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Abstract. Telecommunication companies are struggling to provide their users 
with value-added services. These services are expected to be context-aware, at-
tentive and personalized. Since it is not economically feasible to build services 
separately by hand for each individual user, service providers are searching for 
alternatives to automate service creation. The IST-SPICE project aims at devel-
oping a platform for the development and deployment of innovative value-
added services. In this paper we introduce our algorithm to cope with the task 
of automatic composition of services. The algorithm considers that every avail-
able service is semantically annotated. Based on a user/developer service re-
quest a matching service is composed in terms of component services. The 
composition follows a semantic graph-based approach, on which atomic ser-
vices are iteratively composed based on services' functional and non-functional 
properties. 

1 Introduction 

Advances in mobile communications and devices triggered a multitude of new and 
innovative services and business areas. For example, value-added services are being 
proposed by telecommunication companies and service providers, aiming to provide 
personalized, context-aware and attentive services to end-users. The IST-SPICE (Ser-
vice Platform for Innovative Communication Environment) project [1] aims at devel-
oping a platform to be used by end-users and application developers for the develop-
ment and deployment of innovative services. SPICE services are composed based on 
a collection of components, whose services can be published and used in service 
compositions by end-users and application developers. This is made possible by ap-
plying Web Services technology [2] and the Service-Oriented Architecture (SOA) 
principles [3]. 

Since it is not economically feasible to build services separately by hand for each 
individual user, and furthermore, it is hard to predict at design time what personalised 
services the user may wish, a lot of attention has been given lately to the (semi-) 
automatic composition of services [9, 10]. Automatic service composition starts with 
a service request describing the service desired by an end-user or service developer. If 
there is no service already available that matches the request, a composition of other 
available services that match the request is constructed. These available services are 
denoted here as atomic services. In the SPICE project these services are specified in a 
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language called SPATEL (SPice Advanced service description language for TELe-
communication services) [4]. This language allows the specification of services in a 
platform independent manner, including annotations concerning semantic and non-
functional properties. Such annotations are imperative in the context of automatic 
service composition. 

One of the activities of the SPICE project is the development of an Automatic 
Composition Engine (ACE), which should support end-users and application design-
ers on the development of service compositions. The ACE is expected to receive 
either service requests from end-users in natural language, or from the application 
designers in some well-defined notation, and deliver a service composition or a list of 
alternative compositions, respectively. This paper discusses our ideas concerning the 
automatic service composition algorithm. Our approach relies on the use of semantic 
annotations on the atomic services, and on service requests, to perform the service 
discovery, matching and composition. We define our approach as a semantic graph-
based automatic composition, where discovered services are represented in a graph, 
which is used to optimize the search of component services and their composition. 

The paper is further organized as follows: section 2 provides some motivation for 
our work, including a motivating example of application of automatic service compo-
sition; section 3 gives an overview of the SPICE Automatic Composition Engine; 
section 4 presents our initial approach towards the algorithm for automatic service 
composition; section 5 compares our approach with some related work; and section 6 
presents our conclusions and depicts directions for future work. 

2 Automatic Service Composition 

Automatic service composition aims at automatically composing services that satisfy 
a given service request from an end-user or service developer. Services are composed 
in terms of already available atomic services, which are orchestrated in the service 
composition.  

Service requests are used for service discovery, matching and composition. Service 
requests allow end-users or service developers to specify what they want the service 
to do for them, abstracting from the way this service is implemented, possibly in 
terms of a composition of atomic services. In SPICE we are developing the Service 
Creation Environment, which should create service compositions that support the 
service requested by an end-user. In order to obtain these compositions automatically, 
the service request and service descriptions of atomic and composite services need to 
be annotated with semantics, by using ontologies. Web services [2] are basic building 
blocks for the realization of services, but they lack semantics. Semantic Web [5] is an 
effort that provides service descriptions with semantics, which enables automatic 
reasoning on these descriptions. OWL-S [6] and SPATEL [4] allow the definition and 
creation of semantic annotated (web) services, using ontologies. These technologies 
are expected to enable automatic service composition. 

A scenario to illustrate automatic service composition is the following: Bob wants 
to send a happy birthday message in Italian to Monica by SMS. He does not speak 
Italian so he has to use a dictionary in order to be able to write the message. Imagin-
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ing that Bob has access to the SPICE platform or another platform that supports auto-
matic service composition, he may issue to the platform the command send “Happy 
Birthday my dear!” translated in Italian to +393123456789. In this case it is highly 
probable that there is no single service to accomplish this task, so the platform at-
tempts to find an appropriate service composition for that. Two services may have to 
be used, namely a translator and an SMS messaging service. This process relieves 
Bob from the hassle of manually discovering each required service and invoking 
these services. 

3 SPICE Automatic Service Composition Engine 

The SPICE Automatic Service Composition Engine (ACE) contains four basic com-
ponents: Semantic Analyzer, Composition Factory, Property Aggregator and 
Matcher. Fig. 1 depicts the ACE architecture. 

Fig. 1. SPICE ACE architecture. 

Fig. 1 represents the two basic ACE usage scenarios: an end-user issues a service 
request in natural language, and a service developer issues a service request in some 
well defined formalism. The end-user is shielded from the system's complexity by 
requesting services in natural language. These requests are processed by the Semantic 
Analyzer, which constructs a formal service request according to the ACE's service 
request formalism, which is the same formalism used by the service developer. 

When a service request is defined, the Composition Factory queries the service re-
pository for a service that matches this service request. If such a match exists, the 
matching service is returned. In case no match is found, the Composition Factory 
creates a composite service that resolves the request. In general the Composition 
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Factory may generate multiple alternative compositions that match the service re-
quest. 

Factory may generate multiple alternative compositions that match the service re-
quest. 

Services and service requests are characterized by their functional and non-
functional properties. Functional properties are the services' goals, inputs, outputs, 
preconditions and effects. These properties are used to perform the service discovery, 
matching and composition. Examples of non-functional properties are cost, security, 
performance, reliability, etc. Non-functional properties are used to limit the space of 
compositions that fulfil the service request, and to rank the generated set of composi-
tions. Service and service request descriptions contain the functional and non-
functional properties and the ontologies used to define these properties. 

The compositions produced by the Composition Factory are passed to the Property 
Aggregator component, which computes the non-functional properties of the resulting 
compositions, by aggregating the non-functional properties of the atomic component 
services. 

The set of generated composite services is then passed to the Matcher component. 
This component performs a matching between the composed and requested services, 
using their non-functional properties. In the end-user's use case, the best matching is 
returned to the end-user. This matching is obtained by taking the user profile and 
context information into consideration, which are managed by the SPICE platform. 
For a developer's request, several compositions may be returned. The developer can 
select the one that best fits his needs, possibly adapting it to fit more specific needs. 

4 Semantic Graph-Based Composition of Web Services 

The Composition Factory takes a formal request from an end-user or a service devel-
oper, and tries to find a service composition that matches the service request. In case 
a single service that matches the service request already exists, this service is returned 
as result. 

4.1 Algorithm  

In ACE, a formal service request contains the following elements: inputs, outputs, 
preconditions, effects, goals, non-functional properties and a list of domain ontolo-
gies. These elements are defined in OWL [15], and are used to discover, match and 
compose services. Available services are specified in SPATEL, and provided with 
semantic annotations similar to the elements above. This allows these services to be 
discovered through the goals of a service request, and then composed with other ser-
vices by matching their interfaces in terms of inputs, outputs, preconditions and ef-
fects. In this paper we omit preconditions and effects in order to simplify the presen-
tation of the algorithm. We expect that the addition of these elements to the algorithm 
is straightforward, since they can be seen as special cases of inputs and outputs, re-
spectively. 
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The Composition Factory obtains service compositions by composing services ac-
cording to a graph-based algorithm. The composition is created using an approach 
that starts with the outputs and possibly effects, and works backwards in the direction 
of the inputs and possibly preconditions. This implies that semantic descriptions of 
goals, inputs and outputs are compulsory for the ACE otherwise service discovery, 
matching and composition is not possible.  

The algorithm holds a set of nodes N to be processed. Each element of N repre-
sents a set outputs o and goals g that do not match the inputs of the service request. 
The algorithm starts with a node n0 representing the outputs and goals of the original 
service request o0 and g0, and issues a query for all the services that provide outputs 
o0, support goals g0 and requires the same inputs as the service request (i0). In case a 
service that matches this query is found, the set of nodes N becomes empty and the 
algorithm can stop. In case the query returns a service s1 that supports part of the 
goals g0, delivers outputs o0 but does not match the inputs i0, the remaining goals g1 
are stored in the set of nodes N with the remaining inputs i1 of the found service with 
respect to i0 indicated as outputs. The algorithm then processes each node ni by query-
ing the service repository for services that match the goal gi and the outputs oi, and 
either decides to stop on this branch, or add more nodes to N, depending on the result 
of the query. 

Fig. 2 shows the steps of our composition algorithm. 

 
Fig. 2. Service composition algorithm. 

The algorithm delivers a composition graph as result, with possibly several 
branches representing alternative service compositions going from the requested 
inputs i0 to the requested outputs o0 and covering the requested goals g0. The algo-
rithm can execute indefinitely if matches are not found, or may result in compositions 
of too many component services. This implies that some heuristics must be defined to 
limit the algorithm execution and yet deliver useful results. Some possibilities are: 
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− stop at some graph depth, i.e., when the branches reach a certain number of 
edges. Since branches represent compositions, these heuristics limit the number 
of services in a composition; 

− use non-functional properties of the composed service to select compositions 
that comply to the service request. This requires the calculation of the non-
functional properties of the composed services, which can be done by aggregat-
ing the non-functional properties of the component services. By selecting only 
compositions that comply with non-functional properties, again the number of 
services in a composition is limited. 

A measure of semantic similarity [7, 8] can also be used to determine the semantic 
distance between the query and the resulting services. This allows the algorithm to 
generate composition graphs with alternative semantically close branches, which can 
be useful in case no perfect match is found. 

4.2 Example 

We present an example to illustrate our automatic service composition algorithm. 
Considering the example in which Bob wants to send an SMS message in Italian to 
Monica (see section 2). Bob specifies its request in natural language as: send “Happy 
Birthday my dear!” translated in Italian to +393123456789. Since Bob is using the 
SPICE platform, a concrete service composition is going to be constructed at runtime, 
in order to cope with Bob’s natural language service request. The ACE’s Semantic 
Analyser extracts the desired service properties, creates a formal service request and 
passes it to the Composition Factory component. The formal service request can be 
represented as: 

 
<Input>  

<”Translation:Language” name=”sourceLanguage”> 
<”Translation:Language” name=”targetLanguage”> 
<”Translation:Text” name=”textToTranslate”>  
<”Mobile:Telephone” name=”destNumber”>  

</Input> 
<Output/> 
<Goal> 

<”Goal:translate”> 
<”Goal:sendSMS”>  

</Goal> 
<Non-functional> 

<”Latency:Response” value=5>  
</Non-functional> 
<Ontologies> 

<Goal Mobile Latency Translation IOTypes> 
</Ontologies> 

Fig.3 shows part of the Translation ontology that we assume in this example.  
The Composition Factory takes this request and queries for a service that matches 

the inputs, outputs and goals. Suppose no service matches these elements, but the 
query returns the service with a sendSMS goal, matching Goal:sendSMS and no out-
puts, matching the outputs of the original service request. The sendSMS service is 
added to the composition graph, and a node representing the inputs of this service and 
the remaining (unsolved) goal is added to the set of nodes N. The inputs of the 
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sendSMS service are destNumber and the text message to be sent. destNumber is of type 
Mobile:Telephone and corresponds to the telephone number given in the natural lan-
guage request. The text message does not match the original input text of the service 
request since it is not in Italian. This means that a service with goal Goal:translate 
is necessary to provide an output of the type Translation:Text that is in Italian. Fig. 3, 
shows an excerpt of a Translation ontology that can be defined for this example. This 
ontology relates Text to the Language in which it is written. The translation service 
(not explicitly specified here) can translate text in one (source) language to text writ-
ten in another (target) language. In this concrete example the translation is from Eng-
lish to Italian, which corresponds to the sourceLanguage and targetLanguage, respec-
tively. 

 

 
Fig. 3. Excerpt of the Translation ontology for our example. 

We assume that the Translation service is found as a result of querying for a service 
that supports the Goal:translate goal and supports English and Italian as inputs for 
sourceLanguage and targetLanguage (the current node ni). In this way the inputs of the 
original service request are completely resolved, and the composition process can 
stop, resulting on a composition of the services Translation and sendSMS. 

 
Fig. 4. Service composition example. 
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Fig. 4 depicts the composition process in terms of the services obtained throughout 
the process. Fig. 4 (c) shows the resulting composition. In SPICE, compositions are 
represented as SPATEL specifications, which could be translated to BPEL or exe-
cuted directly by a SPATEL engine (currently being developed). 

5 Related Work 

In this section we present a brief overview of some techniques that cope with auto-
matic service composition. For a detailed survey we refer to [9, 10]. We consider two 
techniques, namely graph-based and interface-matching automatic composition. 

In [11], the authors propose a graph-based approach that constructs a composite 
service out of atomic services in case no single atomic service can satisfy a request. 
OWL-S [6] is used to describe the web services, in terms of inputs, outputs and exe-
cution workflow. A formalism and modelling tool called “interface automata” [12] is 
used to represent web services’ information and perform compositions. Atomic ser-
vices are stored in the repository as a graph, where nodes represent input and output 
parameters and edges represent web services. Each web service contains a description 
of its inputs, outputs and a dependency set of other web services. Given the graph, the 
previous information is used to discover the compositions that satisfy the request. The 
compositions can be constructed using four basic operations, namely concatenation, 
conditional structure, parallel structure and loop structure. When the compositions 
that match the request are discovered on the graph, they are passed to the interface 
automata tool, which performs the composition of the service based on the defined 
operation structures. If several alternative compositions are found, no mechanism for 
optimal selection is provided. There are no stop conditions either, which may compli-
cate the search when several compositions do match the request. 

The Interface-Matching Automatic (IMA) composition [13] aims at the generation 
of composite services by capturing expected service outcomes when a set of inputs is 
provided by the user. The result is a sequence of atomic services, whose combined 
execution achieves the user goals. Semantic web techniques are used to specify ser-
vice semantics. Terms and concepts such as inputs, outputs and goals are described 
using the DAML-S service ontology [14]. Having this representation it is possible to 
proceed to the construction of composite services. The IMA service composition 
technique extracts inputs, outputs and constraints from the user request and navigates 
through the ontology to find the service sequences that match the user’s input. After 
that, it chains services until they deliver the expected output. The goal is to find a 
composition that produces the best match within the shortest path in the graph, by 
using the notion of semantic similarity as matching metrics. Our proposed algorithm 
can be considered as an extension of this algorithm for what concerns the use of the 
non-functional constraints to select compositions.  
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6 Conclusions and Future Work 

In this paper we present our initial proposal for the automatic service composition 
algorithm of the SPICE project. Fully automated composition is still an open research 
issue, and not many concrete results have been achieved in this area yet. By assigning 
semantic annotations to services, reasoners can be applied to automate the composi-
tion process to some extent. The application of these techniques to solve realistic 
service composition problems is yet to be assessed. 

Our approach is based on semantic graph composition, and considers that service 
requests and service descriptions define functional and non-functional properties of 
required and offered services, respectively. We propose an algorithm for the Compo-
sition Factory that uses service goals and input/output matching to perform service 
composition. We assume the availability of a repository, organized according to do-
main ontologies. The Composition Factory is in principle capable of creating different 
alternative compositions that match the service request. The algorithm has been ex-
plained and a simple example has been used to illustrate its basic operation. 

Our algorithm is still under development, and some improvements are expected to 
take place. Once we have a prototype, we expect to explore and improve several 
points of our algorithm, namely: the optimization of the composition process, the use 
of similarity measures in case no composition fulfils completely a service request; 
and the possible storage of service compositions created before for using in new 
compositions. 
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