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Abstract: Stroke extraction is a necessary part of the majority of semantic based off-line signature verification 
systems. This paper discusses some stroke extraction variants which can be efficiently used in such 
environments. First the different aspects and problems of signature verification are discussed in conjunction 
with off-line analysis methods. It is shown, that on-line analysis methods perform usually better than off-
line methods because they can make use of the temporal information (and thereby get a better perception of 
the semantics of the signature). To improve the accuracy of off-line signature verification methods the 
extraction of semantic information is necessary. Three different approaches are introduced to reconstruct the 
original strokes of a signature. One purely based on simple image processing algorithms, one with some 
more intelligent processing and one with a pen model. The methods are examined and compared with regard 
to their benefits and drawbacks on further signature processing. 

1 INTRODUCTION 

Signature recognition is probably the oldest 
biometrical identification method, with a high legal 
acceptance. Even if handwritten signature 
verification has been extensively studied in the past 
decades, and even with the best methodologies 
functioning at high accuracy rates, there are a lot of 
open questions. The most accurate systems almost 
always take advantage of dynamic features like 
acceleration, velocity and the difference between up 
and down strokes. This class of solutions is called 
on-line signature verification. However in the most 
common real-world scenarios, this information is not 
available, because it requires the observation and 
recording off the signing process. This is the main 
reason, why static signature analysis is still in focus 
of many researchers. Off-line methods do not 
require special acquisition hardware, just a pen and a 
paper, they are therefore less invasive and more user 
friendly. In the past decade a bunch of solutions has 
been introduced, to overcome the limitations of off-

line signature verification and to compensate for the 
loss of accuracy.  Most of these methods have one in 
common: they deliver acceptable results but they 
have problems improving them. 

2 RELATED WORK 

The biggest limitation of off-line signature 
verification methods is the absence of temporal 
information. In the on-line case this can be used, to 
segment the signature in a semantically meaningful 
way and even to define an unambiguous matching 
between the parts of two signatures. In the off-line 
case no definite matching exists. These methods can 
only operate on static image data; therefore they 
often try to compare global features like size of the 
signature or similarities of the contour (Martinez, 
2004) (Miguel, 2005) (Sabourin, 1999).  To get a 
tractable abstraction of the two dimensional images, 
these methods often involve some image 
transformation, like the Hough or Radon 
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transformations (Touj, 2003) or work on the density 
models of the signatures (Mahmud, 2005). Although 
these methods almost totally ignore the semantic 
information hidden in the signature, combined with 
each other they seem to give a good representation 
of the signature, allowing the researchers to reach 
Equal Error Rates (EER) between 10% and 15% 
(Kővári, 2007). The drawback of this methodology 
is that loosing the semantic information makes it 
almost impossible to improve the algorithm or to 
explain the results in detail. Jose L. Camino et al. 
take an other approach (Camino, 1999) they try to 
guess the pen movements during the signing by 
starting at the left and bottom most line-end and then 
following it. There are also other approaches trying 
to reconstruct the signing process. In (Guo, 2000) 
stroke, and sub-stroke properties are extracted and 
used as a basis for the comparison. Based on own 
experience, these latter approaches seem to be the 
most promising, because their results can be 
interpreted, explained and therefore improved. 

3 STROKE EXTRACTION 

By monitoring humans (including experts) during 
the verification of signatures, it can be observed that 
they always focus on a smaller part on both 
signatures, trying to compare them. They examine 
the radius of curvature, direction of strokes, 
blotches, intensity of strokes, variation patterns in 
the intensity etc. To make the automatic comparison 
of these features possible, an almost unambiguous 
matching must be defined, which is able to pair 
features in two signatures, even (and especially) 
when they do not look similar. The most 
straightforward way to such a matching is the 
reconstruction of the original signing process. 
Although a perfect reconstruction is not 
computationally feasible, some heuristic methods 
can be defined, to get acceptable results. 

Several approaches can be taken towards 
restoring the strokes of the signature and each 
approach has advantages and disadvantages. In the 
following subsections three methods will be 
introduced, which were used with success in our 
verification system. 

3.1 Morphological Approach 

Probably the most obvious way is the morphological 
image processing. Using a medial axis 
transformation the skeleton of the signature can be 
easily extracted, but these skeletons showed to be 

highly unusable in our experiments. The most 
common problems include misinterpretation of 
junctions and false junctions at stroke ends. 

Reducing the colour depth and converting the 
pen strokes to one-pixel curves always results in an 
inevitable information loss, therefore it is essential 
to select a thinning algorithm which gives a good 
abstraction of the original signature, with a low 
noise level. We selected an algorithm, which 
removes pixels so that an object without holes 
shrinks to a minimally connected stroke, and an 
object with holes shrinks to a connected ring 
halfway between each hole and the outer boundary 
(Lam, 1992), as can bee seen in figure 1. 

 
Figure 1: Endpoint extraction on a thinned image. 

This approach gives a simple representation of 
the original signature. It performs good by finding 
endpoints, but has difficulties with overlapping 
strokes, and junctions. Although we achieved 
promising results (an EER of 20%) with a simple 
thinning based system (Kővári, 2007), this 
representation does not fulfil the requirement of 
giving a good abstraction of the original signature.  

3.2 Stroke Extraction and Spline 
Fitting 

3.2.1 Point Extraction and Stroke 
Assignment 

During online signing the trajectory of the signature 
can be precisely recorded by the many sensors in the 
digital table that is used instead of paper. In the 
following section a robust algorithm is introduced 
with the purpose to identify the way how the signer 
wrote his signature. The main goal was to create an 
algorithm that performs well on noisy, unprocessed 
images; this is why the term robust is used here. In 
general, this method traces a signature using the 
image of it, extracts control points from it, 
determines their order, and finally assigns them to 
strokes. This gives a graph representation of the 
signature, which can be used for spline fitting.  
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This method is a topological feature extraction 
method. A topological method was introduced in 
(Lee, 2005), where a general human-like signature 
tracing method is described in-depth, using a thinned 
signature and heuristic rules for the purpose, and 
defining several solutions for removing noise caused 
by the thinning process. In (Lau, 2002) a signature 
thinned to one pixel width is the input for the stroke 
extraction and then several cost functions are 
defined for determining the overall stroke sequence. 

The main goal was to improve the robustness of 
these algorithms, thus the inputs were raw, scanned 
images on which no noise filtering or morphological 
operators (for the thinning process) were used. 
(Currently morphological operators are only used for 
obtaining the starting points of the signature 
components, but this does not affect the original 
image.) 

The algorithm is based on the use of simple 
virtual bows or with other word, a compass. 
Beginning with a start point the pin of the bows is 
stuck in it and a circle is drawn. Where this circle 
sections the line of the signature, it gives an arc. The 
middle point of this arc is selected as a possible 
following point, and if it meets the necessary 
conditions, it is taken as the new middle point. 
Iteratively repeating this step the whole signature 
can be traversed, but there are several difficulties to 
face. 

First of all the radius the bows uses has to be 
determined. For this a circle is drawn with a constant 
radius. If an adequately large arc is obtained, it is 
stored. We start the circle with the first white point 
found in order to avoid the loss of an arc, because if 
we would start in the middle of the signature, we 
could half an arc that is just big enough and we 
would throw away its two half. After the first section 
is obtained, the distance of the two edge points of 
the arc is calculated, and heuristically 1.5-3 times of 
its size is used as a radius. Too large values produce 
too rough representation and information is lost, too 
small values are simply not big enough to make a 
section. To decrease the possibility of a wrongly 
chosen radius size, it is further normalized in the 
next few steps. 

Sometimes it is not an obvious task to 
differentiate between the points of the signature and 
the noise. It is assumed that only blue ink is used 
during the signing. With this information the blue 
domination can be determined, calculated as the 
difference of the blue colour component and the 
average of the other two (red and green) colour 
components. Splitting this parameter range in three 
parts three classes of signature points can be 

defined: paper, ink and undefined. In the paper and 
ink classes the unambiguous points are categorized 
with a heuristic threshold, the rest is put in the 
undefined class. 

 Convexity of the points was first declared as: 
two points are convexly connected, if the straight 
path between them contains points only over a given 
threshold. Later this did not qualify because of the 
noisy input, so some undefined and even some paper 
point had to be accepted. 

To further improve this method, “level 
difference” is calculated between the points: the size 
of connected points from the same class on the path 
is calculated, and where at least two continuous 
points of the same kind are found, the average 
intensity of the two points is calculated. This way a 
quantified path is obtained, and the difference of the 
highest and lowest level is calculated. This 
difference is a necessary measure when too close 
points must be separated, because going off the line 
and coming back again can be detected this way. 

Another way of path improving comes useful at 
junction points. If one of the possible following 
points can be reached from another one on a better 
path (the maximum and total size of the undefined 
and paper points is used for this parameter) than 
from the junction point, then the connection of it to 
the junction point is replaced with a connection to 
the other point. 

Loops also have to be detected and handled with 
care. A loop is detected if looking ahead from the 
actual point for a short distance a previously visited 
point can be seen and convexly connected to the 
current point. During this search the points are 
prioritized in the end, junction, common point return 
order (the first one found is returned).  

 
Figure 2: Point reordering at starting junction point. 

To trace the signature the algorithm steps on and 
over the points determined with the algorithm. If a 
point has more than one possible follow-ups (this is 
called junction point) then it continues in the 
direction leading furthest from the previous point 
and stores the other ones. If there is no acceptable 
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following point then the stored points are looked up, 
and one of them is chosen. If there are no stored 
points either, then the algorithm steps on the next 
component if available. Otherwise, the algorithm is 
finished. If a component starting point is also a 
junction point, then the algorithm goes as far as can, 
then inverts the order of the points of the stroke and 
continue. This is necessary, because a starting 
junction point is a fake junction. 

A sample run of the algorithm is demonstrated in 
figure 3. The algorithm still has some minor flaws, 
but we have shown a way to extract stroke point 
from noisy signatures. The order of the points should 
be handled with greater care, but this tends to be an 
easy task based on (Lee 2005) and (Lau, 2002). 

 
Figure 3: Strokes of a signature: extracted points (black) 
and end points of the strokes (white). 

3.2.2 Spline Fitting 

After the point and stroke extraction, the graph 
representing the signature can be used as an input to 
our decision-making system that fits splines to the 
extracted points aiding the reconstructing of the 
trajectories. 

To compare these curves, the extracted strokes 
should be approximated with an analytical form. 
Polynomial interpolation is obvious to approximate 
functions. However the signatures are sufficiently 
varied, spiced with breakpoints and discontinues. If 
a general curve is to be approximated on a large 
interval, the degree of the approximating polynomial 
may be unacceptably large. As an alternative 
solution the full interval of signature can be 
subdivided into sufficiently small intervals. 
Relatively low degree polynomials on each of these 
intervals can provide a good approximation to the 
signature. Such piecewise polynomial functions are 
called splines. 

Generally, a function s  is called a spline 
(Ahlberg, 1967) of degree k  on nxxx <<< L21  
if 

[ ]nxxs ,1∈  (1) 

1,,2,1,0,)( −= kjs j L  are all 

continuous functions on [ ]nxx ,1  where 

 )( js  is the jth derivative  

(2) 

  
s  is a polynomial of degree k≤  on each 

interval [ ]1, +ii xx
 

(3) 

 
The suitable point matching algorithm and the 

consequent tracking technique guarantee the 
correspondent of the splines to the same signature. 

 

  
Figure 4: Original and forged signature. The differences 
between curves can be extracted by applying the spline 
fitting.  

Using the correspondent splines, the difference 
between the analytical curves can be calculated. 

3.3 Pen Model  

Our approach tries to capture the motion of the head 
of the pen. We regard the head of the pen as a 
moving object which has velocity and acceleration. 
This object tries to keep these quantities at a 
constant level towards minimizing the used energy, 
and moving along the trace of the pen. This model 
does not exactly agree with the physics of motion. If 
the pen keeps its acceleration at a constant level it 
does not consume energy. E.g. moving along a circle 
does not use up energy, but changing the radius 
does. Changing any of these quantities has almost 
the same effect on the consumed energy. The cost of 
changing these values is an important parameter of 
the algorithm. 

This model can also be considered in a different 
way, which is a more visual approach. Taking a 
point of the trajectory, where the foregoing 
quantities are given, the aim is to calculate the new 
values, which appoint the base for the next 
simulation step. The velocity determines a direction, 
and the acceleration determines a curvature (figure 
5b). Thus a curve can be drawn from this point 
approximating the unknown part of the trajectory. 
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Therefore we got to a two dimensional optimization 
problem. The curve, which is described by two 
parameters, has to be altered in order to get the best 
fitting, than the virtual object is moved one step 
along this curve to get to the next simulation point. 

The measure of coincidence can be derived from 
the masked pixels by summarizing the intensity of 
them. However this way the curve is not ensured to 
be laid along the trajectory of the centre point of the 
pen, but some swing around it is done (see figure 
5d). To remove this unwelcome phenomenon some 
image processing methods are needed. By producing 
thinned versions of the track of the pen (figure 5e), 
new measures can be introduced, which lead the 
virtual object towards the centreline (figure 5c). 

The most difficult challenge is to maximize the 
fitness whilst the "energy" has to be minimized. If 
the curve got too much freedom to change its 
properties during one simulation step, it can easily 
turn to the wrong direction at a junction (figure 5a), 
or it can turn around at the end of the real curve. On 
the other hand by restricting this freedom, the curve 
tends to leave the centreline, stop at a hard band, 
produce loops (figure 5h), or even leave the track of 
the pen. There is an additional parameter which 
determines the length of the test curve making the 
parameter optimization more complex. A longer test 
curve enables following even broken traces, but it 
may also treat separate curves as one. These are the 
questions when this method reaches its bounds. 

Further features of the trace have to be taken into 
consideration. Some information could be extracted 

from the overlapping traces. Although those effect 
on the image strongly depends on the type of the pen 
used. In some cases nothing can be seen. By 
observing the edge of the trace, useful information 
can be extracted about the trajectory. As you can see 
in figure 5f, it helped solving the problem which was 
missed by the original algorithm. But some 
preprocessing (figure 5f, figure 5g) is required with 
a not trivial parameterization, making this approach 
less robust.  

A darker or a longer trace can divert the curve. 
Like in figure 6, where the two curves run very close 
to each other and the darker curve diverts the tracer. 
Further development is needed to make the 
algorithm keep the arc if it is possible, and alter the 
curvature only if there is no choice. Our attempts to 
achieve this always produced some intolerable side 
effects. Probably there is no optimal 
parameterization for this algorithm, thus the 
parameters should be modified adaptively. 

The last step of the method is still under 
implementation. The virtual object has to be placed 
on the trajectory and directed correctly. It is quite 
simple in most cases, but when too many curves are 
crossing each other, or two parallel lines are laying 
close to each other it becomes a difficult task. The 
letter 'a' of figure 7 depicts this challenge. The whole 
trace has to be masked by the extracted curves, so  

e)    f)    g)    h) 

Figure 5: a, b) The thick curve shows the estimated trajectory, the thin curves show the chosen curvature starting from each 
simulation point c) the extracted trajectory d) the extracted trajectory without using thinned images e) by applying restricted 
freedom for the curve, it may produce loops f) thinned image g) tracing on the edge image fails h) a median filter enhances 
tracing on the edge image. 

a)    b)    c)    d) 
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Figure 6: The algorithm fails at nearly parallel curves. 
Both curve follow the better trace. 

after putting some initial objects on the trajectory 
randomly, the unmasked areas become the target of 
the curve starter. After masking the whole trace the 
curve fragments have to be joined. Then the 
topology can be extracted and all the possible 
trajectories can be tested, and the best can be chosen. 
To reach this point the original algorithm does not 
necessarily have to be improved in most cases 
according to our test images, because the logic 
needed to process the achieved curves has to be so 
general that it must tolerate the above mistakes. But 
a more reliable procedure can be achieved in 
anyway. 

 

 
Figure 7: Complex trajectory extracted from a sign-
manual, but a darker area diverted the curve at the end. 

4 EXPERIMENTAL RESULTS 

The simplest method, presented in 3.1 delivers a 
brief representation of an image. The whole 
signature can be characterised by 20-30 endpoints, 
each having 3 parameters (vertical position, 
horizontal position, direction). This allowed us to 
build and test a simple signature verification system 
(Kővári, 2007) based on these parameters. Although 
the efficiency of this system (20% EER) is still 
behind the best results of 8,9% (Armand, 2006) or 
13,3% (Chen, 2005) or the 9,3% of (Srihari, 2004), 
this result is still impressive, compared to the low 
number of parameters used, to represent a signature. 

The algorithms presented in 3.2 and in 3.3 
require a more complex representation. Method 3.2 
extracts in average more than 150 stroke points from 

a signature, with each point having 4 parameters 
(vertical position, horizontal position, next point in 
the stroke, previous point in the stroke). This 
information is only a partial result of the signature 
verification process; therefore there are no public 
researches and results to compare them with. In 
order to validate the results an on-line signature 
database was used (SVC, 2004). The database 
already contains the original stroke information, 
which could be compared with the results of the 
stroke extraction algorithm (see Figure 8). 

 

0

50

100

150

200

250

300

350

400

-1
3

-1
2

-1
1

-1
0 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

 
Figure 8: The distribution of the deviance in the number of 
strokes of our stroke extraction algorithm compared to the 
original strokes. (Y-axis: number of signatures, X-axis: 
deviance).  

The method, shown in 3.3 delivers probably the 
most accurate, but also the most complex 
representation of the signature. Each point of the 
skeleton is stored with the corresponding position, 
“velocity” and “acceleration” information. This 
method is still in development; thereby no 
comparison to other methods can be given at the 
current state of the art.  

5 CONCLUSIONS 

Three different stroke extraction methods were 
introduced. The first one was based on simple 
morphological transformations. Although this is the 
simplest and fastest way of stroke extraction, the 
loss of semantic information is too much even with a 
carefully chosen thinning algorithm. It is not 
possible to separate overlapping strokes and the 
skeleton of junctions is sometimes hard to interpret. 
Not so the second approach, which can be modified 
to detect changes in the intensity values. It can stay 
fast, because it tracks only some key points of the 
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strokes, but also because of that, a further 
reconstruction step is necessary involving spline 
fitting. This method can give an acceptable 
representation of the signature with acceptable low 
computational needs (the full execution time for a 
signature is under 1 second on a 2GHz processor). 
Junctions are the weak point of the algorithm, which 
are very hard to trace with this method. To get the 
best results, the movements of the pen (and thereby, 
the movements of the writer) must be taken in 
consideration. The reconstruction rate is impressive. 
Even complex junctions could be restored with 
success, but a full processing of a signature takes 
about 20 times longer, than in the previous cases. 
Currently we are also experiencing some 
parameterization issues, as noted in section 3.3  
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