SOFTWARE DEFECT PREDICTION: HEURISTICS FOR WEIGHTED NAÏVE BAYES

Burak Turhan and Ayşe Bener

Department of Computer Engineering, Bogazici University, 34342 Bebek, Istanbul, Turkey

Keywords: Empirical software engineering, Software quality, Defect prediction, Software metrics, Naïve Bayes, Feature weighting.

Abstract: Defect prediction is an important topic in software quality research. Statistical models for defect prediction can be built on project repositories. Project repositories store software metrics and defect information. This information is then matched with software modules. Naïve Bayes is a well known, simple statistical technique that assumes the ‘independence’ and ‘equal importance’ of features, which are not true in many problems. However, Naïve Bayes achieves high performances on a wide spectrum of prediction problems. This paper addresses the ‘equal importance’ of features assumption of Naïve Bayes. We propose that by means of heuristics we can assign weights to features according to their importance and improve defect prediction performance. We compare the weighted Naïve Bayes and the standard Naïve Bayes predictors’ performances on publicly available datasets. Our experimental results indicate that assigning weights to software metrics increases the prediction performance significantly.

1 INTRODUCTION

Quality of software is often measured by the number of defects in the final product. Minimizing the number of defects—maximizing software quality—requires a thorough testing of the software in question. On the other hand, testing phase requires approximately 50% of the whole project schedule (Harold, 2000; Tahat et.al., 2001). This means testing is the most expensive, time and resource consuming phase of the software development lifecycle. An effective test strategy should therefore consider minimizing the number of defects while using resources efficiently.

Defect prediction models are helpful tools for software testing. Accurate estimates of defective modules may yield decreases in testing times and project managers may benefit from defect predictors in terms of allocating the limited resources effectively (Song et.al., 2006).

Defect predictors based on linear regression (Munson and Khoshgoftaar, 1990), discriminant analysis (Munson and Khoshgoftaar, 1992), decision trees, neural networks (Padberg et.al., 1998; Khoshgoftaar and Seliya, 2004) and Naïve Bayes classification (Menzies et.al., 2007) have been analysed in previous research. Among these, Naïve Bayes is reported to achieve significantly better performances than the other methods (Menzies et.al., 2007). Naïve Bayes assumes the independence and equal importance of provided features despite the fact that these do not hold in many cases. Nevertheless, Naïve Bayes has a good reputation for its prediction accuracy (Domingos and Pazzani, 1997).

This paper attempts to tackle the equal importance of features assumption of Naïve Bayes. As shown in previous research, all software metrics may not be good indicators of software defects (Basili et.al., 1996). We extend this and assume that all software metrics may not have equal effect on defect prediction and they should be treated accordingly. Our research goal is to develop a methodology that permits the use of software metrics in terms of their relevance to defect prediction. For this purpose we present one existing and two new heuristics for determining the degree of importance of software metrics and we evaluate these in Weighted Naïve Bayes classifier on datasets, which are chosen among real software applications and publicly provided by NASA MDP (Nasa, 2007).
2 RELATED WORK

Linear regression analysis for defect prediction treats software metrics as the independent variables in order to estimate the dependent variable i.e. defect density. Munson and Khoshgoftaar (1992) investigate linear regression models and discriminant analysis to conclude the performance of the latter is better. They use Principal Component Analysis (PCA) as a pre-processing step in order to eliminate the co-linearity in software metrics. Nagappan et.al. (2005) also uses linear regression analysis with PCA for the STREW metric suite. Decision tree learning is another common method that is preferred for its rule generation capabilities (Menzies et.al., 2003; Menzies et.al., 2004). Such rules are easier to explain to non-technical people (Fenton and Neil, 1999).

Though some research stated against using static code measures (Fenton and Ohsson, 2000; Shepperd and Ince, 1994), a recent research showed that using a Naïve Bayes classifier with log-filtered static code measures yields significantly better results than rule based methods like decision trees (Menzies et.al., 2007).

The number of researches for relaxing the assumptions of Naïve Bayes have significantly increased in recent years. These researches focused on modifications to break the conditional independence assumption and weighting attributes (Lewis, 1998; Zhang and Webb, 2000; Frank et.al, 2003; Zhang and Sheng, 2004; Hall, 2007). All studies reported results that are generally 'not worse' than the standard Naïve Bayes, while preserving the simplicity of the model.

As for the attributes that are used for constructing predictors, some researches prefer ranking the features for feature subset selection (Mladenic and Grobelnik, 1999; Menzies et.al., 2007), and there are also researches on using the ranking criteria for feature weight assignment (Zhang and Sheng, 2004; Auer et.al., 2006). In fact, feature subset selection corresponds to 'hard' weighting of features, i.e. assigning 0 or 1 for feature weights.

In this paper, we aim at combining the best practices of the above mentioned studies for constructing robust and accurate defect predictors, by means of using a weighted Naïve Bayes classifier and constructing heuristics for accurate feature weight assignment. While above mentioned researches employ feature subset selection based on the estimated importance of features, they treat the selected subset of features equally. On the other hand, we propose to treat each feature based on their estimated importance and we search for empirical evidence for the validity of our approach.

3 METHODS

In this section, methods used in this research are explained. We first derive the Weighted Naïve Bayes method, and then describe three heuristics for feature weight assignment.

3.1 Weighted Naïve Bayes (WNB)

Although similar Weighted Naïve Bayes formulas are given by Zhang and Sheng, (2004) and Hall (2007), we will present a complete derivation.

Standard Naïve Bayes derivation can be obtained by placing a special form of multivariate normal distribution, as the likelihood estimate in the famous Bayes theorem. By special form of multivariate normal distribution we mean that the off-diagonal elements of the covariance matrix estimate are assumed to be zero, i.e. the features are independent. In this case the multivariate distribution can be written as the product of univariate normal distributions of each feature.

Bayes theorem states that the posterior distribution of a sample is proportional to the prior distribution and the likelihood of the given sample (Alpaydın, 2004). Formally:

\[P(C_i | x) = \frac{P(x | C_i)P(C_i)}{P(x)} \]

(1)

In Equation 1, the denominator is referred to as the evidence and given by:

\[P(x) = \sum_i P(x | C_i)P(C_i) \]

(2)

Evidence is a normalization constant for all classes, thus it can be safely discarded. Then Equation 1 becomes:

\[P(C_i | x) = \frac{P(x | C_i)P(C_i)}{P(x)} \]

(3)

In a classification problem we compute the posterior probabilities \(P(C_i | x) \) for each class and choose the one with the highest posterior. In general the logarithms are used for computational convenience, which yields Equation 4.
Placing the special form of multivariate normal distribution as explained before gives the standard Naïve Bayes formula as given in Equation 5.

\[g_i(x) = \frac{1}{2} \sum_{j=1}^{d} \left(\frac{x_j - m_{ij}}{s_j} \right)^2 + \log(P(C_i)) \]

(5)

If we update Equation 3 as in Equation 6 in order to introduce weights,

\[P(C_i \mid x) = P(x \mid C_i)^{w_i} P(C_i) \]

(6)

the Weighted Naïve Bayes estimator is obtained as given in Equation 7:

\[g_i(x) = -\frac{1}{2} \sum_{j=1}^{d} w_i \left(\frac{x_j - m_{ij}}{s_j} \right)^2 + \log(P(C_i)) \]

(7)

3.2 Feature Weight Assignment (WA)

3.2.1 Heuristic 1 (H1): GainRatio based WA

GainRatio is mainly used in decision tree construction to determine the features that best splits the data (Quinlan, 1993). Zhang and Sheng (2004) use this heuristic for feature weight assignment. The weight of a feature \(w_d \), where \(d = 1..D \) and \(D \) is the number of features, is given by Equation 8 (Zhang and Sheng, 2004).

\[w_d = \frac{\text{GainRatio}(d) \times n}{\sum \text{GainRatio}(i)} \]

(8)

3.2.2 Heuristic 2 (H2): InfoGain based WA

InfoGain is another method for decision tree (Quinlan, 1993). It is also used in other studies for feature ranking (Mladenic and Grobelnik, 1999; Menzies, 2007). Our goal is to convert these ranking estimates into feature weights. Therefore, we propose the heuristic given in Equation 9.

\[w_d = \frac{\text{InfoGain}(d) \times n}{\sum \text{InfoGain}(i)} \]

(9)

3.2.3 Heuristic 3 (H3): PCA based WA

PCA projects the data points onto orthogonal principal axes such that the variance in each axis is maximized. We claim that features with higher weights for determining principal components should have higher weights in the prediction algorithm. In our proposed heuristic, we use \(k \) eigenvalue and eigenvector pairs that correspond to the 95% of the proportion of variance explained. Eigenvalues are written as \(\lambda_1, \lambda_2, \ldots, \lambda_k \). Eigenvectors are written as \(e_{id} \) where \(i = 1..k \), \(d = 1..D \) and \(D \) is the number of features. Then the weight of feature \(d \) is estimated as a weighted sum of the corresponding eigenvector elements as given in Equation 8.

\[w_d = \frac{\sum \lambda_i e_{id}}{\sum \lambda_i} \]

(10)

The weights are then scaled to lie in the [0, 1] interval by dividing each weight by the maximum one.

4 EXPERIMENTS AND RESULTS

We have evaluated 8 public datasets (real software applications) obtained from NASA MDP Repository in our experiments (Nasa, 2007) (See Table 1). Sample sizes of the projects vary from 125 to 5589 modules, which enables experiments in a range of both small and large datasets. Each dataset has 38 features representing static code attributes. Modules with error counts greater than zero are assumed to be defective.

We have used probability of detection (pd) and probability of false alarm (pf) as the performance measures following the research by Menzies et.al. (2007). Formal definitions for these performance criteria are given in Equations 11 and 12 respectively and they are derived from the confusion matrix given in Table 2. pd is a measure of accuracy for correctly detecting the defective modules. Therefore, higher pd's are desired. pf is a measure for false alarms and it is an error measure for incorrectly detecting the non-defective modules. pf is desired to have low values. Since we need to optimize two parameters, pd and pf, a third performance measure called balance is used to choose the optimal (pd, pf) pairs. balance is defined as the normalized Euclidean distance from the desired point (0,1) to (pd, pf) in a ROC curve (Menzies et.al., 2007).

We have compared the standard Naïve Bayes classifier with the three Weighted Naïve Bayes
classifiers constructed by using the three heuristics described in Section 3. We have also reproduced the experiments that are reported in Menzies et.al. (2007) for comparison.

Table 1: Datasets from NASA Repository.

<table>
<thead>
<tr>
<th>Name</th>
<th># Features</th>
<th>#Modules</th>
<th>DefectRate(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM1</td>
<td>38</td>
<td>505</td>
<td>9</td>
</tr>
<tr>
<td>PC1</td>
<td>38</td>
<td>1107</td>
<td>6</td>
</tr>
<tr>
<td>PC2</td>
<td>38</td>
<td>5589</td>
<td>0.6</td>
</tr>
<tr>
<td>PC3</td>
<td>38</td>
<td>1563</td>
<td>10</td>
</tr>
<tr>
<td>PC4</td>
<td>38</td>
<td>1458</td>
<td>12</td>
</tr>
<tr>
<td>KC3</td>
<td>38</td>
<td>458</td>
<td>9</td>
</tr>
<tr>
<td>KC4</td>
<td>38</td>
<td>125</td>
<td>4</td>
</tr>
<tr>
<td>MW1</td>
<td>38</td>
<td>403</td>
<td>9</td>
</tr>
</tbody>
</table>

We have used 10-fold cross-validation in all experiments. That is, datasets are divided into 10 bins, 9 bins are used for training and 1 bin is used for testing. Repeating these 10 folds ensures that each bin is used for training and testing while minimizing the sampling bias. Each holdout experiment is also repeated 10 times and in each repetition the datasets are randomized to overcome any ordering effect and to achieve reliable statistics. To summarize, we have performed 10x10=100 experiments for each dataset and our reported results are the mean and standard deviations of these 100 experiments for each dataset. We have applied t-test with \(\alpha = 0.05 \) in order to determine the statistical significance of results. All implementations are done in MATLAB environment. Mean results of 100 experiments for each dataset are tabulated in Table 3. Statistically significant results are indicated in bold face.

Table 2: Confusion Matrix.

<table>
<thead>
<tr>
<th></th>
<th>Estimated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Real</td>
</tr>
<tr>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>

\[
pd = \frac{(A)}{(A+C)} \quad (11)
\]
\[
 pf = \frac{(B)}{(B+D)} \quad (12)
\]

First thing to notice is that the standard Naïve Bayes and PCA based heuristic are outperformed by other methods. Both methods show statistically significantly worse performances than others in all datasets. They also perform similar behaviours to each other. From this observation, we conclude that Naïve Bayes is innately capable of discovering the linear relative importance of features, i.e. lesser weighted features already contribute less to the computation of posterior probabilities.

Other heuristics based on InfoGain and GainRatio estimates feature weights in a nonlinear fashion. In 3 cases (PC1, PC3, KC3), they perform equivalently and they are statistically significantly better than other methods. In other 3 datasets (PC2, KC4, MW1) there is no statistical difference between the performances of these heuristics and IG+NB. In one case (PC4) our proposed heuristic based on InfoGain outperforms all other methods. This is also the case for IG+NB in one case (CM1).

InfoGain and GainRatio heuristics achieve higher \(pd \) and \(pf \) values compared to IG+NB. We argue that the projects that require high reliability should have higher \(pd \) values. The datasets in this research come from NASA’s critical systems. Therefore, InfoGain and GainRatio based heuristics may be preferred over IG+NB.

Table 3: Results of 10x10=100 hold-out experiments.

<table>
<thead>
<tr>
<th>Data</th>
<th>WNB+H1 (%)</th>
<th>WNB+H2 (%)</th>
<th>WNB+H3 (%)</th>
<th>NB (%)</th>
<th>IG+NB (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pd</td>
<td>pf</td>
<td>bal</td>
<td>pd</td>
<td>pf</td>
</tr>
<tr>
<td>CM1</td>
<td>82</td>
<td>39</td>
<td>70</td>
<td>82</td>
<td>39</td>
</tr>
<tr>
<td>PC1</td>
<td>69</td>
<td>35</td>
<td>70</td>
<td>67</td>
<td>35</td>
</tr>
<tr>
<td>PC2</td>
<td>72</td>
<td>15</td>
<td>77</td>
<td>69</td>
<td>35</td>
</tr>
<tr>
<td>PC3</td>
<td>72</td>
<td>15</td>
<td>77</td>
<td>72</td>
<td>35</td>
</tr>
<tr>
<td>PC4</td>
<td>82</td>
<td>27</td>
<td>79</td>
<td>81</td>
<td>35</td>
</tr>
<tr>
<td>KC3</td>
<td>80</td>
<td>27</td>
<td>76</td>
<td>83</td>
<td>30</td>
</tr>
<tr>
<td>KC4</td>
<td>80</td>
<td>27</td>
<td>76</td>
<td>78</td>
<td>35</td>
</tr>
<tr>
<td>MW1</td>
<td>70</td>
<td>38</td>
<td>66</td>
<td>68</td>
<td>34</td>
</tr>
<tr>
<td>Avg:</td>
<td>77</td>
<td>31</td>
<td>72</td>
<td>77</td>
<td>32</td>
</tr>
</tbody>
</table>
Overall evaluation yields 6 wins for InfoGain and GainRatio heuristics and 4 wins for IG+NB. These results indicate that our approach yields comparable and in some occasions better results than the ones reported on these datasets so far. Let us use a simple ranking scheme for comparing these methods: Distribute 3 points (since it is the maximum number of concurrent winners) evenly among winners in each case, i.e. 3 points to single winner, 1.5 points for each in two winners case, and 1 point for each in three winners case. Then our InfoGain based heuristic receives 9.5 points, GainRatio based heuristic receives 8 points and IG+NB receives 6.5 points.

In Figure 1, we have plotted the relative weights of 38 metrics available in the datasets. Figure 1 shows the cumulative metric weight sums over 8 datasets. The plot on the left shows these values for InfoGain based heuristic and the plot on the right plots values for GainRatio based heuristic. Examining Figure 1, we see that metrics enumerated with 17 and 36 are never used. These metrics are ‘Global Data Density’ and ‘Pathological Complexity’. (For a complete list of metrics, see (Nasa, 2007). An analysis of datasets shows that these metrics have a unique value for all modules for most of the datasets. Thus, they do not have any discriminative power and they are eliminated. Also metrics enumerated with 15 and 16 (‘Parameter Count’ and ‘Global Data Complexity’) are used only in PC4 and KC3 where similar observations are valid. The general trend of weight assignment by both heuristics is similar. Metrics enumerated by 3, 12, 29, 33, 35 ,38 which are ‘Call Pairs’, ‘Edge Count’, ‘Node Count’, ‘Number of Unique Operands’, ‘Total Number of Lines’ and ‘Total Number of Line of Code’ respectively, are consistently selected by these heuristics. This collective set of software metrics are in total accordance with the ones that Menzies et. al. (2007) reported for subset selection.

5 CONCLUSIONS

This paper presented an application of defect prediction built on weighted features. We have used three heuristics in order to estimate the weights of features based on their relative importance. Two novel heuristics are introduced for this purpose. We have evaluated our approach on Weighted Naïve Bayes predictor, which is an extension of standard Naïve Bayes. To the best of our knowledge, the weighted features approach is a novel one in defect prediction literature. We observed linear methods for feature weighting lack the ability to improve the performance of Naïve Bayes, while non-linear ones give promising results. Our results indicated that the proposed approach may produce statistically significantly better results for defect prediction.

From a software practitioner’s point of view, these results may be useful for detecting defects before proceeding to the test phase. Additionally, many companies in the software market develop their standards or make use of the best practices from industry, to determine the thresholds for software metrics in order to guide developers during implementation. Weights related to these metrics can be investigated for sensitivity analysis. Our results indicate that the impact of changes in software metrics, to the defect rate of the final product should vary for different metrics. Since many software metrics are in different scales, such an analysis can establish units of change for these metrics. All these ideas can be implemented as a tool that performs the mentioned analysis and offers recommendations to developers for overall quality.
ACKNOWLEDGEMENTS

This research is supported in part by Bogazici University research fund under grant number BAP-06HA104.

REFERENCES

