A CASE STUDY ON THE APPLICABILITY OF SOFTWARE RELIABILITY MODELS TO A TELECOMMUNICATION SOFTWARE

Hassan Artail, Fuad Mrad and Mohamad Mortada

Electrical and Computer Engineering, American University of Beirut, Beirut, Lebanon

Keywords: System testing, quality assurance, system reliability, software failures, CASRE (Computer Aided Software Reliability Estimation), Software Reliability, inter-failure times, Time-Between-Failures.

Abstract: Faults can be inserted into the software during development or maintenance, and some of these faults may persist even after integration testing. Our concern is about quality assurance that evaluates the reliability and availability of the software system through analysis of failure data. These efforts involve estimation and prediction of next time to failure, mean time between failures, and other reliability-related parameters. The aim of this paper is to empirically apply a variety of software reliability growth models (SRGM) found in the CASRE (Computer Aided Software Reliability Estimation) tool onto real field failure data taken after the deployment of a popular billing software used in the telecom industry. The obtained results are assessed and conclusions are made concerning the applicability of the different models to modeling faults encountered in such environments after the software has been deployed.

1 INTRODUCTION

Test procedures should be thorough enough to exercise system functions to everyone's satisfaction: user, customer, and developer. There are several steps involved in testing a software system. They comprise unit testing, integration testing, acceptance testing, and installation testing. If the tests are incomplete, faults of various types may remain undetected, while on the other hand, complete and early testing can help not only to detect faults quickly, but also to isolate causes more easily (Pfleeger, 2001).

This paper presents a case study, in which software failures were analyzed after the completion of the software development and testing phases before deployment at the customer premises. This study is different from the traditional software reliability analysis in the sense that most reported cases were based on the development and testing phases or the operational phase, but seldom considered the software installation and implementation phases at the client site. Another important aspect that is taken up in this work is the examination of the applicability of known software reliability models to the considered system, given that such models were primarily developed to handle reliability analysis during the software testing phase (typically at the vendor’s site) while assuming fast error removal.

The studied product is a multi-component billing software used by a reputable GSM operator. It interacts with an Oracle database and with Siemens’ HLR telecommunication systems, and includes components that use the client/server model to serve more than 1300 users who access the server from their Java based client interfaces. It is worth noting that the vendor’s support team has prior experience with the implementation of such products in similar environments, but never with the same combination of client profile and third party products.

The presented research is based on collected real life failure data for a component of the software. A comparative analysis of the failure data using various statistical tests was executed in order to show the statistical model that best-fits this particular situation. A projection was then made regarding the underlying component reliability, or in other words, the maximum allowable execution time before failing again for a particular fault.
2 PREVIOUS WORK

Since the characteristics of a software system cannot always be measured directly before delivery, indirect measures can be used to estimate the system’s likely characteristics. Several software reliability (SR) models with basic SR parameters were developed. In contrast to most reliability models that assume instantaneous fault removal, Jeske, Zhang, and Pham (2001) and then Zhang, Teng, and Pham (2003) stressed that a fault may be encountered more than once before it is ultimately removed and that new faults may be introduced to the software due to imperfect debugging. Mullen (1998) argued that there is a time lag which most conventional software reliability models ignore. They considered the fault removal process with different scenarios using the state space view of the Non-Homogeneous Poisson Process (NHPP). Teng and Pham (2002) considered the error introduction rate and error removal efficiency as the key measures for reliability growth across multiple versions of a software system that was subject to continuous fault removal. The classical reliability theory was extended in the work of Goseva-Popstojanova and Trivedi (2000) to consider a sequence of possibly-dependent software runs versus failure correlation. A model, suggested by Singpurwalla (1998), involved concatenating the failure rate function while assuming that the time to next failure was greater than the average of past inter-failure times. Fault removal, repair time, and remaining number of faults were handled using a non-homogeneous continuous time Markov chain.

A criterion was proposed by Nikora and Lyu (1995) for selecting the most appropriate software reliability model from six models: Jelinski-Moranda, Geometric, Littlewood-Verral, Musa Basic, Musa-Okumoto, and NHPP. The goodness-of-fit test based on the Kolmogorov-Smirnov distance was not sensitive enough to choose the best model, but it was used as a preliminary step for filtering unsuitable ones. Huang, Kuo, Lyu, and Lo (2000) verified that existing reliability growth models can be derived based on a unified theory of well-known means: weighted arithmetic, geometric, and harmonic. According to Gokhale, Marinos, Lyu, and Trivedi (1997), commercial software organizations focus on the residual number of faults as a measure of software quality. A model was proposed to address the number of residual defects during the operational phase. Miyan, Yunfeng, and Min (2000) stressed that neither practitioners nor experts could choose a model beforehand since the assumptions of each model were difficult to prove.

3 CASE STUDY AND APPLIED RELIABILITY ANALYSIS

Software reliability models can be largely categorized into two sets: static models where attributes of the software module are utilized to estimate the number of defects in the software, and dynamic models which utilize parametric distributions and defect patterns to evaluate the end product reliability. Musa and Okumoto classified dynamic models in terms of five attributes (Musa, 2004): 1) time, 2) category (number of failures), 3) type (distribution of the number of failures), 4) class (functional form of failure intensity in terms of time), and 5) family (functional form of failure intensity in terms of expected number of failures).

3.1 Considered Models

The reliability models discussed in this paper are based on the time domain using either the elapsed time between failures or the number of failures over a given period of time. Musa (2004) identified two sets of reliability models in accordance with time between failure (TBF) and fault count models. The first group includes the Jelinski-Moranda, Non-Homogeneous Poisson Process (NHPP), Geometric, Littlewood-Verral Quadratic, Littlewood-Verral Logarithmic, Musa Basic, and Musa Logarithmic. The second group comprises the Yamada S-Shaped, NHPP, Schneidewind, Generalized Poisson, and Brook and Motley’s models.

3.2 System Description

The field failure data are taken from error log files that date back to the month of February 2006, during the initial software implementation and integration of the BSCS version 7 billing software on a clustered Tru64 Unix platform with an Oracle 9i RAC database system. The components of the BSCS billing software are integrated with other third party interfaces like the HLR system of Siemens and the Oracle production databases, which include detailed information and billing data of GSM subscribers. The connection with Siemens HLR is crucial since it involves activation of many GSM subscriber services. The interface with the Oracle database is equally critical due to the fact that all data are kept inside various production and rating databases. Furthermore, these data are accessed from around 1300 concurrent users using either an SQL interface or Java client programs through a LAN or a WAN.
The failure data was examined for any inherent trend for applicability of software reliability growth models. This is an important step where the data content implies either a growth for time-between-failures or decrease of failure counts as time progresses. Two data trend tests were used: running average test and Laplace test. The former computes the running average of time between successive failures or count of failures per time interval. For time between failures, if the running average increases with failure number, a reliability growth is implied, while for failure count data, if the running average decreases with time then reliability growth is indicated. On the other hand, the Laplace test computation is based on the null hypothesis that occurrences of failures can be described as a homogeneous Poisson process. If the test metric decreases with increasing failure number, the null hypothesis is rejected in favor of reliability growth at an appropriate significance level. Otherwise, the null hypothesis is rejected in favor of decreasing reliability (Nikora, 2000).

3.3 Raw Reliability Data Analysis

The cumulative number of 39 failures against their respective execution times is shown in Figure 1, where a saturation-like curve behavior is observed. In the subsequent sections, we divide our execution time failure data into two sets: time-between-failure and failure-count sets. This allows for applying a different set of models for every data type and having a better view of the reliability of the software under study. Moreover, our analysis for every data type-reliability model combination is done using two estimation methods: maximum likelihood estimation (MLE) and least squares estimate (LSE).

The choice of the best software reliability model that mostly fits a particular set of data type, time-between-failures, or failures count is done using the following steps (Nikora and Lyu, 1995):

1. Apply a goodness of fit test to determine which model fits the input data for a specified significance level.
2. If more than one set of results are a good fit:
 a. Choose the most appropriate model(s) based on the prequential likelihood.
 b. In case of a tie, use the model bias trend.
3. If no models provide a good fit to the data:
 a. Choose the most appropriate model(s) based on the prequential likelihood.
 b. Use techniques, such as forming linear combinations of model results or model recalibration to increase accuracy.
4. Finally, the models are ranked using the CASRE tool according to the following when applicable: prequential likelihood, Model bias, Bias trend, Model noise, and Goodness-of-fit.

![Figure 1: Cumulative number of failures of PIH component against processor execution time (hours).](image)

3.4 Time-Between-Failures (TBF)

Figure 2 shows the actual time-between-failure data, filtered with a Hann window. A running arithmetic average test showed a reliability growth starting at failure point 27 and onwards. The Laplace test showed the software starting to exhibit reliability growth at the 5% significance level until about the 34th failure, at which point the Laplace test statistic assumes a value less than -1.64495. The inserted failure data set into the CASRE software tool consisted of 38 data points. For the purpose of this test, the CASRE tool was set with a data range from 27 to 35 time-between-failures data points with the models parameters estimation end point at 30, i.e. training the models parameters from data range 27-30 before fixing them. The number of steps past the last data point in the modelling range, for which predictions are made, is selected to be 4. This way, one could see how close are each model’s first 3 failure data predictions to the true ones and look into the next future failure time and reliability.
3.4.1 TBF Analysis with the MLE Method

Table 1 is obtained after running the CASRE software tool with the selected models. The goodness of fit test is done first to determine which models are fit to the data. We consider the first three ranked reliability models and displayed their various estimates and predicted outputs. The top three fitting models in this case were: Musa-Okumoto, ULC, and Musa basic. They are ranked according to their Kolmogorov-Smirnov (KS) distance test value.

<table>
<thead>
<tr>
<th>Model</th>
<th>Distance</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Musa-Okumoto</td>
<td>0.39</td>
<td>1</td>
</tr>
<tr>
<td>ULC</td>
<td>0.36</td>
<td>2</td>
</tr>
<tr>
<td>Musa Basic</td>
<td>0.39</td>
<td>3</td>
</tr>
<tr>
<td>NHPP (TBE)</td>
<td>0.39</td>
<td>4</td>
</tr>
<tr>
<td>MLC</td>
<td>0.29</td>
<td>5</td>
</tr>
</tbody>
</table>

Figure 3 shows the fits of three top-ranked reliability models onto the actual TBF data, where the models’ estimates are plotted in the shaded region.

3.4.2 TBF Analysis with LSE Method

The information in Table 2 is obtained after running the CASRE software tool with the selected models. Out of the models that pass the fit test, we consider the Musa Basic, NHPP, and Musa-Okumoto models. As implied in the data in Table 2, the bias, prequential likelihood, and relative accuracy are not computed when employing the least squares estimation method. Figure 4 presents the fit of the three models onto the actual data points. Similar to the MLE case, the estimates of the software reliability models are plotted in the shaded region.

<table>
<thead>
<tr>
<th>Model</th>
<th>Distance</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Musa Basic</td>
<td>0.29</td>
<td>1</td>
</tr>
<tr>
<td>NHPP (TBE)</td>
<td>0.29</td>
<td>2</td>
</tr>
<tr>
<td>MLC</td>
<td>0.29</td>
<td>3</td>
</tr>
<tr>
<td>Musa-Okumoto</td>
<td>0.29</td>
<td>4</td>
</tr>
</tbody>
</table>

3.5 Failure Counts (FC)

Figure 5 shows the Laplace test results illustrating reliability growth at the 5% significance level until
about the 13th failure, at which the Laplace test assumes a value less than -1.64495.

Figure 5: Laplace trend test on raw data for FC

The failure count data set into the CASRE software tool consists of 18 data points. For this test, the tool was set up with a data range from 1 to 15 failure-count data points, with the models' parameters estimation end point at 12. This implies that the models' parameters were trained from the first 12 data points before fixing them. The number of steps past the last data point in the modelling range, for which predictions are to be made, is selected to be 4. We can see how each model’s first 3 failure data predictions came close to the true ones and also look into the next future failure count and reliability.

3.5.1 FC Analysis with MLE Method

Table 3 is obtained after running the CASRE software tool with the selected software reliability models specific to the failures count case, which divides the x-axis into equal interval of time with a length of 1.389 hours. The fit test is done first in order to determine which models best fit the actual real field failure data. We then considered the three reliability models that passed the test, as shown in the table. It is noted that the ranking was done in accordance with the Chi-Square (χ^2) value where by smaller values led to a higher ranking.

As was done earlier, we illustrate the outcome of the fit test against the raw data in Figure 6.

Table 3: Fit results for FC using MLE. χ^2 denotes Chi-Square and the fourth column stands for significance level.

<table>
<thead>
<tr>
<th>Model</th>
<th>χ^2</th>
<th>5% Fit</th>
<th>Sig. (%)</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen. Poisson</td>
<td>10.16</td>
<td>No</td>
<td>3.78</td>
<td>--</td>
</tr>
<tr>
<td>NHPP (intervals)</td>
<td>5.49</td>
<td>Yes</td>
<td>24.04</td>
<td>1</td>
</tr>
<tr>
<td>Schick-Wolverton</td>
<td>10.16</td>
<td>No</td>
<td>3.78</td>
<td>--</td>
</tr>
<tr>
<td>Schneid.-Cum. 1st</td>
<td>31.34</td>
<td>No</td>
<td>0.0</td>
<td>--</td>
</tr>
<tr>
<td>Schneidewind:all</td>
<td>5.49</td>
<td>Yes</td>
<td>24.04</td>
<td>2</td>
</tr>
<tr>
<td>Yamada S-Shaped</td>
<td>8.31</td>
<td>Yes</td>
<td>8.93</td>
<td>3</td>
</tr>
</tbody>
</table>

Figure 6: Estimated/predicted reliability for FC using MLE.

3.5.2 FC Analysis with the LSE Method

Table 4 applies to the failure count case that divides the x-axis into equal interval of time with a length of 1.389 hours per interval. The three top passing models from the fit test are illustrated in the table: Generalized Poisson, Schick-Wolverton, and Schneidewind: all. The ranking was performed according to the value of the Chi-Square test value, with a smaller value leading to a higher ranking.

Table 4: Goodness of fit results for FC using LSE.

<table>
<thead>
<tr>
<th>Model</th>
<th>χ^2</th>
<th>5% Fit</th>
<th>Sig. (%)</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen. Poisson</td>
<td>5.38</td>
<td>Yes</td>
<td>25.05</td>
<td>1</td>
</tr>
<tr>
<td>NHPP (intervals)</td>
<td>10.85</td>
<td>No</td>
<td>2.83</td>
<td>--</td>
</tr>
<tr>
<td>Schick-Wolverton</td>
<td>5.38</td>
<td>Yes</td>
<td>25.05</td>
<td>2</td>
</tr>
<tr>
<td>Schneid.-Cum. 1st</td>
<td>31.34</td>
<td>No</td>
<td>0.0</td>
<td>--</td>
</tr>
<tr>
<td>Schneidewind:all</td>
<td>5.93</td>
<td>Yes</td>
<td>24.04</td>
<td>3</td>
</tr>
<tr>
<td>Yamada S-Shaped</td>
<td>8.08</td>
<td>Yes</td>
<td>8.93</td>
<td>4</td>
</tr>
</tbody>
</table>

The fit of the three-ranked reliability models onto the actual failure data is illustrated in Figure 7, and where the models’ data point estimates are plotted in the shaded region.
4 CONCLUSIONS

Although some reliability models fitted well the time-between-failure data, all considered models with both maximum likelihood (MLE) and least squares (LSE) methods did not initially pass the goodness-of-fit test when applied to the whole range of the non-filtered data. Existing reliability models considered fault removal upon detection and hence, could not initially be suitable for our application since the detected faults were never removed during software installation and integration. The developers actually worked around these faults to decrease their frequency of occurrence, until it was time for the next patch that dealt specifically with these faults.

Based on our findings, it is preferable to stick to the software reliability growth models (SRGM) dealing with failure counts and use the least square estimation (LSE) method. The prequential likelihood test can not be obtained when using the LSE method, so instead, the Chi-Square test was performed. The Generalized Poisson SRGM exhibits a better fitness over all the other models, like the Musa Okumoto, Musa Basic, and NHPP models. In fact, when comparing the predictions of the four reliability modules, we can see that the Generalized Poisson predicted more faithfully the software reliability than the other three models. For instance, to achieve a 30% reliability of the software, the implementation and integration phase should run for around 15.27 hours in case of both Musa-Okumoto and Musa Basic models, for around 22.5 hours in case of Non-Homogeneous Poisson Process (NHPP), and for around 26.39 hours in case of the Generalized Poisson model. Moreover, the LSE method performs much better when compared with MLE in the short data range. Hence, the least square estimation method adapts faster than the maximum likelihood estimation method on a small range of failure data points. However, on the long run, MLE performs better than LSE if the failure data range increases considerably.

REFERENCES