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Abstract: The phenomena of static and dry friction may lead to difficult problems during low speed motion (e.g. stick 
slip phenomenon). However, they can be used to obtain irreversible mechanical transmissions. The latter 
tend to be very hard to model theoretically. In this paper, we propose a pragmatic approach to model 
irreversibility in robotic drive chains. The proposed methodology consists of using a state machine to 
describe the functional state of the transmission. After that, for each state we define the efficiency 
coefficient of the drive chain. This technique gives conclusive results during experimental validation and 
allows reproducing a reliable robot simulator. This simulator is set up for the purpose of position control of 
a medical positioning robot. 

1 INTRODUCTION 

Modern control theories in robotics are more and 
more turned towards model-based controllers such as 
computed torque controllers, adaptive controllers or 
feedforward dynamics compensators. Therefore, 
dynamic modeling has become an inevitable step 
during controllers design. Besides, accurate dynamic 
modeling is a key point during simulations and the 
mechanism design process. 

In the literature, the problem of robot dynamic 
modeling is treated in two steps. The first one 
concerns the mechanical behavior of the robot 
external structure considered often as a rigid 
structure. Many researchers have treated this 
problem and different techniques have been 
introduced to solve this issue. The two best-known 
methods in this matter are the Newton-Euler 
formulation and the Lagrange formulation (Khalil, 
1999). The second step concerns the drive chain 
modeling which includes motors, gears and power 
loss modeling. Despite the advances made in the 
field of mechanical modeling, some issues are still 
without a convenient solution. We can mention, for 
instance, the phenomenon of irreversibility that 
characterizes certain types of mechanical 

transmissions such as worm gears (Henriot, 1991). 
This characteristic is often required for security 
reasons like locking the joint in case of motor failure 
or unexpected current cut-off. The purpose of this 
paper is to present a new modeling approach based 
on a state machine in order to simulate irreversible 
transmissions. 

This paper is organized as follows. In section 2, 
we give a brief overview of the LCA vascular robot, 
which is used as an application for this study. 
Section 3 presents details about the modeling 
approach used for the robot structure and drive chain. 
Section 4 presents the irreversibility modeling issue 
and the proposed solution. Section 5 illustrates the 
experimental validation results. Finally, section 7 
presents some concluding remarks. 

2 LCA ROBOT PRESENTATION  

The LCA vascular robot (figure 1) is used for 
medical X-ray imaging. It is a four-degrees-of-
freedom open-chain robot composed of the following 
links: the L-arm (rotational joint), the Pivot 
(rotational joint), the C-arc (it has a translation 
movement in a circular trajectory template. Hence, it 
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can be considered as a rotational joint around the 
virtual axis crossing the C-arc center) and the Lift 
(prismatic joint)  

 
Figure 1: LCA robot. 

3 MODELING APPROACH 

The modeling of the LCA robot requires a clear 
distinction between the dynamic model of the 
mechanical structure and the drive chain model 
(figure 2). In fact, the dynamic model describes 
merely the relation between the applied torques and 
the ideal mechanical reaction of the gantry given by 
the joints acceleration. 

The drive chain model takes into account the hard 
nonlinearities of the system such as the joint friction 
and the gear irreversibility. 
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iV  are the motors command voltage. iΓ are the axes driving torques.  
Figure 2: The robot model structure. 

3.1 Dynamic Modeling 

Two main methods can be used to calculate the 
dynamic model of the robot mechanical structure. 
We can mention the Newton-Euler formulation and 
the Lagrange formulation (Khalil, 1999). 

Most authors use the Lagrange formulation that 
gives the mathematical expression of the model as: 

 )(),()( qQqqqCqqA ++=Γ ����  (1) 

Where are respectively the vectors of joints 
position, velocity, and acceleration. 

qqq ���,,

)(qA : the 4x4 robot inertia matrix. 
qqqC �� ⋅),( : the 4x1 Coriolis and centrifugal torque/ 

forces vector. 
)(qQ : the 4x1 gravitational torques/ forces vector. 

Γ : the 4x1 input torques/ forces vector. 
To simulate the robot movement, we should use the 
inverse of the dynamic model as follow: 

               ),,( qqfq ��� Γ=  

This model can be obtained directly using the 
recursive Newton-Euler equations, or it can be 
inferred from equation (1): 

  (2) ))(),(()( 1 qQqqqCqAq −−Γ= − ����

The “A” matrix is inverted symbolically; this will 
result in a heavy mathematical expression, costly in 
term of computation time. Alternatively, this inverse 
can be calculated after numerical calculation 
of which leads to faster simulations.  )(qA

3.2 Drive Chain Modeling 

The next step consists of modeling the drive chain, 
which includes the electrical motor (DC motor for 
this application), the mechanical transmission (gears) 
and the elements of power dissipation (friction) 
(figure 3). 

We will describe briefly the first and the second 
elements and emphasize the third element, which is 
the purpose of this paper.  

 

Γi Vi   

gears 

Γm 

Motor Friction model 

Γg 

Ωm 

 
Figure 3: Drive chain model. 

Actually, the phenomenon of irreversibility, 
obtained using specific transmissions and particular 
geometric dimensioning, is a complex problem and 
leads instinctively to non linear models. It can be 
treated using several approaches. In a microscopic 
point of view, the contacts among driving and driven 
elements are modeled as well as the applied forces. 
However, this rigorous approach leads to very 
complex analytical models, with serious difficulties 
in the implementation and simulations phases, 
particularly in the case of closed loop structures 
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including controllers (Henriot, 1991). Besides, the 
identification of this type of models is very 
complicated due to the significant number of 
parameters. In a macroscopic point of view, the 
power transfer between the motor and the load is 
modeled with an efficiency coefficient taking into 
account the power transfer direction (load 
driving/driven) (Abba, 1999), (Abba, 2003). 
However, a proportional coefficient is insufficient to 
represent the irreversibility behavior. In our 
approach, we suggest the use of a state machine to 
define the current functional state of the transmission 
in order to reproduce the irreversibility. 

3.2.1 DC Motor Modeling 

The DC motor is a well-known electromechanical 
device. Its model has two inputs, the armature 
voltage and the shaft velocity. The output is the 
mechanical torque applied on the shaft. The DC 
motor behavior is modeled using two equations 
(Pinard, 2004) the electrical equation of the armature 
current (3) and the mechanical equation of the motor 
torque (4): 

 
dt
dILIREV ⋅+⋅=−  (3) 

whereV is the motor voltage. I is the armature 
current. is the electromotive force. is 
the motor velocity; and the motor parameters 
are: (the back electromotive constant), (the 
motor resistance) and  (the motor inductance). 

memf qKE �⋅= mq�

emfK R

L

 IKtm ⋅=Γ  (4)  
where is the motor torque and is the motor 

torque constant ( )  
mΓ tK

emft KK =

3.2.2 Gears Modeling 

In this paper, we consider rigid gears’ models. In this 
case, the model’s mathematical expression depends 
only on the gear ratio N. Therefore, the output torque 
is obtained using the following relation: mg N Γ⋅=Γ  
and the speed of the motor shaft is obtained using: 

. qNqm �� ⋅=
The gear’s ratio is given by simple mathematical 

expressions (Henriot, 1991) or via the gears 
datasheet. 

 

3.2.3 The Power Dissipation in Drive Chain 

This section is the most essential in drive chain 
modeling. In fact, good power dissipation modeling 

helps to reproduce complex gear behaviors such as 
irreversibility. The power dissipation will be 
illustrated through the friction phenomenon.  

In robotics, friction is often modeled as a function 
of joint velocity. It is based on static, dry and viscous 
friction (Khalil, 1999), (Abba, 2003). These models 
produce accurate simulation results with simple drive 
chain structures. However, in the presence of more 
complex mechanisms such as worm gears these 
models lack reliability. 

To illustrate this phenomenon, we can compare 
the theoretical motor torque required to drive the 
LCA pivot axis in the case of a reversible 
transmission and the real measured motor torque. 
Figure 4 and 5 show the applied torques on the pivot 
axis during a 7°/sec and -7°/sec constant velocity 
movement.  
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Figure 4: Motor and load torque variation during constant 
velocity rotation (7 °/s). 

During this movement, the robot dynamic is 
represented by the following dynamic equation: 

 flm Γ+Γ=Γ  (5) 

where lΓ is the load torque and is the friction 
torque. Consequently, we expect that the motor 
torque will have the same behavior as the load torque 
because the friction torque is constant. However, 
these results reveal an important difference between 
the measured motor torque and the expected motor 
torque with a drive chain using only velocity friction 
model.  

fΓ
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Figure 5: Motor and load torque variation during constant 
velocity rotation (-7 °/s). 

We can see that the irreversibility seriously 
influences the motor torque. Actually, the 
irreversibility compensates the gravity torque when 
the load torque becomes driving. Therefore, it is 
essential to expand the friction model to take into 
consideration more variables such as motor torque 
and load torque in order to reproduce irreversibility 
in a simulation environment. Thus, the friction model 

applied on motor shaft will have the following 
structure: 

fΓ

),,()(),( mlmfTmfvmmfsf qqq ��� ΓΓΓ+Γ+ΓΓ=Γ  (6)  

where :  
),( mmfs q�ΓΓ : 4x1 vector of the static friction model 

)( mfv q�Γ : 4x1 vector of the velocity friction model 

),,( mlmfT q�ΓΓΓ : 4x1 vector of the torque friction 
model. 

fsΓ and are the classical friction terms used 
usually in drive chain modeling (Dupont, 1990), 
(Armstrong, 1998). While,  presents the term that 
takes account of the irreversibility behavior.  

fvΓ

fTΓ

limilimili

mimilimimimilimifTi

q

qq

Γ⋅ΓΓ+

Γ⋅ΓΓ=ΓΓΓ

),,(

),,(),,(
�
��

μ

μ
 (7) 

where ),,( milimimi q�ΓΓμ  and ),,( milimili q�ΓΓμ  are 
the motor and load friction dynamic coefficients. 

Let’s consider now the complete robot dynamic 
model: 

flmmm qqANqJ Γ+Γ++⋅=Γ − ���� )(1  (8) 

where  and  is the 4x4 
motors and gears inertia matrix. By replacing (6) in 
(8) we obtain: 

))(),((1 qQqqqCNl +=Γ − �� mJ

llmmmfv

mmfslmmm

q

qqqANJ

Γ⋅+Γ⋅+Γ+

ΓΓ+Γ+⋅+=Γ −

μμ)(

),())(( 2

�
���

 (9) 

where mμ  and lμ  are respectively 4x4 diagonal 
matrixes: 

 { }
{ }4,,1;)],,([diag

4,,1;)],,([diag
…�
…�

=ΓΓ=
=ΓΓ=

iq
iq

milimilil

milimimim

μμ
μμ  

By regrouping the terms of equation 11 we obtain: 

  (10)  
)(),(

))(( 2

mfvmmfs

llmmmm

qq
qqANJ
��
��

Γ+ΓΓ+
Γ⋅+⋅+=Γ⋅ − ηη

where )( 44 mm I μη −= ×  and )( 44 ll I μη += × . 
The new terms mη  and lη , which depend on mΓ , 

 lΓ  and , introduce the efficiency concept in the 
robot dynamic model. The next section will focus on 
the proposed approach used to calculate the drive 
chain efficiency coefficients. 

mq�

4 EFFICIENCY COEFFICIENTS 
ESTIMATION 

One of the complex issues in drive chain modeling is 
the estimation of the transmission efficiency 
coefficient. One technique consists of theoretically 
calculating the efficiency of each element of the 
drive chain using the efficiency definition (Henriot, 
1991): 

in

out

P
P

==
Power Emitted
Power Received

η  (11) 

The calculation of this coefficient requires the 
determination of the driving element whether it is the 
motor or the load. We talk then about the motor 
torque efficiency ( mη ) or the load torque efficiency 

( lη ). Therefore, the received power “ ” could be 
either from the motor or the load.  

inP

Actually, this method can be applied with simple 
gear mechanisms such as spur gears, whereas for 
complex gears, such as worm gears, the calculation 
of the efficiency coefficient using analytical 
formulas tends to be hard and inaccurate due to the 
lack of information concerning friction modeling as 
well as the complexity of the contact surface 
between gears’ components (Henriot, 1991). The 
alternative that we propose is to experimentally 
identify the efficiency coefficient according to a 
functional state of the drive chain, for instance, when 
the load is driving the movement or when the motor 
is driving the movement. This leads us to create a 
state machine with the following inputs and outputs: 

Table 1: State machine inputs and outputs. 
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Inputs Outputs 

mΓ : motor torque (Tm) mη : motor efficiency 

lΓ : load torque (Tl) lη : load efficiency 

mq� : motor velocity  

Now, we will present the states and the criteria of 
states transitions that we have used for LCA robot 
drive chain modeling. The state machine includes 
two levels: the upper level that describes the motion 
(figure 6) and the lower level that describes the 
switch between motor driving and load driving states 
(figures 7, 8), and associates an efficiency coefficient 
for each state. In this level, the transition condition is 
the sign of the velocity. 

 
Figure 6: Motion state machine. 

In the upper level, the transition condition is the 
sign of the velocity. In fact, for simulation 
convergence issue the drive chain is considered 
stopped when epsm Vq <� , where  is the stop 
velocity threshold. 

epsV

In the lower level, a sub-state has been combined 
to each motion state:  

• The stop states (figure 7) 
During the stop phase, the drive chain is 

irreversible (the load torque cannot drive the 
movement). Motion is observed when the motor 
torque becomes superior to the load torque. 

In the lower level, the state transition is based on 
the motor and load torque values. As for  (figure 

6),  represents the motor torque threshold, it is 
used for simulation convergence issue 
( ). 

epsV

epsTm

Nm 10 5−=epsTm

 
Figure 7: Stop state machine. 

• The direct motion states 
For the direct motion state (if V>0), we have four 

main states (figure 8), the states transitions are given 
by the following conditions: and : the 
motor is driving; 

0>Γm 0<Γl

0>Γm and : we distinguish 
two states whether 

0>Γl

ml Γ>Γ  or not; and : the 
motor is braking (load driving) 

0<Γm

 
Figure 8: direct motion state machine. 

• The reverse motion states 
The reverse motion (V<0) state machine has the 

same structure as the direct motion one. We need to 
replace mΓ  and lΓ  by mΓ−  and . The table 1 
summaries the drive chain efficiency coefficients for 
each state: (Motor driving / Motor and load driving / 
Load driving).  

lΓ−

Table 2: Drive chain efficiency coefficients. 

States Direct 
motion lη  

Reverse 
motion lη  

1- 0<Γ⋅Γ lm  0.9 0.9 
2- 0>Γ⋅Γ lm  & lm Γ<Γ  0.55 0.16 
3- 0>Γ⋅Γ lm  & lm Γ>Γ  0.45 0.06 
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5 EXPERIMENTAL VALIDATION 

The validation of the drive chain model has been 
done on the pivot axis. The efficiency coefficients 
have been identified using experimental measures. 

We compare the open loop response of the pivot 
joint and the simulation results to a voltage input for 
both direct and reverse motion. Figure 9 shows the 
applied voltage on the motor pivot axis for direct 
motion. Figure 10 shows the experimental results 
(dashed curve) of current, velocity and position and 
those obtained in simulation (solid curve). We notice 
in that the simulation response represents the same 
behavior as the real mechanism. In this figure we 
distinguish four main phases: the starting phase 24s 
to 25s, the motor driving phase 25s to 37.8s, the load 
driving phase 37.8s to 4.2s and the braking phase 
4.2s to 4.3s. 
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Figure 9: Open loop motor command voltage. 
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Figure 10: Direct motion outputs. 

By comparing the obtained results, we notice that 
the differences are low for direct motion as well as 
for reverse motion. Therefore, these results prove 
that the used model is able to represent accurately the 

irreversibility property of the pivot drive chain. 

6 CONCLUSIONS 

In this paper, we presented a methodology in order to 
model the irreversibility characteristic in 
electromechanical drive chains. The proposed 
approach uses a macroscopic modeling of the gears, 
which are usually the origin of irreversibility in a 
drive chains. It consists of creating a state machine 
representing different functional states of the gears 
and attributing an efficiency coefficient to each 
specific state. 

The validation of the proposed modeling was 
carried out on the Pivot axis of the LCA robot. The 
methodology has been tested in particular when the 
position trajectory leads to some transitions “motor 
driving to load driving” and the obtained results 
confirm the correctness of the used model. 

The perspectives of this work concern two 
research orientations. The first one is the definition 
and the study of an automatic procedure to identify 
the efficiency coefficient for each state. The second 
one is the investigation of the trajectory planning and 
the control of robots with irreversible transmissions 
when considering state machines for gear’s 
modeling. 
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