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Abstract: This paper proposes the discrete dynamic sliding surface control to guarantee the existence of discrete 
sliding mode and reduce the chattering phenomena for speed control of induction machine drive.  
In discrete systems, the controller does not control the system during the sampling interval. The great 
chattering and large control signal are caused by the high switching gain. In this paper, the dynamic sliding 
surface is introduced to overcome the drawback. By setting the initial value of the dynamic sliding surface, 
the system can lock to the sliding surface quickly without high switching gain. The control signal can be 
reduced and the chattering can be eliminated. Furthermore, the induction machine speed control system is 
used to show this controller’s robustness to against the parameter variation and external load. 
The speed of the induction machine is regulated using the indirect field oriented control (IFOC). Thus, after 
the application of the IFOC technique by determining the decoupled model of the machine, a discrete 
sliding surface controller has been applied. Simulation study is used to show the performances of the 
proposed method and then validated by an experimental prototype. 

1 INTRODUCTION 

Field oriented control, published for the first time by 
Blaschke in his pioneering work in 1972, consists in 
adjusting the flux by a component of the current and 
the torque by the other component. For this purpose, 
it is necessary to choose a d-q reference frame 
rotating synchronously with the rotor flux space 
vector, in order to achieve decoupling control 
between the flux and the produced torque. This 
technique allows to obtain a dynamical model 
similar to the DC machine. 

This technique presents a major drawback. 
Indeed the behavior of the machine and its command 
is strongly affected by the variation of the rotor 
resistance due to the temperature or by the variations 
of the rotor inductance due to the saturation. 

To eliminate this drawback, we propose in this 
paper, an indirect field oriented method using two 
sliding mode controllers. Once the decoupled model 

of the machine is obtained, a discrete sliding surface 
control is chosen with an appropriate switching. 
Simulations have been carried out to verify the 
effectiveness and the performances of the proposed 
method.  

2 SYSTEM DESCRIPTION AND 
MACHINE MODELLING 

The system is an induction machine fed by a PWM 
voltage source inverter. The sliding mode controllers 
are applied to the inverter via reference voltages 
(Fig. 1). 
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Figure 1: Discrete Sliding Surface Control structure of an 
induction machine. 

2.1 Induction Machine Model 

For the study of the induction machine, we take the 
following model: 
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The stator voltages ( )qsvdsv ,  are considered as 

control inputs, while the stator currents ( )qsidsi , , the 

rotor flux ( )qrdr φφ ,  and the speed ( )rΩ  are 

considered as state variables.  
From the equations (1), the following electrical 
equations are deduced: 
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The mechanical model is given by: 
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And the electromagnetic torque can be expressed as: 
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2.2 Field Oriented Control 

The field orientation is obtained by imposing: 
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From the equations (4) and (8), the dsi  reference can 

be computed in order to impose the flux rφ  : 
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Furthermore, the position sθ of the rotating frame 
can be estimated using equations (5) and (8): 
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With taking into account the field orientation of the 
machine, the stator equations on d-q axis become: 
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2.3 Decoupling System 

Using the system given by equations (11), we can 
remark the interaction of both inputs, which makes 
the control design more difficult. 

The first step of our work is to obtain a 
decoupled system in order to control the 
electromagnetic torque via stator quadrature current 

qsi  such as a DC machine. 
A decoupled model can be obtained by using two 
intermediate variables: 
                          demfdsvdsv +=1                        (12) 

                          qemfqsvqsv +=1                        (13) 

where   rrR
rL
mL

qsisLsdemf φσω 2+=                      (14) 
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The stator voltages ( )qsvdsv ,  are reconstituted from 

( )1,1 qsvdsv  (Fig. 2): 
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Figure 2: Decoupling control. 

3 DISCRETE SLIDING SURFACE 
CONTROL 

3.1 General Concept 

Since Dr. Utkin proposed the variable structure 
system (VSS), it had been widely discussed and 
applied in many control systems. Due to the change 
of the switching gains in control function, the 
controlled system can vary its own controller 
according to the external condition. Hence, VSS is 
robust to against to the system‘s parameter variation 
and external disturbance. VSS owns one sliding 
surface predetermined according to the desired 
dynamic character. Once the sliding mode locking 
on the sliding surface, the system response will be 
directed by this surface. The existence condition of 
classical sliding mode in continuous system is 
                            0SS <                                      (17) 
Change the differential equation to difference 
equation. When applying the condition to discrete 
systems, the existence condition becomes to 
                ( ) ( ) ( )[ ] 0kS1kSkS <−+                       (18) 
However, the system is controlled by the controller 
only in each sampling time. The controller can not 
modify the response during the sampling interval. It 
may happen that the condition (18) is not only 
satisfied but also the sliding motion is divergent. It is 
shown in fig 3. 
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Figure 3: Discrete sliding mode. 

The condition (18) only makes the sliding motion 
toward to the sliding surface. However, it can not 
guarantee the sliding mode convergent to this 
surface. The condition (18) is only the necessary 
condition not the sufficient condition in discrete 
systems. To make up the drawback, we introduces 
one additional restriction, that is 
              ( ) ( )kS1kS <+                                     (19) 

Combining equation (18) and (19) can make sure the 
sliding motion convergent. However, the sliding 
surface is changed to sliding region shown in fig 4. 
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Figure 4: Discrete sliding mode with sliding region. 

The choice of switching gain becomes three states. 
This change causes some difficulty in 
implementation of hardware. To maintain the binary 
choice, one restriction of different viewpoint, that is 
           ( ) ( )

2
kS1kS ξ

<−+                                   (20) 

where ξ  is a small positive constant. The varying of 
each step of sliding motion is restricted. Then, 
condition (18) makes the sliding mode toward to the 
surface. The condition (20) makes the sliding motion 
oscillated on this surface within a small range ξ  
shown in fig 5. 
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Figure 5: New discrete sliding mode. 

ICINCO 2007 - International Conference on Informatics in Control, Automation and Robotics

224



This new sliding mode is ( ) ξ<kS  different to the 

classical sliding mode ( ) 0kS = . Hence, this new 
sliding mode is called “non-ideal sliding mode.” 
This paper will prove that if the controller makes the 
system‘s solution of classical sliding mode 
asymptotically stable, then the same controller 
makes the solution of non-ideal sliding mode 
asymptotically stable, too. Hence, the discussion of 
non-ideal sliding mode can be done like classical 
sliding mode. Just like the classical sliding mode, 
the system’s dynamic character is directed by the 
surface only when the sliding motion is within the 
range of ξ . To reduce the time of out of control, the 
high switching gain is usually chosen to speed up the 
reaching time. However, in discrete systems the 
controller only modifies the control signal at each 
sampling time. High switching gains can speed up 
the reaching time, but the chattering often be 
enlarged. To eliminate the chattering and decrease 
the reaching time, this paper introduces the dynamic 
sliding surface control (DSSC) rule shown in fig 6. 
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Figure 6: Discrete sliding mode with dynamic sliding 
surface. 

5 SIMULATION RESULTS 
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Figure 7: Scheme of speed sliding mode regulation. 

The proposed scheme has been simulated using 
parameters given in the appendix.  
The first simulation realized on the AC machine 
consists in step variation of the reference. Indeed, 
(Fig. 8) and (Fig. 9) represent the speed and the rotor 
flux when reference step is first imposed and then an 
inversion is imposed. 

In (Fig. 9) it is clearly shown for rotor flux responses 
that the decoupling is realized since the direct 
component of the rotor flux converges to the 
reference ( )refrφ , and its quadrature component to 

zero despite the reference variations. Furthermore 
we can remark that the proposed control scheme 
presents good tracking capacities since there is no 
overshoot and no static error (Fig. 8). 

 
Figure 8: Speed response. 

 
Figure 9: Rotor flux components responses. 

(Fig. 10) represents the dynamic response of the 
speed for different values of the load torque. First 
when the speed reaches its reference value (1500 
tr/min), a step of load torque is applied at (t=0.7 s). 
The electromagnetic torque rises to the new value of 
the load torque (Fig.11), and the speed is not 
disturbed. Then when the load torque is decreased to 
zero (t=1.2 s) or to a negative value (t=1.5 s) the 
speed stays on the reference value. 
It is clearly shown from the results that the control 
scheme presents good regulation capacities. Indeed, 
the external disturbances such as load torque 
variations are rejected by control system. 

 
Figure 10: Speed response to load torque variations. 
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Figure 11: Electromagnetic torque responses to load 
torque variations. 

(Fig. 12) and (Fig. 13) illustrate the dynamic 
response in the phase plane respectively with a 
normal sliding surface control and with a dynamic 
discrete sliding surface control. 
We can note the apparition of the chattering 
phenomenon (Fig. 12) with the normal sliding 
surface control due to the discontinuous 
characteristic of this function. 

 
Figure 12: Response in the phase plane with the normal 
sliding surface control. 

 
Figure 13: Response in the phase plane with dynamic 
discrete sliding surface control. 

(Fig. 14) depicts the drive response for different 
values of the rotor constant time.  
It is important to note that the changing parameters 
are introduced only in the model of the machine. 
The controller is not involved by these variations. 
It is well-known for classic controller that the 
indirect field oriented control is very sensitive to the 
rotor constant time variations. 
The results shown on (Fig. 14) confirm the 
robustness quality inherent to the proposed 

controller. Indeed, there is no overshot whatever the 
rotor constant time 

 
Figure 14: Robustness test of the sliding mode control. 

6 EXPERIMENTAL RESULTS 

Figs. 15 and 16 show the experimental evolution of 
the position and the experimental phase plane 
trajectory when the sliding condition is just 
validated: |c_| = |s1p|. It can be seen that the step 
reference of 400 steps is reached for t = 0.08 s 
without overshoot or steady-state error and that there 
are almost three commutations to reach the 
reference. 

 
Figure 15: Position and reference (400 steps). 

 
Figure 16: Position and reference for two different 
inertias. 
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Figure 17: Phase plane trajectory. 

Figs. 17 and 18 show the evolution of the position 
and the phase plane trajectories for two different 
inertias (J = Jmin = 0.0023 kg.m2 and J = Jmax = 
0.013485 kg.m2). 
By comparing the two responses, it can be noted that 
the reference is always reached without any 
overshoot or steady-state error whatever the inertia 
of the drive. 

 
Figure 18: Phase plane trajectory for two different inertias. 

From these results, it can be seen that the robustness 
of the proposed approach between external 
disturbances and plant parameter variations is 
experimentally validated. 

7 CONCLUSION 

In this paper, we have shown that by using a sliding 
mode control applied to an IFOC, a high-precision 
positioning of an IM shaft can be achieved whatever 
the mechanical configuration of the load is. Indeed, 
the position reference is obtainedwithout any 
overshoot or static errorwhatever the inertia or the 
load torque are. Furthermore, it has been shown that 
the chattering problem around the switching surface 
can be alleviated using the VSC approach with 
LFSG. Therefore, the proposed solution can be 
considered very suitable for induction drive used in 
robotics or in numerical control of machine tools. 
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LIST OF PRINCIPAL SYMBOLS 

p : Number of pole pairs. 

rs RR , : Stator and rotor resistance. 

rs LL , : Stator and rotor inductance. 

:rT  Rotor time constant. 

mL : Magnetizing inductance. 

qsds ii , : Stator currents in d-q rotating reference 
frame. 

qsds vv , : Stator voltages d-q rotating reference 
frame. 

qrdr φφ , : Rotor fluxes d-q rotating reference frame. 

rω : Rotor speed. 

eT : Electromagnetic torque. 

sθ : Angular position. 

s : Laplace operator ( )dtd / . 
σ : Coefficient of dispersion. 
J : Total rotor inertia constant. 
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