
DETECTING ASPECTUAL BEHAVIOR IN UML INTERACTION
DIAGRAMS

Amir Abdollahi Foumani
IBM Rational Software Group, Montreal, Quebec, Canada

Constantinos Constantinides
Department of Computer Science and Software Engineering, Concordia University, Montreal, Quebec, Canada

Keywords: Object-oriented design, Unified Modeling Language, production system, crosscutting, aspectual behavior,
aspect mining.

Abstract: In this paper we discuss an approach to detect potential aspectual behavior in UML interaction diagrams. We
use a case study to demonstrate how our approach can be realized: We adopt a production system to represent
the static and dynamic behavior of a design model. Derivation sentences generated from the production repre-
sentation of the dynamic model allow us to apply certain strategies in order to detect aspectual behavior which
we categorize into “horizontal” and “vertical.” Our approach can aid developers by providing indications over
their designs where restructuring may be desired.

1 INTRODUCTION

During object-oriented development, certain concerns
cannot be directly mapped from the problem domain
to the solution space. As a result, their implementa-
tion tends to be scattered throughout the class hier-
archy of the system. Even though this “crosscutting
phenomenon” was initially observed over implemen-
tation artifacts, it does not originate in implementa-
tion but it propagates over from previous development
stages. In this work we are investigating the cross-
cutting phenomenon during design. Artifacts during
this stage are illustrated by the Unified Modeling Lan-
guage (UML) which provides a notation for repre-
senting a model of a system, capturing its structure
and behavior. We can represent the semantics and
metadata behind the UML model in a form that in-
dicates the ways in which the knowledge can be used.
More precisely each item of knowledge can be repre-
sented by a rule which combines data and semantics
and specifies when to use it and how to use it. A rule
of this kind is called a production and a system which
represents knowledge as a set of productions is called
a production system. Our approach is based on ob-
taining a production system from a UML model and
applying certain strategies in order to capture cross-
cutting (or “aspectual”) behavior. The expected ben-

efit of this approach is to provide developers with an
early indication of design spots where model transfor-
mation (restructuring) might be required or desirable.

Recently there has been an increasing number of
approaches into mining crosscutting concerns from
implementation artifacts and from requirements. Very
little work has been done on mining crosscutting con-
cerns from design artifacts and with this work we aim
in contributing to bridging this gap.

The rest of this paper is organized as follows: In
Section 2 we discuss the necessary theoretical back-
ground to this research. In Section 3 we discuss the
problem and motivation behind this research. In Sec-
tion 4 we present our proposal and in Section 5 we use
a case study to demonstrate and discuss our proposal.
In Section 6 we discuss related work and comparisons
to our proposal. We conclude our work in Section 7
with a summary, discussion and pointers to future re-
search directions.

2 THEORETICAL BACKGROUND

This section provides the necessary theoretical back-
ground to this research project.

378
Abdollahi Foumani A. and Constantinides C. (2007).
DETECTING ASPECTUAL BEHAVIOR IN UML INTERACTION DIAGRAMS.
In Proceedings of the Second International Conference on Software and Data Technologies - SE, pages 378-386
DOI: 10.5220/0001341203780386
Copyright c© SciTePress

2.1 Aspect-oriented Programming

The principle of separation of concerns (Parnas,
1972) refers to the realization of system concepts into
separate software units and it is a fundamental prin-
ciple to software development. The associated bene-
fits include better analysis and understanding of sys-
tems, high readability of modular code, high level
of reuse, easy adaptability and good maintainability.
Despite the success of object-orientation in the ef-
fort to achieve separation of concerns, certain prop-
erties cannot be directly mapped in a one-to-one fash-
ion from the problem domain to the solution space,
and thus cannot be localized in single modular units.
Their implementation ends up cutting across the in-
heritance hierarchy of the system. Crosscutting con-
cerns (or “aspects”) include persistence, authentica-
tion, synchronization and logging. The “crosscutting
phenomenon” creates two implications: 1) the scatter-
ing of concerns over a number of modular units and 2)
the tangling of code in modular units. As a result, de-
velopers are faced with a number of problems includ-
ing a low level of cohesion of modular units, strong
coupling between modular units and difficult compre-
hensibility, resulting in programs that are more error
prone.

Aspect-Oriented Programming (AOP) (Kiczales
et al., 1997; Elrad et al., 2001) explicitly addresses
those concerns which “can not be cleanly encapsu-
lated in a generalized procedure (i.e. object, method,
procedure, API)” (Kiczales et al., 1997) by introduc-
ing the notion of an aspect definition, which is a mod-
ular unit of decomposition. There is currently a grow-
ing number of approaches and technologies to support
AOP. One notable technology is AspectJ (Kiczales
et al., 2001), a general-purpose aspect-oriented exten-
sion to the Java language, which has influenced the
design dimensions of several other general-purpose
aspect-oriented languages, and has provided the com-
munity with a common vocabulary based on its own
linguistic constructs. In the AspectJ model, an as-
pect definition is a new unit of modularity provid-
ing behavior to be inserted over functional compo-
nents. This behavior is defined in method-like blocks
calledadviceblocks. However, unlike a method, an
advice block is never explicitly called. Instead, it is
activated by an associated construct called apoint-
cut expression. A pointcut expression is a predicate
over well-defined points in the execution of the pro-
gram which are referred to asjoin points. When the
program execution reaches a join point captured by
a pointcut expression, the associated advice block is
executed. Even though the specification and level of
granularity of the join point model differ from one

language to another, common join points in current
aspect-oriented language specifications include calls
to methods and constructors as well as executions of
methods and constructors. Most aspect-oriented lan-
guages provide a level of granularity which specifies
exactly when an advice block should be executed,
such as executing before, after, or instead of the code
defined at the associated pointcut. Furthermore, much
like a class, an aspect definition may contain state and
behavior. It is also important to note that AOP is nei-
ther limited to object-oriented programming (OOP)
nor to the imperative programming paradigm. How-
ever, we will restrict this discussion to the context of
object-orientation.

2.2 Production Rules and Derivation
Sentences Over Uml Semantics

A formal description of semantics is essentially a
means to represent knowledge. We can represent
knowledge in a form that indicates the ways in which
the knowledge can be used. More precisely, each
item of knowledge can be represented by a rule which
specifies when to use it and how to use it. Such a
rule takes the form “When a condition of type C oc-
curs, execute action A.” A rule of this kind is called a
productionand a system which represents knowledge
as a set of productions is called aproduction system.
A sequence of rule applications is called aderivation
and the result of this process is called aderivation
sentence(Aho et al., 1986).

With UML we are able to model and visualize a
real world system based on object definitions and ob-
ject relationships. The semantics and metadata be-
hind the model can be represented as a set of abstract
rules, which can be production rules. By definition,
production rules must be finite, implying that in or-
der to represent the semantics of UML artifacts we
need a limited number of production rules. As a con-
sequence, our knowledge, as incorporated in the pro-
duction rules, must also be finite. It is the process
of using this knowledge that will be “productive.” In
effect, production rules can define an infinite set of
scenarios.Derivation sentencescan be deployed over
these production rules for representing a scenario.

In (Foumani and Constantinides, 2005a) and
(Foumani and Constantinides, 2005b) we presented
a set of production rules to represent the semantics
behind UML artifacts, where the static model is rep-
resented by a class diagram and the dynamic model
is represented by a set of interaction diagrams. More
specifically, the semantics of object-oriented artifacts,
G, can be defined in terms of a set of five elements,
each of which is finite. LetG = {C, A, M, P, R},

DETECTING ASPECTUAL BEHAVIOR IN UML INTERACTION DIAGRAMS

379

such that

1. C is a set of classes.

2. A is a set of attributes.

3. M is a set of methods.

4. P is a set of transformation rules that defines
object-oriented design semantics in terms of: a)
definition of classes, b) hierarchy of classes, c)
relationships between classes and d) system sce-
narios in terms of message passing between class
instances.

5. R is set of relationships and concepts defined
by the object-oriented methodology. We de-
fine this set asR = {[declares], [has],
[collection], {(guard)[calls]}*,
[extends]}, where (guard)[calls]* is
used to model dynamic behavior in UML artifacts
(message passing between objects and control
flow in interaction diagrams). The rest of the
elements in the set are used for defining the
semantics of the static model.

3 PROBLEM AND MOTIVATION

One might argue that the implementation stage should
be the appropriate place to look for aspectual behav-
ior, because this is where the phenomenon is obvi-
ous. Indeed our knowledge about crosscutting (de-
spite the fact that the term was coined in the mid 90’s)
dates back to the 80’s from observations, over code
artifacts, of conflicts between OOP and concurrency
(Briot and Yonezawa, 1987) which in the early 90’s
became known as “inheritance anomalies” (Matsuoka
and Yonezawa, 1993). In the mid 90’s composabil-
ity issues in OOP over several domains started to sur-
face1. A question one might put forward is whether or
not one should be concerned with crosscutting at the
design level, or whether crosscutting can even mani-
fest itself at the design level. A response to this can
be argued as follows: Mainly due to the fact that de-
sign artifacts during maintenance are many times not
synchronized with code and thus become inconsis-
tent, the code is indeed the only reliable source of the
current state of the system. Thus, focusing on code is
unavoidably the only option. As a result, maintainers
would normally not be highly concerned with docu-
mentation other than code. However, during devel-
opment, developers aim to produce a clean (tangled-
free) implementation and achieve the maximum ben-
efits of advanced separation of concerns. To meet

1cf. Proceedings of the ECOOP 2006 Workshop on
Composability Issues in Object-Orientation (entire volume)

this objective, the design artifacts themselves (such
as UML interaction diagrams and the class diagram)
must in turn explicitly address crosscutting concerns.
We therefore need to provide the means to identify
and model crosscutting concerns from the early stages
of the software life cycle. As a result, the explicit
capture of crosscutting concerns in code should be
the natural consequence of good and clean modularity
and not the result of a corrective measure (refactoring
activity) due to a tangled implementation. Is this a
real problem? One can argue that, as “early aspects”
approaches (see related work in Section 6) aim in
detecting and identifying crosscutting concerns from
the requirements stage, the design would be aspect-
free. Our response to this is that early-aspects can
perhaps guarantee an aspect-free requirements model,
but would not guarantee an aspect-free design, since
some aspects may appear during design. We need to
focus on the crosscutting which a) either has remained
after having deployed early-aspects approaches, or b)
originates in design. The motivation behind this re-
search is to be able to detect aspectual behavior in
order to aid developers in performing any necessary
model restructuring before mapping the design into
code.

4 PROPOSAL: DETECTING
ASPECTUAL BEHAVIOR

Consider the sequence of object-oriented analysis and
design activities as described in (Larman, 2004): A
scenario describes the interaction between an actor
and a system and it is usually described in a narra-
tive form as part of a use-case which is a collection
of related scenarios. The scenario refers to real-world
concepts which can be captured by the domain model.
The scenario can also be translated into a system se-
quence diagram, illustrating the request events (gener-
ated by the actor) and the corresponding system oper-
ations which define system responsibilities. Each sys-
tem operation can then be translated into a UML in-
teraction diagram. The interaction diagram will cap-
ture the collaboration of software entities (extracted
or influenced from the domain model) in order to im-
plement the responsibility defined by the correspond-
ing system operation. In creating UML interaction
diagrams, developers may apply general responsibil-
ity assignment software patterns (GRASP) and design
patterns in order to support software quality through
low coupling and high cohesion and to fully utilize
the benefits associated with object-orientation which
include high level of reusability of elements and easy
adaptability of the system.

ICSOFT 2007 - International Conference on Software and Data Technologies

380

Our analysis is focused on the crosscutting which
manifests in UML interaction diagrams. As the inter-
action diagrams can be represented by a production
system, we plan to analyze the production system by
applying strategies in order to detect aspectual behav-
ior.

5 CASE STUDY: A PROJECT
MANAGEMENT SYSTEM

We provide a demonstration of our proposal through
a case study of a project management system. In this
system, resources can be given one or more assign-
ments to be undertaken on a given task. Each assign-
ment has a start date, finish date and duration and can
be “rolled-up” to the corresponding task, deliverable
and project level. Each project is a composition of
deliverables and tasks and each deliverable can con-
tain tasks (or other deliverables). Furthermore, re-
sources can also be assigned to the deliverables and
projects with different roles and responsibilities. The
system provides a number of services to project man-
agers such as 1) assign-unassign resources and 3)
level projects.

5.1 Static Model

A (partial) class diagram of the system is shown
in Figure 1, where the Work Breakdown Structure
(WBS) is organized in terms of a hierarchy between
Project, Deliverable and Task. Tasks as leaf
nodes cannot have children. This condition can be
enforced by defining an invariant for classTask. We
can provide a production system to represent the static
structure of the system as follows:

<class>::= {Assignment, Resource,
Deliverable, Task, Project}

<Assignment>::=[has]<assign()>
<Assignment>::=[has]<unassign()>
<Assignment>::=[has]<level()>
<Assignment>::=[declares]<Resource>
<Assignment>::=[declares]<Deliverable>
<Resource>::=[declare]<name>
<Resource>::=[collection]<Assignment>
<Deliverable>::=[declares]<start_date>
<Deliverable>::=[declares]<finish_date>
<Deliverable>::=[declares]<duration>
<Deliverable>::=[declares]<name>
<Deliverable>::=[declares]<Project(Parent)>
<Deliverable>::=[has]<rollup()>
<Deliverable>::=[has]<add()>
<Deliverable>::=[has]<remove()>
<Deliverable>::=[has]<getChild()>
<Deliverable>::=[collection]<Assignment>
<Task>::=[extends]<Deliverable>

+rollup()

+add(in Component)

+remove(in Component)

+getChild()

-startDate

-finishDate

-duration

-name

Deliverable <<Component>>

+rollup()

+add(in Component)

+remove(in Component)

+getChild()

+level(in date)

Project <<Composite>>

+rollup()

Task<<Leaf>>

+assign()

+unassign()

+level()

Assignment

-Children

1

-Parent

*

-name

Resource

*

1

0..*

1

Figure 1: UML class diagram illustrating the WBS hierar-
chy.

<Project>::=[extends]<Deliverable>
<Project>::=

[collection]<Deliverable(Children)>
<Project>::=[has]<level()>

5.2 Dynamic Model

The dynamic model is depicted by two scenarios: 1)
assign-unassign resources and 2) level projects.

5.2.1 Resource Assignment

Resource assignment entails obtaining an available
resource and assigning the resource to a node in the
WBS hierarchy, or unassigning a resource from a
node of the WBS hierarchy. The effect of these op-
erations must be rolled-up to the parent deliverable(s)
and eventually to the project level, followed by an up-
date ofstartDate, finishDate and duration at-
tributes appropriately. We define arollup() oper-
ation which is responsible to consistently update the
WBS hierarchy whenever an operation modifies one
of the startDate, finishDate and duration at-
tributes. We may have any level of nested deliver-
ables in a WBS hierarchy so that in order to model
the rollup process in a UML interaction diagram a
loop statement can be used. Figures 2 and 3 illus-
trate the process of assigning and unassigning a re-
source to a task. In these interaction diagrams, an
Assignment object would invoke a new session be-
fore sending any other message. Upon completion
of the process,Assignment will decide to commit or

DETECTING ASPECTUAL BEHAVIOR IN UML INTERACTION DIAGRAMS

381

Assignment
 Task
 Deliverable
 Project

assign()

rollup()

rollup()

rollup()

rollup()

loop

Session

start()

end()

Figure 2: Assigning a resource.

Assignment
 Task
 Deliverable
 Project

unassign()

rollup()

rollup()

rollup()

rollup()

loop

Session

start()

end()

Figure 3: Unassigning a resource.

rollback the assignment operation based on the sit-
uation and status of the objects. ObjectSession is
responsible for the manipulation of the transaction
session. ClassSession has methodsstart() and
end() in order to indicate a session start and end re-
spectively.

5.2.2 Leveling

Figure 4 illustrates the project leveling process. By
leveling a project, a manager is able to move the start
date of a project and to adjust the WBS hierarchy ap-
propriately.

5.2.3 Building Derivation Sentences

By deploying production rules we can build the fol-
lowing derivation sentences for the operation of re-
source assignment and leveling, as follows:

<Assignment.assign()>::=<Session.start()>
<Assignment.assign()>

::=[calls]<Task.rollup()>
::={(parent is Deliverable)

[calls]<Deliverable.rollup()>}*

Assign.
 Task
 Deliverable
Project

rollup()

rollup()

rollup()

loop

level()
loop

Session

start()

level()

end()

Figure 4: Project leveling.

::=[calls]<Project.rollup()>
<Assignment.assign()>::=<Session.end()>

<Assignment.unassign()>::=<Session.start()>
<Assignment.unassign()>

::=[calls]<Task.rollup()>
::={(parent is Deliverable)

[calls]<Deliverable.rollup()>}*
::=[calls]<Project.rollup()>

<Assignment.unassign()>::=<Session.end()>

<Project.level()>::=<Session.start()>
<Project.level()>

::={[calls]<Assignment.level()>
::=[calls]<Task.rollup()>
::={(parent is Deliverable)

[calls]<Deliverable.rollup()>}*
::=[calls]<Project.rollup()>}*

<Project.level()>::=<Session.end()>

5.3 Detecting Horizontal and Vertical
Aspects

We provide the following two definitions:

Definition 1 Behavior, defined by sequences of mes-
sage passing between objects in a collection of UML
interaction diagrams over multiple levels of interac-
tion, can be referred to as “horizontal crosscutting.”
Subsequently we can adopt the term “horizontal as-
pect” to define this behavior.

Definition 2 Behavior, defined by sequences of mes-
sage passing between objects in a collection of UML
interaction diagrams over a single level of interac-
tion, can be referred to as “vertical crosscutting.”
Subsequently we can adopt the term “vertical aspect”
to define this behavior.

ICSOFT 2007 - International Conference on Software and Data Technologies

382

Given a collection of UML interaction diagrams
(corresponding to one or possibly more use-case sce-
narios) of Figures 2, 3 and 4 and their correspond-
ing derivation sentences representing the execution
paths already defined in 5.2.3, our objective is to de-
tect common subsequences. To do that, we proceed
in three steps discussed in the subsequent subsections
and illustrated in Figure 5.

5.3.1 Step 1: Bit Representation of Method
Invocations

We reserve a bit for each method of each class in
the system. In this case study, we can allocate 4-
bits for each class implying that each class is not ex-
pected to have more than four methods. A bit rep-
resentation of a message sequence is built by joining
these 4-bit sequences: We allocate the first 4-bits to
classAssignment, the next four bits to classTask
and similarly to classesDeliverable, Project and
Session. The class-method pair bit representations
are shown as follows:

class-method pair Reserved bit
in
bit-pattern

Assignment.assign() bit(i)
Assignment.unassign() bit(i) + 1
Assignment.level() bit(i) + 2
reserved bit bit(i) + 3

Task.rollup() bit(i) + 4
reserved bit bit(i) + 5
reserved bit bit(i) + 6
reserved bit bit(i) + 7

Deliverable.rollup() bit(i) + 8
reserved bit bit(i) + 9
reserved bit bit(i) + 10
reserved bit bit(i) + 11

Project.rollup() bit(i) + 12
Project.level() bit(i) + 13
reserved bit bit(i) + 14
reserved bit bit(i) + 15

Session.start() bit(i) + 16
Session.end() bit(i) + 17
reserved bit bit(i) + 18
reserved bit bit(i) + 19

To model method invocations in a message se-
quence we set the corresponding bit of an invoked

method to 1. We can therefore represent the UML in-
teraction diagrams of Figures 2, 3 and 4 as follows:

Sa (Assign resource):
1000-1000-1000-1000-1100

Sb (Unassign resource):
1000-1000-1000-1000-1100

Sc (Project leveling):
0010-1000-1000-1100-1100

5.3.2 Step 2: Detecting Common Subsequences

In addition, we reserve a bit for each message se-
quence. To detect a pattern of aspectual behavior, we
perform a bitwise OR over the patterns for message
sequences to find out which patterns are introduced
by which message sequences and we perform a bit-
wise AND over the patterns for method invocations.
The result of the bitwise AND operation identifies the
methods that can be grouped together to form an as-
pect.

In the example, we perform a bitwise
AND over Sa (Assign resource), Sb
(Unassign resource) and Sc (Project
leveling). The bitwise AND operation will
yield 0000-1000-1000-1000-1100 which rep-
resents the method invocationsTask.rollup(),
Deliverable.rollup(), Project.rollup(),
Session.start() and Session.end(). The
order of the method invocation identified by bit
patterns is defined by production rules defined for
the message sequences. The result of the bitwise
AND operation illustrates that{Task.rollup(),
Deliverable.rollup(), Project.rollup(),
Session.start(), Session.end()} can be
an aspect, whereas the production rules illus-
trate that we will have two different aspects:
{Task.rollup(), Deliverable.rollup(),
Project.rollup()} defines a horizontal aspect,
while {Session.start(), Session.end()}
defines a vertical aspect based on our definitions.

5.3.3 Step 3: Defining Aspectual Behavior

We can follow the design dimensions and the
vocabulary introduced by the AspectJ pro-
gramming language to capture this common
behavior: For the horizontal aspect, the point-
cut is a predicate over all three external mes-
sages and it can be defined as the disjunction of
Assignment.assign(), Assignment.unassign()
and Assignment.level(). The advice block
would be the sequence <Task.rollup(),

DETECTING ASPECTUAL BEHAVIOR IN UML INTERACTION DIAGRAMS

383

Deliverable.rollup()*, Project.rollup()>.
For the vertical aspect, the pointcut can be de-
fined as the disjunction ofAssignment.assign(),
Assignment.unassign() and Project.level().
We introduce two different advice blocks for starting
a session and ending a session:{Session.start()}
and{Session.end()}.

6 RELATED WORK

A number of authors have discussed aspect mining
techniques. Almost all of them focus on mining of
aspects from source code or from execution traces. In
(Breu and Krinke, 2004) the authors describe an au-
tomatic dynamic aspect mining approach which de-
ploys program traces generated in different program
executions. These traces are investigated for recur-
ring execution patterns based on different constraints,
such as the requirement that the patterns have to ex-
ist in a different calling context in the program trace.
In (Krinke and Breu, 2004) the authors describe an
automatic static aspect mining approach, where the
control flow graphs of a program are investigated for
recurring executions based on different constraints,
such as the requirement that the patterns have to ex-
ist in a different calling context. In (Robillard and
Murphy, 2002) the authors introduce a concern graph
representation that abstracts the implementation de-
tails of a concern and it makes explicit the relation-
ships between different elements of the concern for
the purpose of documenting and analyzing concerns.
To investigate the practical tradeoffs related to this ap-
proach, they present a tool (Feature Exploration and
Analysis Tool – FEAT) that allows a developer to
manipulate a concern representation extracted from a
Java system and to analyze the relationships of that
concern to the code base. In (Robillard and Mur-
phy, 2001) the authors describe concerns based on
class members. This description involves three lev-
els of concern elements: use of classes, use of class
members and class member behavior elements (use
of fields and classes within method bodies). Use of
classes is expressed by class-use production rules.
These rules specify whether an entire class or certain
features of it implement a given concern. In the latter
case, the rules indicate the class features which imple-
ment this concern. In (Bruntink, 2004), the author de-
fines certain clone class metrics for known maintain-
ability problems such as code duplication and code
scattering. Subsequently, these metrics are combined
into a grading scheme designed to identify interesting
clone classes for the purpose of improving maintain-
ability using aspects. In (Baxter et al., 1998), the

authors initially deploy parsing to obtain a syntacti-
cal representation of the source code, typically an ab-
stract syntax tree (AST). They then deploy algorithms
to search for similar subtrees in the AST which would
indicate duplicated code (“clones”). In (Parsamanesh
et al., 2006) we discussed a method of running use-
case scenarios and capturing the corresponding exe-
cution traces in a relational database followed by the
detection of patterns of messages, indicating candi-
date crosscutting concerns. In order to identify an
optimal solution while choosing an aspect among a
collection of candidate aspects, we deployed dynamic
programming algorithms.

Aspect mining at stages earlier to implementation
have mainly focused on requirements, giving rise to
the notion of “early aspects”, see for example (Mor-
eira et al., 2002) and a large collection of resources
at (Early Aspects Portal, 2007). In (Sutton, 2002)
the author introduces a general-purpose, multidimen-
sional, concern-space modeling schema that can be
used to model early-stage concerns to identify cross-
cuttings.

Aspect mining at the design stage has hardly been
explicitly addressed in the literature. We refer the
reader to the discussion in (van den Berg et al., 2006)
in which the authors adopt a cross matrix between two
consecutive phases such as design and implementa-
tion in order to identify the scattering of source ele-
ments along a collection of target elements, as well as
the tangling of source elements into single source el-
ements. In earlier work discussed in (Foumani and
Constantinides, 2005a) we proposed two strategies
for the detection of crosscutting concerns. Our first
strategy used graph theory to detect entities with in-
dependent roles in scenarios, marking these entities
as candidate aspects. Our second strategy has two
goals: First, it works on graphs of communicating en-
tities and it deploys production rules and derivation
sentences as a tool to locate cycles among communi-
cating entities, thus complementing the first strategy.
Second, it deploys production rules and derivation
sentences in order to detect duplication and scattering
of behavior. As a consequence of our second strat-
egy, we can detect aspects across various dimensions
of design. In (Foumani and Constantinides, 2005b)
we focused on our first strategy for aspect mining and
we illustrated that alternative designs (remodulariza-
tion) over the same set of requirements cannot elimi-
nate crosscutting. We argued that the solution to the
crosscutting phenomenon is the reengineering of the
system.

ICSOFT 2007 - International Conference on Software and Data Technologies

384

Sa:100
 1000-1000-1000-1000-1100

Sb:010
 0100-1000-1000-1000-1100

Sc:001
 0010-1000-1000-1100-1100

111
 0000-1000-1000-1000-1100

B
I
T

O
R

B
I
T

A
N
D

Sa: Assign resource sequence

Sb: Unassign resource sequence

Sc: Level project sequence

Assignment.assign()

::=Session.start()

Assignment.assign()

::=<Task.rollup()

::={Deliverable.rollup()}*

::=Project.rollup()

Assignment.assign()

::=Session.end()

Assignment.unassign()

::=Session.start()

Assignment.unassign()

::=Task.rollup()

::={Deliverable.rollup()}*

::=Project.rollup()

Assignment.unassign()

::=Session.end()

Project.level()

::=Session.start()

Project.level()

::={Assignment.level()

::=Task.rollup()

::={Deliverable.rollup()}*

::=Project.rollup()}*

Project.level()

::=Session.end()

Session.start()

{Task.rollup()

::=Deliverable.rollup()}*

::=Project.rollup()}

Session.end()

Sequence

bit

pattern

Class-method

bit

pattern

Message

sequence

Figure 5: Detecting common method invocations in message sequences.

7 CONCLUSION AND
RECOMMENDATIONS

Software design is an integral activity of the devel-
opment lifecycle. An AOP implementation should
ideally be the natural mapping from a clean (well-
modularized) design, rather than a corrective mea-
sure (refactoring activity) due to a tangled imple-
mentation. Scattering and tangling of concerns can
cause problems with comprehensibility, traceability
and reusability of concerns and the overall adaptabil-
ity of the system.

In this paper we presented an approach to detect
aspectual behavior in UML interaction diagrams. We

built on earlier work discussed in (Foumani and Con-
stantinides, 2005a) by focusing on an aspect mining
strategy which adopts a production system to rep-
resent the static and dynamic behavior of a design
model, demonstrating our approach with a case study.
Our approach can aid developers by providing indi-
cations over their designs where restructuring may be
desired by explicitly capturing crosscutting concerns
(aspects).

In the future we plan to shift our focus on as-
pect mining over implementation artifacts. To aid the
maintenance of legacy object-oriented systems, we
plan to deploy the same strategies over implementa-
tion artifacts by parsing code and generating deriva-
tion sentences.

DETECTING ASPECTUAL BEHAVIOR IN UML INTERACTION DIAGRAMS

385

REFERENCES

Aho, A. V., Sethi, R., and Ullman, J. D. (1986).Compilers:
Principles, techniques, and tools. Addison Wesley.

Baxter, I. D., Yahin, A., Moura, L., Sant’Anna, M., and
Bier, L. (1998). Clone detection using abstract syntax
trees. InProceedings of the International Conference
on Software Maintenance (ICSM).

Breu, S. and Krinke, J. (2004). Aspect mining using event
traces. InProceedings of the 19th International Con-
ference on Automated Software Engineering (ASE).

Briot, J.-P. and Yonezawa, A. (1987). Inheritance and syn-
chronization in concurrent OOP. InProceedings of the
European Conference on Object-Oriented Program-
ming (ECOOP).

Bruntink, M. (2004). Aspect mining using clone class met-
rics. InProceedings of the WCRE Workshop on Aspect
Reverse Engineering.

Early Aspects Portal (2007). Early aspects: Aspect-
oriented requirements engineering and architecture
design. URL: http://early-aspects.net.

Elrad, T., Filman, R. E., and Bader, A. (2001). Aspect-
oriented programming.Communications of the ACM,
44(10):29 – 32.

Foumani, A. A. and Constantinides, C. (2005a). Aspect-
oriented reverse engineering. InProceedings of the
9th World Multiconference on Systemics, Cybernetics
and Informatics (WMSCI).

Foumani, A. A. and Constantinides, C. (2005b). Reengi-
neering object-oriented designs by analyzing depen-
dency graphs and production rules. InProceedings of
the 9th IASTED International Conference on Software
Engineering and Applications (SEA).

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm,
J., and Griswold, W. G. (2001). An overview of As-
pectJ. InProceedings of the 15th European Confer-
ence on Object-Oriented Programming (ECOOP).

Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C.,
Lopes, C., Loingtier, J.-M., and Irwin, J. (1997).
Aspect-oriented programming. InProceedings of the
11th European Conference on Object-Oriented Pro-
gramming (ECOOP).

Krinke, J. and Breu, S. (2004). Control-flow-graph-based
aspect mining. InProceedings of the 1st WCRE Work-
shop on Aspect Reverse Engineering.

Larman, C. (2004). Applying UML and patterns. An in-
troduction to object-oriented analysis and design and
iterative development. Addison-Wesley, 3rd edition.

Matsuoka, S. and Yonezawa, A. (1993). Analysis of in-
heritance anomaly in object-oriented concurrent pro-
gramming languages. In Agha, G., Wegner, P., and
Yonezawa, A., editors,Research directions in concur-
rent object-oriented programming, pages 107–150.
MIT Press.

Moreira, A., Aráujo, J., and Brito, I. S. (2002). Crosscut-
ting quality attributes for requirements engineering.
In Proceedings of the 14th International Conference
on Software Engineering and Knowledge Engineering
(SEKE).

Parnas, D. L. (1972). On the criteria to be used in decom-
posing systems into modules.Communications of the
ACM, 15(12):1053 – 1058.

Parsamanesh, P., Foumani, A., and Constantinides, C.
(2006). Mining anomalies in object-oriented imple-
mentations through execution traces. InProceedings
of the 1st International Conference on Software and
Data Technologies (ICSOFT).

Robillard, M. P. and Murphy, G. C. (2001). Analyzing con-
cerns using class member dependencies. InProceed-
ings of the ICSE Workshop on Advanced Separation
of Concerns in Software Engineering.

Robillard, M. P. and Murphy, G. C. (2002). Concern graphs:
Finding and describing concerns using structural pro-
gram dependencies. InProceedings of the 24th Inter-
national Conference on Software Engineering (ICSE).

Sutton, S. M. (2002). Early-stage concern modeling. In
Proceedings of the AOSD Workshop on Early Aspects:
Aspect-Oriented Requirements Engineering and Ar-
chitecture Design.

van den Berg, K., Conejero, J. M., and Hernández, J.
(2006). Identification of crosscutting in software de-
sign. InProceedings of the AOSD International Work-
shop on Aspect-Oriented Modeling.

ICSOFT 2007 - International Conference on Software and Data Technologies

386

