
VERSION CONTROL FOR RDF TRIPLE STORES

Steve Cassidy and James Ballantine
Department of Computing, Macquarie Univeristy, Sydney, Australia

Keywords: RDF Version Control Annotation.

Abstract: RDF, the core data format for the Semantic Web, is increasingly being deployed both from automated sources
and via human authoring either directly or through tools that generate RDF output. As individuals build up
large amounts of RDF data and as groups begin to collaborate on authoring knowledge stores in RDF, the
need for some kind of version management becomes apparent. While there are many version control systems
available for program source code and even for XML data, the use of version control for RDF data is not a
widely explored area. This paper examines an existing version control system for program source code, Darcs,
which is grounded in a semi-formaltheory of patches, and proposes an adaptation to directly manage versions
of an RDF triple store.

1 INTRODUCTION

Semantic web applications store core data as RDF
triples. In many cases, this data is authored manually
in some form or other; as such, it can be seen as a form
of program code and should be subject to the same
kind of management. In particular keeping track of
different versions of a code-base is especially impor-
tant when more than one author is involved. Tools are
needed to allow authors to synchronise their working
copies, to exchange updates with each other, and to al-
low changes to be undone if necessary when problems
are discovered. While it would be possible to manage
RDF under an existing text-based version control sys-
tem, it would be hard to guarantee consistency and
correctness of a triple store managed in this way. This
paper explores a novel model of version control em-
bodied in the Darcs Roundy (2006) system to manage
RDF data in the triple store.

The context of this work is a project to sup-
port Linguistic Annotation Cassidy and Harrington
(2000); Bird and Liberman (2000) using RDF as the
back-end data store. This application is similar in
some ways to the Annotea and Vannotea projects
R. Schroeter (2003) but the annotations themselves
are often inter-related and represent linguistic inter-

pretation of source data rather than comments and
opinions on media. Our current work is aimed at
providing a collaborative annotation facility to allow
groups to develop and share annotations over the web.
The provision of a version control mechanism will
ensure that different copies of the same annotations
can be kept synchronised where appropriate and that
changes and updates to annotations can be managed.
In our application, it is common for a community to
settle on a ‘correct’ annotation through negotiation;
hence the RDF store will commonly be modified over
time with contributions from different parties. Even
though our use of RDF isn’t entirely aligned with its
more general use in the Semantic Web, we feel that
the need for version control for RDF is broader than
just our project and that the proposals in this paper
will have more general applicability.

2 BACKGROUND

A version control system is used to manage changes
to a body of work, for example a set of source code
documents in a project. Its major function is to
record changes such that the changes can be rolled
back and changes made by different authors can be

5
Cassidy S. and Ballantine J. (2007).
VERSION CONTROL FOR RDF TRIPLE STORES.
In Proceedings of the Second International Conference on Software and Data Technologies - Volume ISDM/WsEHST/DC, pages 5-12
DOI: 10.5220/0001340100050012
Copyright c© SciTePress



merged into a single code-base. The most common
application for version control is the management of
changes in program source code and here the most
widely used system is CVS Cederqvist (2003) al-
though more recently competitors such as Subversion
Collins-Sussman et al. (2004) have been developed.

The majority of version control systems record
different versions of documents in their store, opti-
mising the store to make common operations inex-
pensive. For example, CVS stores the most recent
version of each file and a set of patch files that encode
the changes needed to revert to the previous version.
Stepping back to the previous version is fast, but step-
ping back a long way requires the sequential applica-
tion of patch files.

A recent development in version control has been
the use of a distributed development model where
multiple copies of the version control repository are
maintained. In the CVS model, there is one central
canonical copy of the version history that all develop-
ers use to send and receive updates. In the distributed
model supported by Darcs, Arch Lord (2006) and Bit-
keeper1 among others, each developer has a copy of
the version history and changes can be registered lo-
cally and passed between developers without the need
for a central server.

2.1 Version Control and RDF

The On-to-Knowledge project has published a num-
ber of papers on managing changes in RDF ontologies
Klein et al. (2002); Kiryakov and Ognyanov (2002).
The focus of much of their work is on the description
of different versions of ontologies although Kiryakov
and Ognyanov (2002) note that much of their method-
ology applies equally to plain RDF descriptions as
it does to RDF(S) schema expressed in RDF. How-
ever, their main goal is to track changes, not manip-
ulate them and their proposal doesn’t claim offer a
full version control mechanism. Meta-data is asso-
ciated with specific versions of an ontology allow-
ing users to identify appropriate versions and reason
about the compatibility of newer and older versions.
Their papers contain some relevant work on automat-
ically comparing ontologies to find differences.

When semantic web data is viewed as a knowl-
edge store from which new knowledge will be de-
duced, a major concern is maintaining the consis-
tency of the knowledge store. This problem has a lot
in common with the version control problem in that
consistency must be maintained in the face of addi-
tion and deletion of assertions. Deletion especially

1http://www.bitmover.com/

presents the problem of finding what deduced knowl-
edge should be removed to keep the knowledge store
consistent. Broekstra and Kampman’s work ontruth
maintenanceBroekstra and Kampman (2003) is con-
cerned with tracking the deductive dependencies be-
tween statements in the RDF graph to avoid having to
re-run deductive processes when statements are added
or deleted from the graph.

The source or provenance of data is also a ma-
jor concern when reasoning about knowledge drawn
from diverse locations around the Semantic Web. A
number of projects are investigating the representa-
tion of the provenance of statements within the RDF
model enabling reasoning about both a fragment of
data and its source. While the RDF reification mech-
anism provides one way of making statements about
statements, as pointed out by Watkins and Nicole
Watkins and Nicole (2006) reified statements cannot
be used in semantic inferences. They propose the use
of the Named Graph mechanism as implemented in
Jena Bizer et al. (2005) to record provenance infor-
mation about statements in the graph. They have used
this mechanism to implement a software version con-
trol system Watkins and Nicole (2005) which uses
RDF to describe changes to text based source code.
An interesting result of this work is the ability to rea-
son about the version meta-data using RDF tools to,
for example, find instances where a developer reverts
a change made by another developer. The use of RDF
in this role adds a useful additional capability to the
normal version control model.

Some recent work has directly directly addressed
the problem of version management for RDF knowl-
edge bases. The recently released IBM BOCA Sys-
tem2 is an RDF repository that supports rollback of
transactions in the RDF store. Very little informa-
tion is available at this time about how this is imple-
mented or the capabilities of the model used. Auer
and Herre Auer and Herre (2006) present a model
based onatomic changesto RDF triple stores which
enables a kind of transaction based version manage-
ment enabling changes to be rolled back if neces-
sary. The main focus of the paper is on the appli-
cation of change management to the evolution of on-
tologies and the authors discuss some ideas forevolu-
tion patternswhich enable them to characterise sets of
changes to an ontology as, for example, adding a new
class or changing the cardinality of a property. The
intention of these patterns is to provide more a useful
change history to a human author than if the raw RDF
changes were shown. The goals of this work are very
close to that of our own project and there are many

2http://ibm-slrp.sourceforge.net/v1/wiki/
index.php/BocaUsersGuide

ICSOFT 2007 - International Conference on Software and Data Technologies

6



overlaps in the solutions we put forward. This will be
discussed further at the end of this paper.

2.2 Darcs and the Theory of Patches

One issue with common version control systems such
as CVS and Subversion is that they are not based on
any formal model of how changes may or may not be
combined with each other. This means that they are
unable to convincingly assert that the result of merg-
ing a change into a working version maintains any
kind of consistency constraint. One system which at
least attempts to address this issue is the recently de-
veloped Darcs Roundy (2006) system.

Darcs is a distributed version control system built
to manage software source code; Darcs views a ver-
sion as a sequence of patches which when applied to
an empty source tree, builds a particular version of
the code. Also unlike other version control systems,
the design of Darcs is built on atheory of patches– a
semi-formal model of the way that individualpatches
can be manipulated to implement the required version
control operations. This theory of patches is indepen-
dent of the nature of a patch or change and so we can
make use of it in thinking about how changes to an
RDF store might be managed.

In Darcs, apatchis a set of changes made to a doc-
ument (or collection of documents) which has been
recorded by a user. A patch will tend to implement
one meaningful modification to program source code,
such as adding a new function or fixing a bug. The
patch may include changes to multiple documents and
to different parts of individual documents. A version
of the document collection can be described by the
sequence of patches that led up to that version; this is
called thecontextof the version. A patch is said to
move the working copy from one context to another.

A patch is written as an uppercase letter, option-
ally annotated with the left and right contexts. The
sequence of patches A followed by B can be written:

oAaBb

or more simply:
AB

the superscripts in the first notation denote named
contexts: oAa can be read as “patchA modifies the
repository from contexto to contexta”.

A Darcs patch must have the property of being in-
vertible; that is, it must be possible to construct a sec-
ond patch that will reverse the effect of a patch on
the current context to get back to the previous con-
text. The inverse of a patch is defined as thesimplest
patch that achieves this. The inverse is written asA−1

and by definition we know that the application of a

patch followed by its inverse will bring us back to the
original context:

oAaA−1 o

2.2.1 The Commute Operation

A fundamental operation when manipulating patches
is to be able to reverse the order of two patches. As
will be shown later, this forms the basis of the merge
operation between two repositories and the undo op-
eration for a patch which isn’t the most recent.

Darcs defines the commute operation as the re-
ordering of two patches. This can be written as:

oAaBb
↔

oBx
1Ab

1

The commute operation is symmetrical in that
both sides of the equationhave the same effect. Note
however that the individual patches on the right hand
side have been modified. The new patchB1 is defined
as having the same effect asB but is modified to allow
it to apply to the contexto; similarly, A1 has the same
effect asA but is modified so as to apply to the context
x.

In Darcs, which deals with changes to text files,
the modifications needed can be quite complex since
adding and deleting lines can change where subse-
quent changes should be applied. However, in RDF,
as we will see later, no changes are ever needed when
commuting patches.

In some cases the commute operation may not be
defined. For example, if one patch modifies a line
within a region added by the earlier patch. In this
case there is said to be adependencyor conflict be-
tween the patches which prevents them from being
re-ordered. The effect of a dependency will be seen
later.

2.2.2 The Revert Operation

To revert the most recent patch from the current con-
text all that is required is to remove the patch from
the context (the head of the sequence). To update the
working copy of the document set, the inverse of the
patch can be applied to undo the changes. So, to revert
the patchC from the sequenceABC, the patchC−1 is
applied givingAB.

The ability to change the order of a sequence of
patches means that it is possible to revert patches
which aren’t at the head of the sequence. To do so,
the patch is moved to the head by a series of com-
mute operations before the inverse patch is applied.
For example, to revertA from the sequenceABC the
sequence of operations is:

VERSION CONTROL FOR RDF TRIPLE STORES

7



ABC
B1A1C CommuteA andB
B1C1A2 CommuteA1 andC
B1C1A2A−1

2 Apply the inverse patch ofA2
B1C1 The resulting patch sequence

This process will fail if any commute operation
fails; that is if the patch being reverted has a de-
pendency relationship with any of the subsequent
patches. The process of reverting the patch is able to
identify which subsequent patches are dependent and
hence would have to be reverted along with the target
patch to maintain consistency.

2.2.3 The Merge Operation

Two patches which apply to the same context are said
to beparallel patches. This situation can arise when
two people work from a common base each making
changes to the documents. As long as the changes
do not conflict with each other, it should be possible
to combine them into a sequence which reflects both
changes. This is themergeoperation and it can be
derived in the following manner from the inverse and
commute operations.

A Choose patchA to apply first.
AA−1 Apply the inverse ofA.
AA−1B Apply B since we are back at the ini-

tial context.
AB1A−1

1 CommuteA−1 and B to put the in-
verse patch at the end

AB1 Drop the final patch to give the de-
sired sequence of patches

It should be clear that the outcome of mergingA
and B could be either ofAB1 or BA1 depending on
which patch was applied first and that the result of
both of these should be the same. The merge oper-
ation will succeed as long as the commute operation
betweenA−1 andB succeeds, that is as long as there
is no dependency between these two. The resulting
patchB1 above is a modified version ofB which can
be applied to the context including the changes in-
troduced byA. This modification is the same as that
required for the commute operation described above.

3 VERSION CONTROL FOR RDF

In the context of an RDF triple store, there are a num-
ber of ways in which to conceive of a version con-
trol system. A primary choice is the granularity of
changes that will be recorded in patches. Following

Kiryakov and Ognyanov (2002) we settle on the RDF
statement (triple) as the smallest directly manageable
element. This implies that it is not possible to add
just a resource name to a store if it doesn’t take part in
some RDF statement. Kiryakov and Ognyanov also
state that“An RDF statement cannot be changed – it
can only be added or removed”. This restriction fol-
lows from the observation that changing a statement
< a,b,c > to < a,x,c > is entirely equivalent to re-
moving the first triple and adding the second.

While the RDF statement is the smallest unit of
change in the triple store, for the most part a recorded
patch will consist of many additions and deletions
from the store. A patch should be ameaningful
change to the store such as the addition of a person
or event; however, this is not an enforceable restric-
tion as users of the version control system must decide
what makes sense as a meaningful change. Hence, in
general, a change will involve the addition or removal
of a sub-graphfrom the triple store. We note here
that recent work by Auer and Herre (2006) includes
a very useful discussion of the role of blank nodes
in recording, and more importantly in communicat-
ing, changes to a triple store. They define anatomic
graph being one which can’t be split without dupli-
cating blank nodes and use that as the smallest unit
of change in a triple store. This project has not con-
sidered issues related to blank nodes because our ap-
plication doesn’t make use of them, but the work of
Auer and Herre is entirely compatible with the ideas
expressed here as will be discussed at the end of this
paper.

3.1 RDF Patches

This section defines the properties of patches used in
our version control system, shows how patches are
inverted, how conflicts are detected between patches
and how alternate patches are computed.

A patch to an RDF store consists of a set of
additions and deletions of sub-graphs. Unlike with
changes to text files, no context or line number is re-
quired for each addition or deletion. The main con-
cern when manipulating patches is to be able to invert
any patch and to work out whether two patches con-
flict with each other.

Given these requirements, the basic form of a
patch should be two sub-graphs, one to be added and
the other to be deleted from the store. An example is
shown in Figure 1.

While this is the basic form of a patch it may be
desirable to add additional information to make iden-
tifying conflicts easier in some cases. For most uses
of the version control system, modifications will be

ICSOFT 2007 - International Conference on Software and Data Technologies

8



add:
:john foaf:knows :bob .

delete:
:john foaf:knows :mary .

Figure 1: A simple RDF patch.

made by human authors; however, it may also be use-
ful to include inferred knowledge. If this is to be done,
the additions (assuming that inference does not delete
knowledge) will be based on some of the existing con-
tents of the store. These should be recorded as support
for the new triples because their removal would cause
a conflict with the new patch. Hence the represen-
tation of a patch is extended to include an optional
dependency sub-graph taken from the working store.
These dependancies must be explicitly asserted, we
do not propose any mechanism for discovering de-
pendancies from the knowledge base or any inference
process. Figure 2 shows an example of such a patch.

add:
:john foaf:knows :bob .

depends:
:john foaf:works :acmecorp .
:bob foaf:works :acmecorp .

Figure 2: An example RDF patch including a dependency
sub-graph.

Patch inversion can be achieved by swapping the
add and delete sub-graphs in a patch fulfilling the re-
quirement that every patch should have an inverse.
This corresponds to the intuition that removing a
change can be achieved by deleting anything added
and adding anything deleted by the change. An inter-
esting question is whether a dependency on the patch
should remain after inversion. In the above example
we infer that John knows Bob based on them both
working for AcmeCorp; meaning that we should not
apply this patch if the triple store does not contain the
two dependent triples and that removing either depen-
dent triple would conflict with this patch. If we were
to invert this patch, so that John doesn’t know Bob,
we can do it irrespective of any dependency and still
maintain consistency. Hencethe inversion of a patch
discards any dependency sub-graph in the original.

The Darcs commute operation is fundamental to
being able to undo the effect of a historical patch and
to merging changes from another repository. This op-
eration requires that there is a test for conflict between
two patches and that the alternate patches, to be ap-
plied in a different context, must be computed. These
two problems are considered here.

A conflict occurs between two RDF patches if ap-
plying them in a different order would generate a pos-
sibly inconsistent state in the triple store. The easi-
est example is when patchA depends on a statement
added by patchB: hereA andB can’t be re-ordered
becauseA’s dependencies won’t be met in the context
before applyingB and soA conflicts withB. When
two patches contain only add and delete sub-graphs,
a conflict occurs when patchA adds a statement that
is deleted by patchB or vice-versa. In this case, re-
ordering the patches would result in deleting a non-
existing statement and then adding that statement in
the second patch. Hence the state of the triple store
would be different if the patches were applied in a
different order.

Note that it would be possible to resolve this last
kind of conflict automatically. Consider the example
of the patches shown in Figure 3; here the result af-
ter applying the patches in the sequenceAB is that
John knows James and Mary but not Bob. One way
to construct a valid sequenceB′A′ is to remove any
mention of Bob from each patch. The effect ofB′A′

would be the same asAB and consistency would be
assured. The only issue with this approach is that we
are potentially losing information sinceA andB may
have come from different users who should probably
be made aware of the conflict so that they can negoti-
ate whether or not John knows James.

A { add:
:john foaf:knows :bob .
:john foaf:knows :james . }

B { add:
:john foaf:knows :mary .

delete:
:john foaf:knows :bob . }

Figure 3: Two patchesA andB which conflict due to adding
and deleting a shared statement.

This brings us to the question of how to construct
the alternate patch that is required when two patches
are to be reversed. Recall that when a patch sequence
AB is to be reversed, the patchB must be altered so
that it can be applied in the context prior toA andA
must be altered so that it can be applied after the mod-
ified B. In text files, these changes involve changes to
line numbers in the patch. In our case,no change is
needed to patches to allow re-ordering if there is no
conflict between them.

VERSION CONTROL FOR RDF TRIPLE STORES

9



4 IMPLEMENTATION AND
EVALUATION

Our implementation goals for this project are ulti-
mately to provide both server and desktop based triple
stores and the ability to synchronise changes between
different workspaces. In the first instance we have
built an implementation based on the Redland Beckett
(2001) system which provides a wrapper around the
existing Redland Python interface to implement ver-
sion control operations. This section discusses some
aspects of the implementation and then provides an
evaluation of the overhead cost of maintaining version
control information in this way.

The first implementation decision relates to how
patches will be computed from the current workspace.
In text based version control the universal solution is
to compute adiff between the current and previous
versions showing which lines have been added and
removed. It would be possible to use this approach
for RDF and indeed we can refer to work published
by Berners-Lee and Connolly (2004) on how these
can be computed and stored. However, an alterna-
tive presents itself in our context which is to monitor
all changes to the RDF store via the Redland inter-
face and build the patch from the observed changes.
This should be considerably more efficient when the
number of statements stored becomes large.

Our approach then is to instrument the Redland
Python interface to provide a wrapper around the op-
erations that perform additions and deletions from the
store to also record these changes in a patch. The
wrapper also provides the version control methods
record, to finalise a patch,revert to undo the effects
of a patch andmerge to merge a patch with the cur-
rent working store. These will be described in more
detail below.

4.1 Storing Patches

Since we have settled on a logging approach to gen-
erating patches, one possible approach is to use a
tabular structure to log the add, delete and depen-
dency triples as they are asserted in the working store.
Kiryakov and Ognyanov (2002) suggest that a rela-
tional database is an appropriate store for this data as
this can be stored more compactly than if it were as-
serted into the RDF store. A patch then would be a
table of add/delete operations with their parameters
(subject, predicate, object).

An alternative to this approach is to use RDF to
represent the patches with each add and delete oper-
ation forming a node in a special patch store. This
aligns with the work outlined by others Berners-Lee

and Connolly (2004); Auer and Herre (2006) who
define ontologies for RDF patches and allows for
recording metadata and reasoning about the patches
themselves, perhaps along the lines of the inferences
suggested by Watkins and Nicole (2006). Since we
need to make statements about the addition and dele-
tion of statements some kind of reification is required.
Following the earlier work, we can also include state-
ments about the provenance of the changes and about
the relationships between patches.

Our implementation makes use of the Redland
Beckett (2001)contextmechanism, which is simi-
lar to the named graph model used by Watkins and
Nicole. A context in Redland can be associated with
one or more assertions into the triple store. These are
used to group together the changes in a given patch
and since a context is identified by a resource node in
the graph, can also be used to make statements about
the patches themselves. Our implementation uses two
separate RDF stores for the working store and the
patch store although it would be only a little more
complex to use one store containing many contexts
for both of these. The main working store is main-
tained as it would normally be except that the add and
delete operations are intercepted by our wrapper. The
patch store contains just the assertions about patches,
with each patch being in its own context. One fur-
ther item of metadata must be stored in the working
store to record the sequence of patches that define the
current state. This information is needed when new
patches are made and when patches are reverted and
merged from other working stores.

Each addition or deletion from the working store
is asserted as a reified statement within the current
context (shown here using the TriG named graph syn-
tax Bizer (2005)):

:patchA {
:add1 rdf:type darcs:assert,

rdf:subject :john,
rdf:predicate foaf:knows,
rdf:object :bob .

:del1 rdf:type darcs:delete,
rdf:subject :john,
rdf:predicate foaf:knows,
rdf:object :jane .

}

Here :patchA is a named graph containing the
reified assertions. These assertions are collected in a
current patchcontext until such time as the user asks
to record or commit the patch. At this point the patch
is closed and assertions can be made about it via the
context node (in Redland, the context identifier is a
first class node in the graph). For example, the au-

ICSOFT 2007 - International Conference on Software and Data Technologies

10



thor and time of the patch and any commentary can
be recorded.

:patchA rdf:type darcs:patch,
dc:creator <mailto:fred@bloggs.com>,
dc:date "2005-10-20",
darcs:comment "Added new name" .

One step remains before the patch can be finalised
and this relates to the possibility that the same state-
ment might be added and deleted in the patch. If there
is a pair of add and delete nodes referring to the same
statement then they should be removed from the patch
since the net effect will be nil on the final difference
between the current and prior version. Normalisation
produces a non-redundant set of changes required to
create the effect of a patch. This allows conflicts to be
detected without checking for redundant add/delete
pairs within the patches themselves. After normali-
sation, the patch context can be closed and a new one
opened for any future changes to be recorded.

4.2 The Revert Operation

The revert operation undoes the effect of a patch on
the working store, any additions are removed and any
deletions are re-added. As was shown above (Section
2.2.2), the revert operation on the most recent patch is
achieved by applying the inverse patch to the working
store. To revert a historical patch, the original patch
must be commuted to the head of the patch history
and then the inverse patch applied. Since commuting
an RDF patch is a simple re-ordering the only issue in
this operation is whether the patch being reverted con-
flicts with a patch more recent in the history. For ex-
ample, if we wish to revert patchA from the sequence
ABCDandA asserts thatJohn knows JanewhileC re-
moves that statement, then the revert cannot succeed
and the user must be informed of the conflict. The
user may decide to revert the patchC before reverting
A to avoid this problem.

4.3 The Merge Operation

The merge operation applies changes from one work-
ing store to another. The situation arises when a
branch workspace is created, for example if Steve
takes a copy of James’ workspace to add some ma-
terial on a special topic. At the point copying the
workspace, the patch history might beABCD, Steve
adds a number of statements and records a patchS,
meanwhile James has also made some more changes
and recorded a patchJ. Now Steve sends James the
patchSand James must merge it with his workspace
ABCDJ. As shown above (Section 2.2.3), the merge
operation requires commutingSandJ to give the final

sequenceABCDJS′ whereS′ is the modified version
of S that applies afterJ. For our RDF patchesS= S′

and so the merge can be performed simply by apply-
ing the patchSas long as there is no conflict between
SandJ.

4.4 Evaluation

A brief evaluation of our implementation was carried
out to ensure that the overhead introduced by version
control was acceptable in terms of additional space
and processing time. The results showed that using
the MySQL backend for the Redland store, VC is
around four to eight times slower and needs from two
to four times as much space as the raw RDF store.
While this overhead is significant, it is still work-
able in the kinds of applications we envisage. There
is room for optimisation here by working at a lower
level in the implementation of the RDF store.

5 DISCUSSION

As RDF is used more widely it will require the same
kind of tools as mainstream programming languages
since developers will want to collaborate on creat-
ing and maintaining an RDF store in the same way
that they currently do with source code. This paper
has presented a proposal for a version control system
for RDF based on a semi-formaltheory of patches
as implemented in the Darcs version control system.
This provides the basic building blocks to build a dis-
tributed version control system for RDF which can
support collaborative editing of RDF stores. The
model is being implemented as part of an eResearch
project developing tools for collaborative annotation
of Linguistic data.

Auer and Herre (2006) recently described their
work on version control for RDF which has many
similarities with the work described here. Their fo-
cus was somewhat different to our own in that they
are concerned with ontology evolution and spend time
deriving evolutionary patterns which can be used to
classify the changes made to the RDF store. However,
they do cover a number of points that aren’t consid-
ered in our work.

Auer and Herre define anatomic graphas the
smallest sub-graph that can’t be sub-divided with-
out duplicating blank nodes; these are the smallest
units of change in their system. Achange(their
name for our patch) consists one or more of these
atomic graphs added and/or deleted from the triple
store. Apart from the consideration of blank nodes,

VERSION CONTROL FOR RDF TRIPLE STORES

11



this formulation is entirely compatible with our no-
tion of RDF patches. Our system could be modified to
work with atomic graphs in more general RDF vocab-
ularies where blank nodes are an issue. The notion of
conflict between two changes is introduced as a bar-
rier to rolling back a change that occured some time
in the past. However, this notion is only described
as a relation between a change (patch) and a working
store. The idea of a conflict relation between patches
is not introduced and hence the manipulations that the
patch theory allows are not explored in their system.

It is clear then that this work is complimentary to
our own and that by borrowing the idea of the atomic
graph we should be able to expand our system to deal
with a broader range of RDF applications.

Our work is currently focused on the application
of our VC managed triple store to the problem of
Linguistic Annotation. Once we have successfully
demonstrated the technology in this application we
will look further into the more general problem of
VC for RDF and evaluate it in the context of ontol-
ogy evolution and other RDF authoring tasks.

REFERENCES

Auer, S. and Herre, H. (2006). A versioning and evolu-
tion framework for rdf knowledge bases. InProceedings
of Ershov Memorial Conference, Novosibirsk, Akadem-
gorodok, Russia.

Beckett, D. (2001). The Design and Implementation of the
Redland RDF Application Framework. InProceedings
of WWW10, Hong Kong.

Berners-Lee, T. and Connolly, D. (2004). Delta: an on-
tology for the distribution of differences between rdf
graphs. World Wide Web. http://www.w3.org/
DesignIssues/Diff.

Bird, S. and Liberman, M. (2000). A Formal Framework
for Linguistics Annotation.Speech Communication.

Bizer, C. (2005). The TriG Syntax.http://www.wiwiss.
fu-berlin.de/suhl/bizer/TriG/.

Bizer, C., Cyganiak, R., and Watkins, R. (2005). Named
Graphs for Jena (NG4J) API. InProceedings of the Sec-
ond European Semantic Web Conference., Greece.

Broekstra, J. and Kampman, A. (2003). Inferencing and
Truth Maintenance in RDF Schema: exploring a naive
practical approach. InWorkshop on Practical and Scal-
able Semantic Systems (PSSS).

Cassidy, S. and Harrington, J. (2000). Multi-level Annota-
tion in the Emu Speech Database Management System.
Speech Communication, 33:61–77.

Cederqvist, P. (2003).Version Management with CVS. Net-
work Theory. http://www.network-theory.co.uk/
docs/cvsmanual/.

Collins-Sussman, B., Fitzpatrick, B. W., and Pilato, C. M.
(2004).Version Control with Subversion. O’Reilly.

Kiryakov, A. and Ognyanov, D. (2002). Tracking Changes
in RDF(S) Repositories. InEKAW ’02: Proceed-
ings of the 13th International Conference on Knowledge
Engineering and Knowledge Management. Ontologies
and the Semantic Web, pages 373–378, London, UK.
Springer-Verlag.

Klein, M., Fensel, D., Kiryakov, A., and Ognyanov, D.
(2002). Ontology versioning and change detection on
the web. InEKAW ’02: Proceedings of the 13th In-
ternational Conference on Knowledge Engineering and
Knowledge Management. Ontologies and the Semantic
Web, pages 197–212, London, UK. Springer-Verlag.

Lord, T. (2006). How arch works. Web page.http:
//regexps.srparish.net/www/arch-tech.htm acc-
cesed on 13 December 2006.

R. Schroeter, J. Hunter, D. K. (2003). Vannotea - a collabo-
rative video indexing, annotation and discussion system
for broadband networks. InK-CAP 2003 Workshop on
Knowledge Markup and Semantic Annotation, Florida.

Roundy, D. (2006). The darcs revision control sys-
tem. http://abridgegame.org/darcs/. Accessed on
2006-05-18.

Watkins, E. R. and Nicole, D. A. (2005). Version control
in online software repositories. InProceedings of the
2005 International Conference on Software Engineering
Research and Practice II, pages 550–556.

Watkins, E. R. and Nicole, D. A. (2006). Named graphs as
a mechanism for reasoning about provenance. InLecture
Notes in Computer Science Frontiers of WWW Research
and Development - APWeb 2006: 8th Asia-Pacific Web
Conference, pages 943–948, Harbin, China.

ICSOFT 2007 - International Conference on Software and Data Technologies

12


