CURRENT TRENDS IN DATA WAREHOUSING METHODS AND TECHNOLOGIES

Vera Ivanova
Assistant Professor, ITEC program, York University, Toronto, Canada

Keywords: Data Warehousing, Business Intelligence, Current Trends, Technologies, System Architecture, Analyzes, Review.

Abstract: Data Warehousing (DW) methods and technologies are in a new stage of their evolution and of their amalgamation with the enterprise businesses, they serve. The main goals of this work are to identify, review and analyze the latest trends in DW. A systematic approach is followed to recognize, define and analyze the most important trends. The approach is based on the trends’ corresponding role and value in the business processes and intelligence (BI). For this purpose we start with updated definitions of DW and BI and then consider the generalized Architecture of today’s DW. We then “drill down” to analyze the DW problems and trends in their solving for data quality provisions, regulatory compliance, infrastructure consolidation, and standardization, corporate performance optimization and metadata management. This in-depth logical analyzing approach results in comprehensible conclusions to be considered on the important early phases of DW projects, as it is well known that early project decisions carry impacts for the whole DW system life span.

1 INTRODUCTION

Even though DW have been evolving for the last 10 years experts, managers, watchdog agencies, vendors and developers all agree that the DW methods and technologies are in a new stage of evolution (Agosta, 2004), (www.microsoft.com, 2005), (Singh, 2005). The highest priority post-millennium IT project for many corporations was the DW (Glick, 2005). The opinions on the DW new features vary, due to their application and industry specific nature. For example, a large retailer DW in many aspects looks quite different from an University Westermann, 2001), (http://web.mit.edu/warehouse, 2005), yet they may share similar new technology trends, or in some cases identical driving business requirements. The realities of the DW evolution across many industries changed the way DW are used in terms of operational tasks, publishing and interactive use of broad audiences of employees, suppliers and partners. Many DW implementations brought business improvements with good ROI and still many failed to do so.

DW technologies and methods today deliver far more than key performance indicators to top managers. An update is needed to recognize, capture, review, analyze and define these trends and changes. The value of similar works is in DW high level architectural decisions and in the first steps of large and expensive DW projects considerations, as well as in attempts to improve, refresh the assets, or consolidate old corporate DW that still exist.

2 DATA WAREHOUSING AND BUSINESS INTELLIGENCE

Let us briefly consider the DW and BI updated definitions for the purpose of this work. DW is the concept to consolidate enterprise data from production systems often of heterogeneous sources and platforms and optimizes them for decision making, monitoring, reporting, analysis and interactive publishing. The data are extracted as they are generated from transactional, operational, and other system sources (see p.3), or on scheduled periodical intervals. The main reason to separate the DW data from other data is to optimize the performance of complex queries that typical for the above activities as the execution of similar queries on the source systems would degrade them and is not acceptable or possible. There are many other business and IT reasons for separation, considered further in details in this work. DW is implemented
on its own architecture and often infrastructure to
reflect the business specifics and to utilize the
available limited resources.

The classic definition of the founder W. Inmon
(Inmon, 2002) of DW as “subject oriented,
integrated, non volatile and time variant collection
of data in support of management decisions” is still
valid, but is overloaded and enriched with many new
features to accommodate the new technologies and
business needs. All new technologies (multimedia,
wireless, GPS, RFID, etc.) generate more and more
data and several large DW already exceeded 1
Petabyte (1K Terabyte). From the business
competition and regulatory compliance perspective
DW became a source and environment for many
new business processes to model, monitor and
optimize, even if they are in fact, operational.

The term BI is accepted for information
technologies, which transform business data into
meaningful information to support result oriented
strategic and sometimes tactical business decisions.

This broad term covers a broad field of applications –
from a simple reporting query tools to full scale
DW. We consider here this last case, where the DW
approach is to get data in different formats from
different sources (databases, web sites and services,
ftp servers etc.) and extract, consolidate, clean and
store them in formats, optimal for the business
analytical purposes and various processes. Presented
with accurate and timely intelligent reports in
business terms the enterprise decision makers can
develop and optimize processes and strategies. The
required by the business flexibility is provided by the consolidated metadata
repository will effectively accommodate these
changes and enforce them to downstream
applications and services. The architectural
scalability is a factor on the ETL, DBMS and server
levels, shown in Fig.1. A DW configuration with
one DB server with one central metadata repository,
an application server to run all the tools and a Web
server for the user interface may be adequate for
medium scale businesses. For large global
businesses a distributed DW Architecture utilizes
several Data Marts with separate metadata
repositories and separate, or common ETL. The idea
here is to “tune” the individual metadata in every
Data Mart to the business requirements, defined by
business subjects, departments, or regions in order to
achieve adequate reporting and data mining
performance.

3 COMMON DW
ARCHITECTURE AND
INFRASTRUCTURE HIGH
LEVEL TRENDS

The amalgamation and realization of BI in DW is a
strong trend, altering in many ways the architecture
and infrastructure of the DW design and
implementation decisions. Fig.1 shows the general
system architecture of today’s medium and large
DW. Though in appears basically as it did years ago,
managed data quality requirements. This is the still do not have clearly defined, enforced and (Leahy, 2004). Reviews show that many businesses requirements, usually in several improving cycles data quality management and to specify the designate a person, or a team, responsible for the efficiency employment and unhappy customers, i.e. duplicate payments etc. The effects are low wrong customer order generation, incorrect invoices, processes such poor data can result in errors like consolidation errors, conversion errors, DB integrity numerous: data input errors, loading and errors, reporting exception errors etc. In business the Institute estimates (www.knightsbridge.com, 2005) has strong practical implications on DW. The DW well founded provisions for data quality. The rule that “business is as good as its corresponding data” has strong practical implications on DW. The DW Institute estimates (www.knightsbridge.com, 2005) the business losses due to poor data quality about $600 bln. per year in USA.

The sources of poor data quality in DW are numerous: data input errors, loading and consolidation errors, conversion errors, DB integrity errors, reporting exception errors etc. In business processes such poor data can result in errors like wrong customer order generation, incorrect invoices, duplicate payments etc. The effects are low efficiency employment and unhappy customers, i.e. losses and low profit. On the executive level low quality data can result in non adequate tactical and strategic decision making and in inaccurate performance estimations.

The data quality can be generally defined as compliance to the particular set of IT and business requirements. The best practices here are to designate a person, or a team, responsible for the data quality management and to specify the requirements, usually in several improving cycles (Leahy, 2004). Reviews show that many businesses still do not have clearly defined, enforced and managed data quality requirements. This is the driving force behind the fast market growing for data quality products and services (Geiger, 2005).

In some cases the DW quality requirements are implemented as validation and consolidation rules on the DW system ETL level, as well as on the reporting and data mining levels. However the most flexible and scalable way is the practice to include and manage the data quality requirements on the DB level as part of the metadata. There are many benefits with this approach – end to end system coverage, central management, scheduled/on demand cleansing and easy adding of new data quality procedures, which all combined give cost effectiveness.

The conclusion for this trend is that the DW data quality assurance is a critical enterprise IT component.

4 CURRENT BI RELATED TRENDS IN DW

4.1 Providing Data Quality in DW

Perhaps the most important trends in DW are the well founded provisions for data quality. The rule that “business is as good as its corresponding data” has strong practical implications on DW. The DW Institute estimates (www.knightsbridge.com, 2005) the business losses due to poor data quality about $600 bln. per year in USA.

Regulatory compliance brings new requirements to both DW and BI in terms of certified financial results, privacy protection, risk declaration, disaster recovery, environmental protection etc. Recent examples are legislation like the Sarbanes-Oxley (SOX) Act in USA, the Health Information Privacy Act (HIPA) in Canada, the Basel II banking accord requirements in Switzerland and alike. Demanding data policies and special new business processes are required to achieve compliance (Geiger, 2005), (www.knightsbridge.com, 2005). These processes and policies affect the DW as mandatory new additions and improvements are needed in the DW system and data change control, data quality assurance, accelerated warning financial reports and non-compliance monitoring by designated officer, or a team. A part of these processes is the data quality assurance, as considered in p. 4.1.

Whether the DW requirement changes are significant, or not, when a certain business, as a result of its activities, is affected by one, or several legislative regulations, they can not be ignored and the compliance should be provided by the required processes.

4.2 Regulatory Compliance and DW

Regulatory compliance brings new requirements to both DW and BI in terms of certified financial results, privacy protection, risk declaration, disaster recovery, environmental protection etc. Recent examples are legislation like the Sarbanes-Oxley (SOX) Act in USA, the Health Information Privacy Act (HIPA) in Canada, the Basel II banking accord requirements in Switzerland and alike. Demanding data policies and special new business processes are required to achieve compliance (Geiger, 2005), (www.knightsbridge.com, 2005). These processes and policies affect the DW as mandatory new additions and improvements are needed in the DW system and data change control, data quality assurance, accelerated warning financial reports and non-compliance monitoring by designated officer, or a team. A part of these processes is the data quality assurance, as considered in p. 4.1.

Whether the DW requirement changes are significant, or not, when a certain business, as a result of its activities, is affected by one, or several legislative regulations, they can not be ignored and the compliance should be provided by the required processes.

4.3 DW Infrastructure Consolidation and Standardization

Many companies today are undertaking infrastructure consolidation and standardization in order to reduce and effectively manage the IT cost (Glick, 2005). This is an ongoing trend after year 2000. This trend fully affects the DW systems, as by their nature they grow, expand and increase in cost
in all terms of hardware spending/amortization, software purchase and licensing and managing/support cost. The consolidation should be very well planned and leveraged by such goals and provisions for system and data growth, timely query and reporting responses, simplified and low operational cost management and support. These should be combined IT and business efforts.

On the operating system level the new virtual servers technologies (Glick, 2005) allow accommodation of large heterogeneous DW with servers, running Windows, Unix, or Linux in a very flexible consolidated hardware environment. The administration, managing, support and versioning costs are greatly reduced. On the DB level, it pays to reconsider the consolidation of old and legacy data marts and ETL tools with centralized approach and streamlined new ETL processing tools.

The business trend is that calls for consolidation are coming not only as a result from acquisitions and mergers. It also comes from the understanding that the latest technologies as federated DBMS servers, web farms, network storage devices etc. allow alignment of the BI processes with DW architecture in a very cost effective manner with excellent ROI. If properly designed and executed the consolidation and standardization bring significant savings, up to billions of dollars in many cases (Glick, 2005), (Violino, 2005).

4.4 Corporate Performance Optimization using DW

As a consolidated foundation of the enterprise business data, the DW can be well designed for loading, reporting and data mining. That is why it is the ideal “natural” source and platform for corporate performance measurement (CPM), management and optimization, which makes this important usage of DW a well recognized trend (www.intelligentbusiness.biz,2005). The generalized functional processes of CPM, based on DW, are:

- monitor financial and non financial results on demand;
- link strategies to day to day operational activities;
- configure and setup early warnings about problems;
- achieve accord with regulatory compliance;
- broaden decision making by modelling new business scenarios.

The above functions comprise the BI essentials in using DW for CPM. The emerging trend here is to use DW for both strategic and operational decisions, affecting back the DW performance requirements. This allows the CPM activities to cover the optimizing of all departments like customer relations, financial operations, risk management, sales, planning and supply chains.

The strategic and tactical models, used in CPM evolved together with DW and BI. The most widely recognized and developed to advanced stage are: The Balanced Scorecard, Six Sigma and Malcolm - Baldrige (Solomon, 2003) and others. The implementation of similar models goes to the business bottom line and core values and properly applied sometimes brings dramatic improvements with proven savings. This is a huge area and alone may be a subject for a study. All DBMS vendors include balanced scorecard and dashboard tools in their DW solutions: Oracle in 10G, Microsoft in SQL Server 2005, IBM in DB2 etc. Also, many integration software vendors offer universal add-on CPM frameworks (Violino, 2005), which could be rapidly implemented – from days to weeks – on top of existing DW, for example (Business Objects, 2005), (Amateo Data Warehouse, 2005), and many others. These tools get their data feed directly from the DW, ensuring validated, consisted and timely CPM. Therefore in the case of newly projects, the CPM will most likely come as a part of the rollout, while in case of a relatively older implementations it will be an added-on framework.

4.5 Metadata Management in DW

Considered the most important component of the DW, the metadata essential role as definitive information about data covers the entire contents of DB, ETL, the reporting data mining, in other words all data in DW and many, if not all processes. That is why the DW metadata requires an careful management. The functional groups of the metadata could be conditionally divided as administrative, business and operational. The administrative includes: the definitions of setting and using the DW itself, such as the DW schema, the sources DB schemas, ETL rules, prepared queries and reports, user profiles, access roles and control, data quality procedures, multilingual support etc. The business metadata includes the business rules and terms, definitions and processes. The operational metadata includes the structure of the DW monitoring, including logs, audit trails, prepared archiving packages of scripts, replication etc.

The management of the metadata encircles such functions of sharing the metadata for design, setting, using and operating across internal and external
applications, outside of DW; cleaning, normalizing, restructuring, updates and publishing of catalogs. All DW big vendors Oracle, Microsoft, IBM, Terradata, Sybase et al. invest heavily in metadata management and offer their integrated repository systems. There is also a market for infrastructure integration vendors like Informatica, CA, SAP, Platinum, Prism et al.

4.6 Other New trends in DW

The following trends in DW will be considered in details in the second part of this work:
- disaster recovering processes and practices;
- new hardware technologies and devices in DW;
- new data mining methods and technologies in DW;
- efficient DW and metadata design;
- outsourcing and DW as a paid for services;
- open source low price DW solutions.

5 CONCLUSION

We can now summarize the most important DW trends, considered in this work:
- The DW methods and technologies track, support and optimize more and more business processes; than before;
- The amalgamation of BI in DW affects the requirements to DW architecture design and implementation, bringing more operational requirements;
- DW is evolving from a decision support tool for top managers to an IT infrastructure necessity for the whole enterprise;
- Additional research is needed to analyze the influence of new technologies in hardware, data mining, outsourcing and open source movement on DW.

REFERENCES

Geiger J., October 2005. Intelligent Solutions: You can be sakte if it is been certified. DM review magazine.
Data Quality management. Executive Brief, ACC Services Ltd., www.acl.com
Overby S. , Nov.2003 41 Business Units, 9 CIOs, 1 Standard, CIO Magazine.
Riccardi E. , July 2005 Balanced Scorecard and its information systems: The performance Data Warehouse. SASE.