
Architectural Models for Client Interaction on
Service-Oriented Platforms

Luiz Olavo Bonino da Silva Santos, Luís Ferreira Pires and Marten van Sinderen

University of Twente, Architecture and Services of Network Applications Group
P.O. Box 217, 7500 AE Enschede, the Netherlands

Abstract. Service oriented platforms can provide different levels of functional-
ity to the client applications as well as different interaction models. Depending
on the platform’s goals and the computing capacity of their expected clients the
platform functionality can range from just an interface to support the discovery
of services to a full set of intermediation facilities. Each of these options re-
quires an architectural model to be followed in order to allow the support of the
corresponding interaction pattern. This paper discusses architectural models for
service-oriented platforms and how different choices of interaction models in-
fluence the design of such platforms. Service platforms’ functionality provi-
sioning can vary from a simple discovery mechanism to a complete set, includ-
ing discovery, selection, composition and invocation. This paper also discusses
two architectural design choices reflecting distinct types of functionality provi-
sioning namely matchmaker and broker. The broker provides a more complete
set of functionality to the clients, while the matchmaker leaves part of the func-
tionality and responsibility to the client, demanding a client platform with more
computational capabilities.

1 Introduction

Service-Oriented Architecture (SOA) is a paradigm for software architectures that
fosters the creation of complex systems by using distributed pieces of functionality
(services) accessible through a set of standards. In this architecture, services are pro-
vided to clients by services providers. Clients search for services by browsing a list of
available service descriptions stored in registries. A service description contains in-
formation about a service, such as what the service does, how to access the interface,
and which information should be supplied in order to use the service properly, among
others. After discovering a suitable service, the client invokes the service interface in
accordance with the information contained in the service description.

In this scenario, each client should be able to search in the available registries, de-
cide which service best fits its needs and invoke the service using the published inter-
faces. To facilitate these tasks, service platforms can play an intermediation role be-
tween client applications and service providers. On the provider’s side, a service plat-
form can be beneficial by providing a mechanism for rapid creation, deployment and
advertisement of services. Examples of facilitators for these activities can be found in

Olavo Bonino da Silva Santos L., Ferreira Pires L. and van Sinderen M. (2007).
Architectural Models for Client Interaction on Service-Oriented Platforms.
In Proceedings of the 1st International Workshop on Architectures, Concepts and Technologies for Service Oriented Computing, pages 19-27
DOI: 10.5220/0001349100190027
Copyright c© SciTePress

[9] and [10]. On the client’s side, the platform can offer support for discovery, selec-
tion, composition and invocation of services, amongst others.

Focusing on the client’s side, platform designers should choose the set of activities
to be supported by the platform from the activities mentioned above. This choice
influences the behavior of the platform and the interaction model between the plat-
form and the clients. Therefore, an investigation of the possible platform behaviors
concerning those interactions is necessary to identify platform requirements and ar-
chitectural components. As a consequence, the platform roles in the interaction with
the clients are identified.

In this paper we consider that the roles played by the service platform describe be-
havioral patterns followed by the platform regarding its interaction with client appli-
cations. Platform designers have at their disposal a variety of platform role’s choices
depending on what they intend the platform to support. A service platform acts simi-
larly to the middle agents described in [5], in which the authors define several possi-
ble roles for the middle agents depending on how they solve the intermediation prob-
lem. In this paper we focus on two possible roles that illustrate opposite levels of
functionality support: the matchmaker, which offers a simple discovery mechanism
and, the broker, which offers more complete set of functionality, including discovery,
selection, composition and invocation.

This paper is structured as follows: section 2 gives an overview of platform roles
regarding client interaction, section 0 details the matchmaker role while section 4
details the broker role and section 5 concludes and points some future directions for
this work.

2 Platform Roles

The architecture of service platforms can be defined in terms of the type of interaction
to be offered to the client. Following this approach, the level of support to be offered
and the choice of the platform role to be played determine the requirements for the
service platform. Among the activities supported by service platforms we can include:
discovery, selection, composition and invocation [1]. Here, we define as level of sup-
port the subset of aforementioned activities offered by the platform.

Among the different possible types of roles for a service platform we present in
this paper two alternatives, namely broker and matchmaker. While the former offers a
high level of support the later operates in a simpler way and leaves more responsibili-
ties to the client application.

Fig. 1 shows the different interaction patterns applied in three service architectures.
Architecture 1 is the basic architecture for Web Services where the service provider
publishes the service descriptions in a registry, the client queries the registry for the
descriptions of available services and, after selecting an available service, the client
invokes the appropriate service. Architecture 2 places a matchmaker between the
client and the registry. In this way the client sends the criteria of the desired service to
the matchmaker, which searches the available registries for service descriptions
matching these criteria. In the case of a positive match, the matchmaker returns the
description of the discovered service to be invoked by the client. Architecture 3 pre-
sents an example of the broker role. In this example, the platform not only provides

20

matchmaking facilities but also invokes the discovered services on behalf of the cli-
ent. If necessary, the platform also performs transformations on the results received
from the invoked services to comply with the data format requested by the client.

Fig. 1. Platform roles.

The matchmaker and the broker roles are discussed in more detail in the sequel.

3 Matchmaker

In the service matchmaking activity we have three distinct roles: a requester, a mat-
chmaker and a provider [12]. The requester aims at finding services that offer the
capabilities dictated to by criteria provided in terms of the desired service interfaces
and properties [15]. The matchmaker has access to a set of services descriptions made
available by providers and provides facilities to discover services based on the re-
quester’s criteria.

Early computational directories offer matchmaking facilities that provide mappings
between names and addresses similarly to the white pages in telephone directories.
Later on, a more advanced form of matchmaking emerged that supports search based
on an entries’ attributes allowing matches based on certain desired characteristics.
This form of matchmaking resembles the yellow pages in telephone directories. One
shortcoming of this approach is that the selection criteria are completely supplied by
the requester, providing an asymmetric form of selection [13]. Work such as [14]
suggests the introduction of symmetry in the selection process, in which the requester
provides a description of the requested service and its capabilities as a client. The
provider specifies its demand to the potential clients of its services. This allows the
provider to select clients just as clients select services. This symmetrical matchmak-
ing allows dynamic update of service descriptions at matchmaking time rather than at
advertisement (publication) time.

A matchmaker acts like as if it were a provider of services of different providers.
The requester does not have to interact with several providers or several service regis-
tries querying them for the descriptions of their services and then try to match the
descriptions with the needed criteria. In a matchmaking environment, the requester
sends the criteria to the matchmaker, which searches the services descriptions it has
access to for a positive match. Having found services that comply with the given
criteria, the matchmaker sends the service descriptions back to the client. The client
then analyzes the services descriptions and selects suitable ones. After that, the client

21

directly interacts with the services by invoking the service operations and receiving
results.

Fig. 2 depicts a sequence of interactions between the client, the service provider
and the matchmaker platform.

Fig. 2. Interactions in a matchmaking environment.

The level of support of the matchmaker indicates the architectural components of
the platform. In case some functionality is not supported by the matchmaker, other
applications or the client itself have to cover this functionality. Fig. 3 depicts a possi-
ble architecture for both the matchmaker and the client complying with the sequence
diagram presented in Fig. 2. The matchmaker supports service publishing by the ser-
vice provider through the Service Publisher component. The Service Publisher sends
the received service description to the Content Manager component, which is respon-
sible for storing it in an available registry (omitted in Fig. 3). The Content Manager
shields the internal components from interactions with registries. The Content Man-
ager can have access to several registries as well as acting as a client to other match-
makers.

A client requests the discovery of a service by calling the Service Finder compo-
nent. The Service Finder requests a list of candidate services to the Content Manager.
After receiving the list, the Service Finder tries to match the client’s criteria against
the candidate services to find the positive matches. If positive matches are found, the
service descriptions are sent back to the client.

Since in this example the matchmaker does not support service composition, this
task is expected to be performed by the client. Therefore, it is possible that the
matches have been obtained by the partial satisfaction of the criteria, i.e., some of the
properties given by the client have been satisfied but not completely by a unique ser-
vice. In this case, the client needs to perform service composition by calling a Service
Composer component. In Fig. 3 this component is internal to the client. The Service
Composer tries to find a service composition that fully matches the criteria.

22

Fig. 3. Example of service composition performed by the client.

We consider now another example of matchmaker with a higher level of support
than the one in Fig. 3. In this example, the service composition functionality is pro-
vided by the matchmaker. As it can be seen in Fig. 4, the Service Composer compo-
nent has been moved from the client to the matchmaker but its functionality remains
the same. The Service Composer still tries to compose the services that partially
match the criteria into a service composition that fully matches the criteria. In case
additional component services are required to complete the composition, the Service
Composer needs to request the new services by providing other criteria. In the exam-
ple where the service composition is performed by the client, the Service Composer
requests the additional services to the Coordinator component. The Coordinator
forwards the request to the Service Requester component which calls the Service
Finder of the matchmaker with the new criteria. In the example shown in Fig. 4 where
the composition is performed by the matchmaker, the criteria are passed by the Ser-
vice Composer directly to the Service Finder.

The flexibility to assign functionality to the matchmaker or to the client shown in
the example of service composition also holds for other functional components, such
as the Content Manager or the Service Finder. Therefore, generic components can be
developed to support these functions and the desired level of support for the service
platform dictates where those components should be allocated.

Fig. 4. Example of service composition performed by the matchmaker.

23

4 Broker

The following definitions of broker can be found:
• “An individual who gets buyers and sellers and helps in negotiating contracts

for a client”, Mortgage Magazine [2];
• “An agent who negotiates contracts of purchase and sale”, Merriam Webster

[3];
• “A person who buys and sells goods or assets for others”, Oxford Dictionary

[4].
Moreover, information brokerage can be loosely defined as a set of mediation ca-

pabilities and functions aiming to help sellers to broadcast or disseminate information
about their products and services, and, at the same time, to assist the end users in
order to better retrieve, select and compare the offered information about producers,
products and services.

Mapping the definitions above to service-oriented computing we can define a bro-
ker service platform as a platform that acts on behalf of a client application by dis-
covering, selecting, composing and invocating services. In this role, the platform
offers a service selection mechanism, invokes the services on behalf of the client
application, monitors the service execution and parses the results, possibly translating
the output to client’s required format. The broker can also perform service composi-
tion based on the client’s service requirements and the service descriptions available
to the platform.

Additional functionality can be assigned to the broker. For instance, if the service
description contains semantic annotations, the platform should be able to perform a
set of complex reasoning tasks [7], which includes interpreting service provider capa-
bilities (service descriptions) and client applications’ requirements. Moreover, the
interpretation of the terms used in message exchanges can be performed by the plat-
form.

Considering the broker role, an example usage scenario is the one in which the
platform is available to clients that may request immediate provisioning of a service.
The sequence diagram in Fig. 5 shows the interaction pattern between clients, service
providers and the broker platform. Similarly to the matchmaker, the broker provides
facilities for service publishing by the service providers. A critical difference between
the matchmaker and the broker is that the latter acts as a surrogate of the client, i.e.,
the client requests the provisioning of a given service and the broker performs the
necessary steps until the final result of the service, on the client’s behalf. Even if the
output request by the client is somewhat different from the output received by the
broker after the invocation of the necessary services, the broker can perform a trans-
formation to comply with the client’s requirements. Examples of transformations are:

1. The client requests a service that returns the current temperature in Celsius
for a given city. The broker finds a service that provides current temperatures
of cities, but the output is in Fahrenheit instead of Celsius. In this case the
broker can perform the output transformation by composing this service with
another one that takes a temperature value in Fahrenheit and returns the val-
ue in Celsius;

2. The client requests a service that produces a given value in long number
format. The broker finds the appropriate service but the output is in integer

24

number format. The broker can perform the transformation of the output by
simply parsing the integer value into long and returning the transformed val-
ue to the client.

Fig. 5. Interaction pattern for the broker role.

Fig. 6 presents an example architecture of a broker. Here we see the components
responsible for the functionality provided by the platform, namely the Service Pub-
lisher (service publishing), the Content Manager (service registry access and semantic
repository access), the Service Finder (service discovery), the Service Composer
(service composition) and the Semantic Mediator (semantic mediation).

Fig. 6. Example architecture of a broker platform.

Additional characteristics of the broker platform role can be identified, such as:
• Fault tolerance and robustness: if a service becomes unavailable, the plat-

form can try to find another suitable provider;
• Privacy, security and billing: since we assume that clients and service pro-

viders have agreed to trust the platform, the platform is the trusting central
point for these entities. Therefore, clients do not have to directly interact

25

with services providers and vice-versa, and the platform can provide ano-
nymization for both parties.

Nonetheless, being a centralized coordinator the platform can become a single
point of failure as well. Techniques such as redundancy and clustering, among others,
can be used to increase the platform’s availability.

Unlike the matchmaker, the broker role has less room for exchanging functionality
between the client and the platform. Although some auxiliary functionality, such as
results transformations, could be placed on the client side, most of the functionality
should remain on the platform side in order to preserve the surrogate characteristic of
the broker.

5 Conclusions and Future Directions

In this paper we discuss the roles played by service platforms and the impact on the
design of such platforms. To illustrate the discussion we present two choices of plat-
form roles, namely the matchmaker and the broker. The main characteristics of each
platform role are presented together with examples of architecture designs containing
an overview of components providing the required functionality.

In this paper we identify the impact of the choice of platform role in the architec-
tural design of the platform. In other words, the designer’s choice of interaction pat-
tern and the level of support of this platform implies in different assignments of archi-
tectural components to the clients and the platform. This paper addresses this impact
for the matchmaker and broker platform roles. A platform design of the broker role
for context-aware applications has been defined and proposed in [16].

Future directions of this work include the implementation of the suggested compo-
nents and the instantiation of scenarios demonstrating the use of the presented plat-
form roles. The exchange of functionality between client and the service platform, as
suggested in the matchmaker examples, should be carried out and evaluated. More-
over, the requirements specification of both platforms (matchmaker and broker roles)
should be detailed, in order to provide general guidelines for the design of such plat-
forms.

Acknowledgements

The present work is co-funded by the Freeband Communication project A-Muse
(http://a-muse.freeband.nl) and the Amigo Project. A-Muse is sponsored by the Dutch
government under contract BSIK 03025. The Amigo project is funded by the Euro-
pean Commission as an integrated project (IP) in the Sixth Framework Programme
under the contract number IST 004182.

26

References

1. Preist, C.: A Conceptual Architecture for Semantic Web Services. In Proceedings of the
International Semantic Web Conference 2004 (ISWC 2004), pp. 395-409, November 2004.

2. Mortgage Magazine - http://www.mortgages-magazine.com/mortgage-glossary.htm.
3. Merriam Webster Dictionary – http://www.m-w.com.
4. Oxford Dictionary – http://www.askoxford.com.
5. Decker, K., Sycara, K., Williamson, M.: Middle-Agents for the Internet. In Proceedings of

the 15th International Joint Conference on Artificial Intelligence (IJCAI’97), pp. 578-584,
Nagoya, Japan, August 1997.

6. Chi Wong, H., Sycara, K.: A Taxonomy of Middle-Agents for the Internet. In Proceedings
of the 4th International Conference on MultiAgent Systems (ICMAS 2000), pp. 465-466,
Boston, MA, USA, July 2000.

7. Sycara, K., Paolucci, M., Soudry, J., Srinivasan, N.: Dynamic Discovery and Coordination
of Agent-Based Semantic Web Services. IEEE Internet Computing, Vol. 8, n. 3, pp. 66-73,
May/June 2004.

8. Piedad, F., Hawkings, M.: High Availability: Design, Techniques and Processes, Prentice
Hall PTR, 1st Edition, December 2000.

9. Agarwal, V., et al. A Service Creation Environment Based on End to End Composition of
Web Services. In Proceedings of the 14th International Conference on World Wide Web
(WWW 2005), pp. 128-137, Chiba, Japan, 2005.

10. Srinivasan, N., Paolucci, M., Sycara, K., CODE: A Development Environment for OWL-S
Web services. Technical Report CMU-RI-TR-05-48, Robotics Institute, Carnegie Mellon
University, October, 2005.

11. Kawamura, T., et al, Web Services Lookup: A Matchmaker Experiment. IEEE IT Profes-
sional, vol. 7, n. 2, March/April 2005.

12. Decker, L., Williamson, M., Sycara, K., Matchmaking and Brokering. In Proceedings of the
2nd International Conference in Multi-Agent Systems (ICMAS’96), Kyoto, Japan, Decem-
ber 1996.

13. Facciorusso, C., et al, A Web Services Matchmaking Engine for Web Services. In Proceed-
ings of the 4th International Conference on e-Commerce and Web Technologies, Prague,
Czech Republic, September 2-5 2003.

14. Hoffner, Y., Facciorusso, C., Field, S., Schade, A., Distribution Issues in the Design and
Implementation of a Virtual Market Place. Computer Networks: The International Journal
of Computer and Telecommunications Networking, vol. 32, issue6, pp. 717-730, Elsevier
North-Holland, New York, USA, May 2000.

15. Vausdevan, V., Augmenting OMG traders to handle service composition. Object Services
and Consulting Inc., September 15 1998.

16. Bonino da Silva Santos, L.O., Semantic Services Support for Context-Aware Platforms,
Master Dissertation, Universidade Federal do Espírito Santo, Vitória, Brazil, September
2004.

27

