
SOLVING DESIGN ISSUES IN WEB META-MODEL APPROACH 
TO SUPPORT END-USER DEVELOPMENT 

Buddhima De Silva and Athula Ginige 
University of Western Sydney, Locked Bag 1797, Penrith South DC, 1719, NSW, Australia 

Keywords: Meta-model, end-user development, web application. 

Abstract: End-user development is proposed as a solution to the issues business organisations face when developing 
web applications to support their business processes. We are proposing a meta-model based development 
approach to support End-User Development. End-users can actively participate in web application 
development using tools to populate and instantiate the meta-model. The meta-model has three abstraction 
levels: Shell, Application and Function. At Shell Level, we model aspects common to all business web 
applications such as navigation and access control. At Application Level, we model aspects common to 
specific web applications such as workflows. At Function Level, we model requirements specific to the 
identified use cases. In this paper we discuss how we have solved the issues in application development for 
business end-users such as need for central repository of data, common log in, optimizing user model, 
application portability and balance between “Do it Yourself” (DIY) and professional developers in 
hierarchical meta-model approach. These solutions are being incorporated into Component based E-
Application Development and Deployment Shell (CBEADS©) version 4, supporting meta-model 
implementation. We believe that these solutions will help end-users to efficiently and effectively develop 
web applications using meta-model based development approach.  

1 INTRODUCTION 

The characteristics of the web such as ubiquity and 
simplicity make it a suitable platform to disseminate 
information and automate business processes. 
AeIMS research group at University of Western 
Sydney has been working with businesses in 
Western Sydney region to investigate how 
Information and Communication Technologies 
(ICT) can be used to enhance their business 
processes (Arunatileka and Ginige, 2004), (Ginige, 
2006), (Ginige, 2005). In this work, we have 
identified many issues Business users have to 
overcome when trying to implement web 
applications (Ginige, 2005). These issues vary from 
not being able to get web applications developed to 
meet needs of the business in a timely manner to 
development projects running over budget. The 
development approach should also reduce the gap 
between what the users actually wanted and what is 
being implemented in terms of functionality (Epner, 
2000). Researchers propose to empower end-users in 
web application development as a solution to these 
issues (Ginige, 2005), (Ginige and De Slva, 2007), 

(Costabile et al., 2005), (Fischer and Giaccardi, 
2005), (Fischer et al., 2004). 

There are different approaches suggested to 
empower end-users. One approach is to provide end-
users with tools to develop any kind of web 
applications such as informational, search directory 
and directory look up, workflow and collaboration, 
e-commerce and web portal, etc. However, such tool 
will become complex because it has to cover a 
variety of features (Ginige, 2005). The other 
approach is to develop different tools to support 
different types of web applications. Our approach 
falls in to the second category. We have analysed the 
requirements for many business web applications. 
We identify that users need to store, process and 
reporting information. Sometimes the information 
may flow from one person to another in a business 
process such as a leave form being forwarded to the 
manager for approval. Thus business web 
applications have the “store-process-report 
information” pattern. Therefore meta-models for 
business web applications at conceptual level are 
form being routed based on rules, store information 
entered through forms, and produce reports. 

298
De Silva B. and Ginige A. (2007).
SOLVING DESIGN ISSUES IN WEB META-MODEL APPROACH TO SUPPORT END-USER DEVELOPMENT.
In Proceedings of the Second International Conference on Software and Data Technologies, pages 298-304
DOI: 10.5220/0001348202980304
Copyright c© SciTePress



 

Example instance of that meta-model is a leave 
processing system where employees can apply for 
leave. Meta-model elements are high level abstract 
concepts such as user, role, form User Interface and 
business object.  

We have encountered the design issues for 
business end-users such as need for a corporate 
information repository, common log in facility for 
all the applications with in the organization, sharing 
user attributes between different applications, 
separate the development tasks at granular level of 
aspects and application portability. In this paper we 
discuss how we address these design issues in the 
hierarchical meta-model to support the development 
of business web application. In section 2 we discuss 
the solutions to the design issues and section 3 
presents the hierarchical meta-model. In section 4, 
we discuss the logical architecture of Component 
based CBEADS© framework that supporting the 
meta-model. Section 5 reviews the related work and 
section 6 concludes the paper. 

2 SOLVING DESIGN ISSUES IN 
META-MODEL 

A business organization has systems in place for 
proper operation of the organization. We develop 
web based information systems to support these 
systems to get the competitive advantages. Similar 
to organization holding the systems we develop a 
shell to hold the applications that are supporting the 
system. In other words the shell becomes the 
container for the applications. We view an 
application as a collection of functions. For example 
the leave processing application can have functions 
such as apply leave, approve leave, view leave 
history, etc. Functions deliver the functionality the 
users expect from an application. In the following 
sub sections we discuss how we solved the above 
mentioned design issues.  

2.1 Corporate Information Repository 

In a business organization we need to maintain a 
common data repository. This will avoid duplication 
of data which is a problem in having stand alone 
applications. It is required to manage the integrity of 
data for efficient use of information. We also need to 
facilitate sharing the corporate data between 
different applications to achieve efficient use of 
information. That means applications with in the 
shell need a common repository of objects.  

 During the development time we create/modify 
the business object definitions and relationships with 
in the application. But these business objects are 
stored at the shell level. Therefore all the 
applications with in a shell can use the same 
business object thus avoiding any duplication. The 
application that created the business object becomes 
the owner of that. Other applications can use the 
business object. They can extend the business object 
by adding more attributes. But they can’t 
delete/change existing attributes. Shell/Application 
becomes the name space for the business objects. 
The central repository also helps to manage the data 
easily. Therefore the data management operations 
such as back up, recovery are available at the shell 
level.  

2.2 Common Log in to All Applications 

Once a user log in to a system he/she should be 
authenticated to all the functions which he is 
authorized to access. This helps to use their time 
efficiently. Having all the applications with in a 
shell, it facilitates to maintain a common login. The 
basic user object has user name, password name and 
e-mail address at this level. Name and e-mail 
address are used by the shell to communicate with 
user. For example, if user request for password 
retrieval it needs to be happened at the shell level 
and the shell uses the e-mail address to communicate 
with the user. User object is a special type of object 
with predefined template consisting of basic user 
attributes such as user name, password, first name, 
last name and e-mail. 

2.3 Optimised User Model 

Sometimes applications may want to record other 
attributes for the users. For example, in the leave 
application we may need to record the department of 
the employee to route the leave application correctly 
to his/her head of the department. That means we 
have to record head of the department for employee 
users. These user attributes are derived from the 
relationship “user plays the role of employee”. We 
model the roles as groups. Similar to different 
applications sharing objects we may want to share 
the attributes at the group level. For example user 
group employee and head of the department both 
may need to record the attribute “department”. Same 
time if a user becomes a member of both groups we 
want to use the same attribute value to minimize 
data entry and to avoid inconsistencies. 

SOLVING DESIGN ISSUES IN WEB META-MODEL APPROACH TO SUPPORT END-USER DEVELOPMENT

299



To solve these design issues we maintain a list of 
common group attributes at shell level. This 
facilitates sharing the group attributes between 
groups. For example, if end-user creates the 
employee object with attribute department, then it 
will be added to the group attribute list. Next time 
user create a group called head of department he can 
reuse the attribute definition “department”. Then for 
each user we maintain the list of attributes in a user 
attribute object. This allows us to reuse the attribute 
values for same user.  

2.4 Balance between DIY and 
Professional Developer  

The research on end-user mental model shows that 
end-users have only little or no attention to low level 
critical concerns such as session management, 
database connection, etc (Rode et al., 2004). 
Therefore in the meta-model approach we model the 
aspects of web applications using high level 
abstractions such as user, object, process, hypertext 
and presentation. End-users may be able to model 
some of these aspects. In meta-model we provide the 
default models of these aspects to assist the end-user 
developers. For example, if end-user wants he/she 
can develop a web application with the default 
presentation style provided with in the meta-model. 
That means application can inherit the attributes 
defined at the shell level in the hierarchical meta-
model. On the other hand we can override the shell 
level attributes at the application level. For example, 
if end-user wants a custom look and feel he may get 
a professional developer to do that for him. 
Inheritance and overriding at different levels help 
end-users to trade off between DIY and use of 
professional developer.  

2.5 Application Portability 

While solving all the above mentioned design issues 
we may also need to port the applications from one 
server to another. Since we create objects, group etc. 
with in an application, we store all these models at 
the application level. This will improve the 
portability of applications.  

3 HIERARCHICAL META 
MODEL OF BUSINESS WEB 
APPLICATIONS 

As mentioned previously we view a Web based 
business application as an instance of the meta-
model. Theoretically by creating appropriate meta-
model and developing tools to populate the instance 
values we can generate business applications. In 
practice creating this meta-model to support end-
user development is not easy because of the 
complexities of business applications. To manage 
the complexity we developed the meta-model at 3 
levels of hierarchical abstraction called Shell, 
Application and Function as shown in figure 1.  

 

• Shell Level: Aspects common to many web applications 
such as user, navigation are modeled at shell level.  

• Application Level: Aspects common to a web application 
such as workflow is modeled at this level. 

• Function level: The function specific aspects required to 
implement the functionality are modeled at function level. 
Examples are user interface model UI and action model. 

Figure 1: Hierarchy of Abstraction Levels of Meta-Model. 

Shell Level 
We analysed many business applications to identify 
common functionality required in most of the web 
applications. These common functionalities are 
executed at the shell level. User model, Access 
Control model, Navigation Model and Business 
Object Model are four models stored at this level. 
Shell level of meta-model is shown in figure 2. Each 
user has a profile. Profile can have many properties 
such as name, address, e-mail address, etc. User can 
play many roles. Role can have role attributes. A 
role can have one or more users. Each role has 
functions in an application assigned to it. 
Application has presentation properties. Each 
function associate to a menu link. Business Objects 
have many attributes and associations. 

ICSOFT 2007 - International Conference on Software and Data Technologies

300



 

 
Figure 2: Shell level of meta-model. 

User Model 
There are users/participants who play different roles 
in any web application. Role has role attributes. User 
Model defines the user’s profile and the roles users 
assigned to in a business web information system. 
The user model is used to authenticate the users. In 
user profile at least we maintain the properties user 
name, password, first name, last name and e-mail.   

Function Level Access Control Model 
Every business application has persistent functions 
which users want to use. Users are authorized to 
perform the functions based on the function level 
access control model. For example in a “Leave 
Processing Application” we can have a function for 
an employee to submit a leave application. We use 
function level access control model to authorise the 
authenticated users to access functions. Function 
level Access model defines the function of the 
applications and the roles that can access the 
functions. 

Navigation Model 
Navigation model is the mechanism that 
authenticated users can use to access the authorized 
functions. We have identified two types of 
functions: State independent functions and State 
dependent functions. In the leave processing system 
the functions like “apply for leave”, “view leave 
history, which are always available to authorized 
users, are examples of state independent functions. 

These functions are independent from the state of 
any processes. Once a user log in, user will be 
provided with a menu to access state independent 
functions based on the navigation model. On the 
other hand, the “approve leave application” and 
“process leave application” are examples of state 
dependant functions. These functions are available 
to users only if a leave form is waiting for approval 
or processing for that particular user at that time. We 
have a menu “My Tasks” with links to access such 
functions in all applications at one place. Navigation 
model defines the menu link and navigation type for 
functions. 

Common Business Object Model 
We need to share data between applications. 
Common Business Object model defines the shared 
data in the web business system. For example, 
business objects such as ‘employee’, ‘Products’, etc. 
which are used in many applications are kept at 
Shell level. In other words the corporate data 
repository is managed in the shell. Business objects 
define attributes and relationships between the 
objects. 

Application Level 
As mentioned earlier an application consists of many 
functions. Therefore, application consists of models 
which support many functions. The Application 
level of the meta-model is shown in figure 3. 
Application inherits the function level access 
control, common business objects and navigation 
models from the shell level. It consists of workflow 
model, instance level access model and application 
specific object models. 

Workflow Model 
In a web application, the business rules govern what 
happens next when a function is performed. In the 
leave application example when an employee 
submits a leave form a link to access the function to 
approve the leave should become visible to the 
Manager. Conditional rules can also be associated to  

 
Figure 3: Application Level of the meta-model. 

SOLVING DESIGN ISSUES IN WEB META-MODEL APPROACH TO SUPPORT END-USER DEVELOPMENT

301



the flow. For example, we have a rule to say leave 
applications for a period of more than 3 months 
should be approved by Director of the company. 
Once it is approved by head of the department it 
should get directed to the Director instead of human 
resource division. We define the flow at the 
application level in the workflow model. Workflow 
model defines the state, entry condition, exit 
condition, transition, transition activity, exit 
condition. Transition also associated with a function 
and UI action. 

Instance Level Access Model 
When the business objects are accessed through the 
functions there could be rules specifying who can 
access what instances of a Business object. For 
example, if the organisation has a Sales division, 
Production division, Accounting Division, etc., then 
it may be necessary to specify that the leave form 
from an employee in a particular division needs to 
be approved by the Manger of that division. By 
applying the instance level access rules we can 
identify the ‘project team’ that participates in actions 
in functions in the workflow. Instance level access 
control model defines the project team, the members 
of the team and the activities waiting for their action 
at a given time. 

Application Specific Business Objects 
The Application may have business objects specific 
to the application. Examples of application specific 
business objects are reference data objects used in an 
application such as leave types. That means these 
data may use only within the application namespace. 
However, if the user wants he can store them at shell 
level. 

Function Level 
Functions are the way of performing the actions in 
an application. The UI is the mechanism to perform 
the functions. UIs, Business rules associate with UI 
elements in input mode and UI Action models are 
defined at the function level. The function level 
meta-model is shown in figure 4. 

 
Figure 4: Function level of the meta-model. 

User Interface Model 
The user interface model defines the interfaces used 
in functions of the application. User Interface Model 
consists of UI guide, UIElementGroup, and or 
UIElements, and UI Actions. UI elements can be in 
input mode or output mode. In a form we have UI 
elements in Input mode. In a report we have UI 
elements in output mode. UIGuide provide the 
guidelines to use the particular interface. For 
example, in a form interface, the guidelines can help 
the users to understand the purpose of the form UI. 
In a report interface, the guidelines can help the 
users to interpret the report properly. UI is 
associated with a business object which binds with 
the interface. For a UI element in input mode, we 
can also have associated help tip. Help tips help 
users to fill the values of the form UI element 
correctly. Sometimes, it is required to logically 
group UIElements. For example a product order 
may include more than one product. The data 
required for each product order can consist of 
quantity of product and price of product. Thus, 
product details can be in a UIElement group of the 
order UI. UI Actions such as add product, amend 
product actions can be associated with that 
UIElement group. Order UI Model can have UI 
Action to process the order.  

Logic Model 
At function level we model two types of business 
rules. One type is the business rules used to derive 
new object attribute values based on existing object 
attribute values. For example an organisation might 
give discounts based on quantity purchased; such as 
5%, 10% and 15% for 10, 100 and 1000 items 
purchased. Thus we can derive new object attribute 
total cost based on the base price, quantity purchased 
and applicable discount. The other category is the 
validation rules applied over values of form field in 
a user interface. Example for a validation rule is 
quantity must be a number.  

UI Action Model 
The user actions in UI model also modeled at 
function level. Example activities that can happen in 
an action model are state updates in the workflow or 
updates to a business object. 

ICSOFT 2007 - International Conference on Software and Data Technologies

302



 

4 COMPONENT BASED  
E-APPLICATION 
DEVELOPMENT  
AND DEPLOYMENT SHELL  

The logical architecture of a CBEADS© Application 
is created based on MVC Architecture pattern 
introduced in 1979 by Reenskaug (Reenskaug, 
1979). It is shown in figure 5. The information flow 
between controller and application is described 
below:  
• Controller receives the user actions. 
• Controller checks the access rights with the 

Access Control and authorise access. 
• Controller invokes the Application Function. 
• Application function then retrieves or modifies 

the Data. 
• Application sends the view information to the 

View Generator. 
• View Generator applies the presentation 

information to the view and sends the web UI to 
the user’s browser.  

 
Figure 5: Logical Architecture of a CBEADS© 
Application.  

5 RELATED WORK  

Several different meta-models exist for web 
applications based on Meta Object facility and UML 
profiles. These meta-models want to achieve 
interoperability and standardized the web models. 
One such model is UWE meta model (Kraus and 
Koch, 2003). It is designed as an extension based on 
Meta Object Facility (MOF 1.4). The objective of 
UWE meta-model is to provide a common meta-
model for the web application domain, which will 
support all web design methodologies. W2000 
(Luciano et al., 2005), a successor of HDM 
(Garzotto et al., 1993), focus on model semantics 
and transformation rules to achieve consistency 

between models. Muller et al. (Muller et al., 2005) 
present a model-driven design and development 
approach with the Netsilon tool. The tool is based on 
a meta-model specified with MOF 1.4 and the Xion 
action language. Recently another two meta models 
(Schauerhuber, 2006), (Nathalie et al., 2006) based 
on MOF and UML 2 profiles are presented for 
WebML design methodology with the objective of 
interoperability.  

All these meta-models of web applications are 
towards the precise definition of the semantics of 
existing web models. They are committed to be 
MDE compliant and achieve interoperability. 
However, they are more focused towards generating 
web applications from models. Our work is 
complementary to existing web meta-models, in that 
we propose a meta-model with new semantics which 
helps to effectively involve end users in 
development.  

6 CONCLUSION 

In this paper we have presented a hierarchical meta-
model enabling business end-user to develop web 
applications. Most importantly we have addressed 
issues when using meta-model based approach to 
web application development for a business 
organization. This will help end-users to develop 
their web applications in an efficient and effective 
way.  

REFERENCES 

Arunatileka, S. and A. Ginige. Applying Seven E's in 
eTransformation to Manufacturing Sector. in 
eChallenges. 2004. 

Ginige, A. From eTransformation to eCollaboration: 
Issues and Solutions. in 2nd International Conference 
on Information Management and Business (IMB 
2006). 2006. Sydney, Australia. 

Ginige, J., A., B. De Silva, and A. Ginige. Towards End 
User Development of Web Applications for SMEs 
Using a Component Based Approach. in International 
Conference on Web Engineering ICWE05. 2005. 
Australia. 

Epner, M., Poor Project Management Number-One 
Problem of Outsourced E-Projects, in Research 
Briefs, Cutter Consortium, 2000. 

Ginige, A. and B. De Silva. CBEADS: A framework to 
support Meta-Design Paradigm. in 3rd International 
Conference on Universal Access in Human-Computer 
Interaction (UAHCI07). 2007. China. 

SOLVING DESIGN ISSUES IN WEB META-MODEL APPROACH TO SUPPORT END-USER DEVELOPMENT

303



Costabile, M., F., et al. A meta-design approach to End-
User Development. in VL/HCC05. 2005. 

Fischer, G. and E. Giaccardi, A framework for the future of 
end user development, in End User Development: 
Empowering People to flexibly Employ Advanced 
Information and Communication Technology, H. 
Lieberman, F. Paterno, and V. Wulf, Editors. 2005, 
Kluwer Academic Publishers. 

Fischer, G., et al., Meta Design: A Manifesto for End -
User Development. Communications of the ACM, 
2004. 47(9): p. 33-37. 

Rode, J., M.B. Rosson, and M.A. Perez-Quinones. End-
Users' Mental Models of Concepts Critical to Web 
Application Development. in 2004 IEEE Symposium 
on Visual Languages and Human Centric Computing 
(VLHCC'04). 2004. Roma, Italy: IEEE Computer 
Society. 

Reenskaug, T. (1979) Model-View-Controllers. Technical 
Report. Vol.2. scanned copy at http://heim.ifi.uio.no/ 
~trygver/mvc/index.html. 

Kraus, A. and N. Koch, A Metamodel for UWE. 2003, 
Ludwig-Maximilians-Universität München. 

Luciano, B., C. Sebastiano, and M. Luca, First 
experiences on constraining consistency and 
adaptivity of W2000 models, in Proceedings of the 
2005 ACM symposium on Applied computing. 2005, 
ACM Press: Santa Fe, New Mexico. 

Garzotto, F., P. Paolini, and D. Schwabe, HDM — A 
Model-Based Approach to Hypertext Application 
Design. ACM Transactions on Information Systems 
(TOIS), 1993. 11(1): p. 1-26. 

Muller, P. and et.al., Platform independent Web 
application modeling and development with Netsilon. 
Software & System Modeling, 2005. 4(4): p. 424-442.  

Schauerhuber, A. Bridging existing Web Modeling 
Languages to Model-Driven Engineering: A 
Metamodel for WebML. in ICWE 2006. 2006. 

Nathalie, M., F. Piero, and V. Antonio, A UML 2.0 profile 
for WebML modeling, in Workshop proceedings of 
the sixth international conference on Web engineering. 
2006, ACM Press: Palo Alto, California. 

ICSOFT 2007 - International Conference on Software and Data Technologies

304


