 US Uθ

]T H2 = [02×2 I2×2]
The block diagram in Fig. 2 shows two indepen-

dent systems, which have the same transfer function
WS(s) = Wθ(s) = 1/s2 obtained by

WS,θ(s) = [C(sI−A)−1B] · [Ĉ(sI− Â)−1B̂+ D̂]

where WS,θ(S) =
[
WS(s) Wθ(s)

]T .
It’s important to remember that linear displace-

ment (S) is not measurable, so an estimated signal
is used. The linear model and the inverse system
need the exact robot parameters, and we are using
a simplified model with uncertain parameters. So a
robust adaptive controller will be used to guarantee
a good transient under unknown parameters and dis-
turbances. Two controllers are designed, one to each
transfer function.

4 CONTROLLER STRUCTURE

The controller structure is divided in five blocks (Fig.
3). First block, which is called kinematic controller,
it will calculate reference values (Sre f and θre f ) based
on desired values (xd ,yd ,θd) and absolute position-
ing system (xp,yp,θp). Second block is composed by
two DMRAC controllers, which are projected to do
the robot to reach reference values. These controllers
based on references values will supply two control
signals (US and Uθ) to the inverse system. Third block
is the inverse system, fourth block is the robot and the
fifth block is the estimator.

Figure 3: Controller strategy block diagram.

4.1 Estimator

The linear displacement estimator is given by

S = ∑
i

sgn(X) ·
√

(xi+1− xi)2 +(yi+1− yi)2 (10)

where X is

X = xi+1 cos(θi)+yi+1 sin(θi)−xi cos(θi)−yi sin(θi)

So, if X > 0, we have the linear displacement
(4̂l > 0) and if X < 0, we have 4̂l < 0.

4.2 Kinematic Controller

The Fig 4 shows the new variables used in kinematic
controller as ∆lpos, that is the distance between robot
and any reference point (xre f ,yre f ), ∆λpos is the dis-
tance of robot to point Rpos that is nearest reference
point in robot orientation axis. φpos is the angle of
robot orientation axis, (∆φpos = φpos −θp). θd is de-
sired orientation angle and γ is the difference between
φ and θd angles (γ = φ−θd).

To get that a robot leaves a point and reaches an-
other point it’s necessary ∆lpos → 0 when t → ∞.
Based on decoupled linear model of robot a new
auxiliar point Rpos (Fig 4) was proposed, to design
a positioning controller, because only in this point
∆λpos = Sre f − S. So, if ∆λpos → 0 and ∆φpos → 0,
the ∆lpos → 0. The reference of DMARCS controller
is calculated by

Sre f = ∆lpos · cos(∆φpos)+S (11)

and the reference signal to DMARCθ controller is
given by

θre f = φpos = tan−1
(

yre f − yp

xre f − xp

)
(12)

where the equations (11) and (12) represent the po-
sitioning controller and are using only informations
from absolute positioning system.

This work uses a mobile reference system to gen-
erate new points to the positioning controller for each
step of the algorithm. It’s based just in the robot kine-
matic model. The kinematic controller objective is to
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Figure 4: Mobile robot coordinates.

do θp = θd and ∆l → 0, when t → ∞. For this, we
have to do θp → φpos, φpos → φ and φ → θd , at the
same time that ∆l → 0 when t → ∞.

Based on the functioning of the positioning con-
troller, it was proposed that each new reference point
has the same distance between robot and desired
point. So

∆l = ∆lpos =
√

(xre f − xp)2 +(yre f − yp)2 (13)

and that the angle of this point is

tan−1
(

yre f − yp

xre f − xp

)
= φ+ γ (14)

To the equations (13) and (13), we obtain the fol-
lowing equations to positioning controller{

xre f = xp +∆l · cos(φ+ γ)
yre f = yp +∆l · sin(φ+ γ)

4.3 Dual-Mode Adaptive Robust
Controller

The DMARC uses the compact VS-MRAC structure,
that was proposed by Araujo and Hsu (Araujo and
Hsu, 1990), changing just the last control signal u1
(Fig 5) to choose between a VS-MRAC and conven-
tional MRAC controllers.

Consider a linear single-input/single-output time
invariant plant with uncertain parameters and transfer
function,

W (s) = kp
np(s)
dp(s)

=
1

s2 +α1s+α2

with input u and output y. The reference model is

M(s) = km
nm(s)
dm(s)

=
km

s2 +αm1s+αm2

Figure 5: Block diagram of DMRAC controller with n∗ = 2.

with input re f and output ym.
The aim is to find u such that the output error

e0 = y− ym

tends to zero asymptotically for arbitrary initial con-
ditions and arbitrary piece-wise continuous uniformly
bounded reference signals re f (t).

Following conventional assumptions are made:

1. the plant is observable, controllable, minimum
phase (np(s) is Hurwitz) and with unknown or un-
certain bounded parameters. dp(s) and np(s) are
monics polynomials with degree [dp(s)] = 2, de-
gree [np(s)] = 0 and relative degree n∗ = 2;

2. the reference model is stable and minimum phase
(nm(s), dm(s) are Hurwitz). dm(s) and nm(s) are
monics polynomials with relative degree known
(n∗) ([M(s)] has the same relative degree than
W (s) and signals sgn(kp) = sgn(km) > 0 (positive,
for simplicity).

3. only input/output measurements are used to find
control law u(t).

The following input and output filters are used{
Q̇1 =−λQ1 +gu
Q̇2 =−λQ2 +gy

where Q1,Q2 ∈ ℜ and λ is chosen such that Nm(s) is
a factor of det(sI − L). The regressor vector is de-
fined as ωT =

[
Q1 y Q2 re f

]T , and the control u
is given by

u = Θ
T

ω

where ΘT =
[
ΘQ1 Θn ΘQ2 Θ2n

]T is the adaptive
parameter vector.

Considering the above assumptions exists a uni-
que constant vector Θ∗, such that the transfer func-
tion of the closed-loop plant W (S), with u = Θ∗T ω,
is M(s) (Matching condition). But θ∗ is obtained of
exact plant parameters. Usually this is not possible
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in practice, then the Θ is adapted until e0 → 0 when
t → ∞, and eventually (under some signal richness
condition) Θ → Θ∗.

The vector Θ∗ is obtained as following

Θ
∗ =


(α1−αm1)/g

(λ(α1−αm1)+(α2−αm2)−α1gΘ∗
v1)/g

(λ(α2−αm2)−α2gΘ∗
v1− kpλΘ∗

n)/(kp ·g)

km/kp


The θnom is a nominal value of adaptive parame-

ter vector (ideally, Θnom = Θ∗) and it is calculated as
Q∗ and based on the decoupled plants (WS(s),Wθ(s))
where α1 = α2 = 0.

Suppose that exists a polynomial L(s) = (s + δ)
of degree N = 1 where δ > 0 and δ ∈ ℜ such that
M(s)L(s) is SPR (Strictly Positive Real). Consider
the following auxiliary signal (a prediction of the out-
put error e0)

ya = MLΘ2n+1[L−1u−Θ
T L−1

ω]

where Θ2n+1 and Θ are estimates for 1/Θ∗
2n and Θ∗

(Matching parameters), respectively. The following
augmented error is defined

ea = (y− ym)− ya = e0− ya

Narendra proposes the following modification to
guarantee the global stability of the adaptive system

ya = ML[Θ2n+1(L−1ΘT −ΘT L−1)ω
+αea(L−1ω)T (L−1ω)], α > 0

To update Θ and Θ2n+1 are used the following
adaptive integral laws to MRAC controller

Θ̇ = −ea(L−1ω)
Θ̇2n+1 = ea(L−1ΘT −ΘT L−1)ω

To VS-MRAC controller, we have to introduce the
following filtered signals ξ0 = L−1ω, ξ1 = ω, χ0 =
L−1u, χ1 = u.

The upper bounds are defined by

Θ11 > |Θ∗
Q1−Θnom,Q1| Θ12 > |Θ∗

n−Θnom,n|
Θ13 > |Θ∗

Q2−Θnom,Q2| Θ14 > |Θ∗
2n−Θnom,2n|

Θ1 =
[
Θ11 Θ12 Θ13 Θ14

]T

Θ0 j > ρ ·Θ1 j, j = 1,2,3,4

κ >

∣∣∣∣κ∗−κnom

κnom

∣∣∣∣
where ρ = κ∗/κnom (ideally ρ = 1) and κnom is a nom-
inal value for k∗ = 1/Θ∗

2n (it is assumed knom 6= 0).
Further, it is defined

unom = Θ
T
nomω (15)

We have plants with n∗ = 2 and in this case, a VS-
MRAC structure, needs a chain of auxiliary errors to
get the matching condition. The switching laws are
chosen so that the auxiliary errors e′i(i = 0,1) become
sliding modes after some finite time. The equivalent
controls ((ui)eq) are, in practice, obtained of (ui) by
means of a low pass filter (F) with high enough cut-
off frequency.

To adjust the DMARC controller an expression
for the µ parameter, based on the idea of the Takagi-
Sugeno model, was used. This expression is given by
(16), where ` is a parameter to be adjusted.

µ = e−(e′1)2/` (16)

Notice that when e′1 → 0, µ → 1 and the algo-
rithm is the MRAC. When e′1 becomes reasonably
high, µ assumes a value sufficiently small, tending to
the VSMRAC algorithm. The ` parameter has a great
importance in the transition between MRAC and VS-
MRAC. If ` is small the VS-MRAC action will be big.

The DMARC algorithm applied to plants with rel-
ative degree n∗ = 2 is summarized in the Table 1.

Table 1: Algorithm of DMARC controller.

u = −u1 +unom
ya = κnomML · [u0−L−1u1]
e′0 = ea = e0− ya

(u0)eq = F−1(u0)
e′1 = (u0)eq−L−1(u1)
f0 = κ|χ0 −ΘT

nomξ0|+Θ
T
0 · |ξ0|

f1 = Θ
T
1 · |ξ1|

u0 = f0 · sgn(e′0)
u1 = −ΘT

1 ω

µΘ̇1 = −αΘ1−αΘ1 · sgn(e′1ω), α > 0

5 RESULTS

The result showed in this paper is based on simulation
of a micro robot soccer structure. The simulated result
considers the main nonlinearities (see (Laura et al.,
2006)) as dead zone between ±150mV and saturation
to values out of ±10V . It also has noise in input and
output signals. The noise was calculated by a ran-
dom variable with a normal distribution of probabil-
ity. To inputs noises (ed ,ee) we have values between
±100mV . To output noises (xp, yp and θp) we have
values between ±1cm to cartesian points and ±8,5o

to angle.
The unknown parameters are in the dynamic mo-

del, and they are obtained of the exact mobile robot
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model with a normal distribution random variable of
probability between 1% and 10%. The parameters
used in the simulation are of a realistic robot, that is
not symmetrical.

A controller DMRAC is applied to each plant
(WS(s) and Wθ(s) with relative degree → n∗ = 2).
Choosing a reference model to each plant, we have

MS(s) =
2.25

s2 +3s+2.25
Mθ(s) =

100
s2 +20s+100

and as filters{
Q̇S1 =−1.5QS1 +1.5US
Q̇S2 =−1.5QS2 +1.5S

{
Q̇θ1 =−10Qθ1 +10Uθ

Q̇θ2 =−10Qθ2 +10θp

We choose the polynomial LS(s) = s + 1.5 to
DMARCS with F = 22s + 1, `S = 0.7551, αS = 0.05
and

ΘS,nom = [ −2.0 −6.75 4.5 2.25 ]T

ΘS,1 = [ 2.420 13.282 2.657 0.024 ]T

We choose the polynomial Lθ(s) = s + 10 to
DMARCθ with F = 56s + 1, `θ = 0.0051, αθ = 0.05
and

Θθ,nom = [ −2.0 −300.0 200.0 9.7 ]T

Θθ,1 = [ 0.073 101.161 175.750 0.1 ]T

The Fig. 6 shows a simulation result of the closed
loop system. The robot going from the initial point[
0 0 0

]T to desired point
[
1 1 0

]T . When the
robot reaches a circle of 1cm radius with center in de-
sired point, it’s considered that the task was accom-
plished. The controller shows a good transient behav-
ior that means in 3.49s the robot reaches the desired
position without vibrations.

The simulation result is closed to real physical
systems, so it includes the main nonlinearities, a plant
with unknown parameters, bounded disturbances in
the absolute positioning system and in motors driver
system. It uses a sampling interval of 10ms. These
facts did not affect the closed loop system behavior.

In the Fig. 6 is possible identify the functioning
of the DMARC controller. When the error is big a
DMARC operates as VS-MRAC and when the error
is small the DMRAC operates as MRAC.

6 CONCLUSIONS

In this paper a controller that decouples multivariable
system into two monovariable systems was proposed.
For each monovariable system an adaptive robust con-
troller is applied to get desired responses.

The closed loop system with the proposed con-
troller presented a good transient response and robust-
ness to disturbances and errors in the absolute posi-
tioning system and in driver system.
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Figure 6: Robot signals (control signal and output plant).
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