Experiences with the TinyOS Communication Library *

Paolo Corsini, Paolo Masci and Alessio Vecchio

Dipartimento di Ingegneria della Informazione
Universi& di Pisa
56122 Pisa, Italy

Abstract. TinyOS is a useful resource for developers of sensor networks. The
operating system includes ready-made software components that enable rapid
generation of complex software architectures. In this paper we describe the lessons
gained from programming with the TinyOS communication library. In particular,

we try to rationalize existing functionalities, and we present our solutions in the
form of a communication library, called TComm-Lib.

1 Introduction

A sensor network is a wireless network of communicating nodes. Each node consists
of an embedded micro-controller with a small amount of memory, a battery, a wireless
transceiver, and may be equipped with various sensing hardware (light, temperature,
etc.). The network is self-organizing and multi-hop communication is used to transport
data collected by nodes to a monitoring base station.

Hardware resources of the nodes are extremely limited because of a set of con-
straints:i) the cost of the nodes must be kept as low as possible since the number of
nodes can be in the order of hundreds or even thousands elemgtigy must be
energy efficient since the replacement of batteries is often unfeasible or expémnsive,
their size must be kept small in order to be ubiquitous. For instance, nodes based on
the Telos-B platform are equipped with 48KBytes of instruction memory, 10KBytes of
RAM and the current draw in active and sleep mode is respectivéty A and5.1u.A.

Programming in such environment is not an easy task, not only because of the hard-
ware limitations, but also because developers of applications for sensor networks belong
to different technical areas, from telecommunications to electronics and computer sci-
ence. Fortunately, they do not have to write their own applications with assembly-like
languages, but can leverage on high-level languages and libraries providing basic ser-
vices. The standard platform for sensor networks is TinyOS [1], available for a number
of different hardware architectures, and nesC [2] is the used programming language.

In this paper, we report our experience on developing applications for sensor net-
works, focusing on the communication services provided by TinyOS. Besides highlight-
ing the positive and negative features of the library, we describe the issues encountered,
and provide the adopted solutions in the form of a communication libF&@gmm:-Lib.

* This work is partially supported by Fondazione Cassa di Risparmio di Pisa, Italy (SensorNet
Project).

Corsini P., Masci P. and Vecchio A. (2006).

Experiences with the TinyOS Communication Library.

In Proceedings of the 5th International Workshop on Wireless Information Systems, pages 47-55
Copyright © SciTePress



TComm-Lib is not aimed at introducing new network servidastead it tries to ra-
tionalize existing functionalities in order to give a siraplser experience for effective
programming with sensor networks. TComm-Lib has been lalitiost completely, by
simplifying, re-organizing, and extending the originahyfOS library.

2 TinyOSand nesC

TinyOS is an open-source operating system designed folesgesensor networks. Ar-
chitecture and implementation of TinyOS applications ammpgonent-based, enabling
rapid innovation and modularity. The libraries shippedhwiite operating system in-
clude a number of ready-made components that can be codrtegiether with user-
defined components.

Applications that run on the TinyOS platform, as well as TOgitself, are written
with nesC [2], a component-oriented extension of the C @nogning language. With
nesC, programmers can define new components using a C-likaxsyand connect
them together in order to create new components or apgitafthe act of connecting
is called “wiring”). Each component declares input and atifpinctions, calleccom-
mands andevents, that are used in the wiring process. Commands and evenisaady
grouped intdnterfaces, i.e. labeled sets with a given type.

A component can offer multiple instances of the same interf&ach interface can
be connected to different components, and a specific imeitaselected through the
use of an index. In this case the interface is said tpdsemetric.

2.1 TheTinyOS Communication Library

The TinyOS communication library supports single and nhdf communication with
other nodes (via the wireless transceiver), and serial camication between a sensor
node and the base station (via USB or serial port).

Since our paper focuses on the communication library of @®yin the following
we describeézener i cConm the component used for communication.

Gener i cCommimplements single hop and serial line communication (tkefka-
ture is used only by the node connected to the base statiamredver, it provides) a
control interface $t dCont r ol ) to initialize, start and stop the componein}.a para-
metric interface for sending packetSendMsg[ ui nt 8_t i d]?Y), iii) a parametric
interface for receiving packet®écei veMsg[ ui nt 8t i d] ). The implementation
of Gener i cCommis specified in the following file (some details are not shawn)

configuration Generi cConm{
provi des{
interface StdControl;
interface SendMsg[uint8_t id];
interface ReceiveMsg[uint8_t id];

}

! This notation means that 256 instances of the SendMsg interface arebkvdilats_t is an
unsigned int type coded on 8 bits).



}

i npl ementation{...}

Let us now examine the interfaces for sending and receiviioggts ofGeneri c-
Conmm TheSendMsg interface declares one command and one event:

i nterface SendMsg{
comand result_t send(uintl1l6_t address,
uint8_t length,
TOS_Msg* nsg_ptr);
event result_t sendDone(TOS_Msg* nsg_ptr,
result_t success);

Thesend() command has three parameters: the destination addretengitie (in
bytes) of the payload, and a pointer to the buffer contaitiiegnessage to be sent. The
command is non-blocking. TheendDone() event is signaled when the message is
actually transmitted. The event has two parameters: aqoiatthe buffer containing
the last message sent, and a flag reporting the successuoe failthe sending attempt.

Communication over the serial connection is achieved bgguai special and re-
served address (codified BART _ADDR).

TheRecei veMsg interface declares only one event;

i nterface Recei veMsg{
event TOS Msg* receive(TOS_Msg* nsg_ptr);
}

Ther ecei ve() event is signaled every time a message is successfullyweztei
over the radio or over the serial port. The event has one pgaeanthat is a pointer to the
buffer containing the received message. The event mustréaiithe caller the buffer
for the next receive operation (a buffer-swap mechanisnsésiwo avoid the overhead
of copying data).

3 Developing Network Applications

3.1 Featuresand Limits

In this section, we report our experience on using the Ting®®&munication library
and explore how unexpected behavior may arise for a numtfactrs.

Selective Powering of Communication Har dware. Hardware devices are represented
by software components. By calling teéart () command of a software component,
the corresponding hardware device is powered on. Simjlagycalling thest op()
command a hardware device can be powered off. In some casiegl@software com-
ponent represents several hardware devices. For exa@apley i ¢ Conmis associated
with both the radio chip and the controller of the serial ifdee. Nevertheless, if no
dedicated control interface is exported, then selectivegpmg on/off is unfeasible. In



fact, thest art () command turns on all the hardware associated with a softvesme
ponent, even if only one of the devices is actually neededs;Ttwwhen thest art ()
command ofGener i cCommis called, for instance because the application is going to
communicate over the wireless channel, the radio is powepedbut at the same time
the serial controller is automatically powered-up too.

Management of the Duty Cycle. In many cases, the application running on the nodes
of a sensor network is cyclical: the environment is sensegljieed information is trans-
mitted, then the application sleeps for a given amount of tifore restarting the cycle.
Usually, the sleep time is longer than the active time by sdv@ders of magnitude,
therefore it is of primary importance to reduce the amoun¢radrgy consumed dur-
ing the sleep time. Power management can be done at the applidevel by using
the start() andstop() commands. Nevertheless, hardware devices may presenva slo
power-up phase with respect to the clock of the microcoletr¢é.g. because the volt-
age regulator of the device needs a certain time to stapilael trying to use a com-
ponent during the transition phase may cause unpredichbegblavior. In other words,
applications need a view on the power status of hardwareegyvbut thesdControl
interface does not suit properly to this purpose &€hart () andst op() commands
return immediately and do not wait for a complete power-arpawer-off, of the de-
vice). In the context of the communication library, thislplem arises because the radio
chip device has a slow power-up phase, Gaher i cConmprovides no interface to
expose the transition process.

Controlling the Transmission Power. The radio installed on the sensor nodes has a
transmission range that is approximately one hundred mafaused with maximum
power. However, in some scenarios, it can be useful to mbmealuce the transmission
power: for example, if the network is particularly dense régiucing the transmission
range it is possible both to save energy and decrease theemwhpacket collisions.
Also, during the debugging phase of a hetwork protocol ormaptieation, the reduction

of the transmission range can help to set up a multi hop tésffige TinyOS library
includes software components for radio range setup, bytareusually hidden inside
complex configurations that do not expose an interface tesacsuch functionality.

Power Saving Modes. TinyOS automatically switches the microcontroller to a {ow
power mode whenever possible, thus extending the life-bfneodes even when the
application does not explicitly take care of it. For examphe TMote sky nodes [3]
automatically go into sleep mode when all the following dtinds are satisfied) the
radio is turned offji) all high speed clock outputs are disablgi),the serial peripheral
bus is idle,iv) the task queue is empty. Nevertheless, automatic trangiiche sleep
mode is disabled by default on almost all platforms. Henle,grogrammer has to
explicitly include the activation of the power saving suftgyn into the application
code.



3.2 Related Work and Motivations

The TinyOS community is making a big effort to improve and axg the APIs of the
whole TinyOS library. In particular, recent works are prsipg solutions to promote a
standard framework across different platforms. In [4] th#hars discuss design patterns
useful to solve common problems, and aimed to the developafiefficient and robust
program structures. In [5] an abstraction layer is preskimerder to standardize the
interfaces of nesC components across different platfoBath these works reflect the
philosophy of the TinyOS Enhancement Proposals (TEPsis b&3inyOS 2.0. Notice
that sometimes radical changes are required in order tatgcsuich proposals. In fact,
applications written for TinyOS 2.0 are not backward-cotiipa with the previous
platform.

Further research work related to the programming paradignmaded by TinyOS
is described in [6], where the authors summarize and anahaexperience of the
TinyOS community in creating software abstractions forcbmmunication layer.

The motivations of our work rely on finding solutions thatdrade between new
programming trends of TinyOS 2.0 and the semantic struciioéd-style applications
for sensor nodes. In particular, the revisions we proposéackwards compatible, and
enable developers to improve existing programs withouballst re-engineering the
entire application.

4 TComm-Lib Solutions

Most of the ideas behind TComm-Lib are the result of our mesiresearch experi-
ence in the context of sensor network. In particular, duthmg implementation of a
monitoring application, we encountered all the issuesiptesly described.

In the following subsections we show how simple revisionthefTinyOS commu-
nication library may help application developers to gainteal over specific resources
and produce modular architecture for effective code.

4.1 Selective Powering of Communication Hardware

As previously introducedzener i cConmimplements communication over the serial
line and over wireless channels. We sg@itner i cComminto two components, on
the basis of the offered functiolf mConmdedicated to wireless transmissions, and
UsbConmmused for communication over the serial line.

Rf mConm preserves the core interfaces @neri cConm i.e. SendMsg and
Recei veMsg. Thus, the component of the TinyOS library can be replacel thie
new component with minor changes to the application codeid®s the interfaces for
sending and receiving packeff, mConmincludes alsdSpl i t Cont r ol , which re-
placesSt dCont r ol and is used to safely turn on and off the component,Rffféb-
wer , which adjusts the transmission power. These interfacesl@scribed in Section
4.2 and 4.3.

configuration RfmConm{
provi des{



interface SplitControl;

interface SendMsg[uint8_t id];
interface ReceiveMsg[uint8_t id];
i nterface RFPower;

}
}

i mpl ementation{....}
UsbConmprovides the same interfaceskff nComm except forRFPower :

configuration UsbConm{
provi des{
interface SplitControl;
interface SendMsg[uint8_t id];
interface ReceiveMsg[uint8_t id];

}
}

i mpl enentation{....}

Rf mConmandUsbConmoffer a clear vision of the hardware devices actually in-
volved and they can be used by developers depending on tlikechdenctionality.
Moreover, as a nice side-effect, there is no need to resee/&ART_ADDR address
for the serial line.

4.2 Management of the Duty Cycle

Events signaling the progress of the power-up phase canurel favithin a specific
TinyOS control interfaceSpl i t Control . TheSpl it Control interface is pro-
vided with thest art () andst op() commands of th&t dCont r ol interface, but
it also offers the eventst ar t Done() andst opDone( ), used to signal the comple-
tion of the corresponding command:

interface SplitControl{
command result_t init();
comand result_t start();
comand result_t stop();
event result_t initDone();
event result_t startDone();
event result_t stopDone();

Within TComm-Lib, bothRf nCommandUsbCommsupport theSpl i t Cont r ol
interface. As a consequence, the components can be agtetpturned on and off,
even if they are associated with hardware devices with a ptawer-up phase.

4.3 Controlling the Transmission Power

The power used for wireless transmission can be controlesugh interfaces that
change on the basis of the used radio chip. For exampleniteeandmica2 platforms



use theCC1000 radio, thus theCC1000Cont r ol interface must be used, while the
micaZ and Telos-B platforms are equipped with the ZigBee-compli@@2420 radio
chip, and thaCC2420Cont r ol interface must be used.

Different control interfaces show common commands but gelyethey are not
compatible, since different radio chips have differentilai@e functions. Moreover,
these interfaces include a number of commands that arellgataiely used by other
components.

We decided to simplify the interface and to expose only th@roand to control
the transmission range. The new interface is cdREBower and it has only one com-
mand,Set RFPower (ui nt 8.t power), that is platform-independent. Tip@wer
parameter specifies the radio ranfeés(the shortest}1 is the longest).

i nterface RFPower {
comand result_t Set RFPower (uint8_t power);

}

Within TComm-Lib, theRFPower interface is provided by thBf mConmcompo-
nent.

4.4 Power Saving Modes

The automatic sleep mode of the microcontroller of the senedes can be activated
by calling theenabl e() command of a low-level software componeHP{_Power -
Managenent M.

We transparently changed the default setting of the auforpatver-saving sub-
system by extending thighi n component of the TinyOS library: when thei t ()
command is called to initialize the application, the powemagement module is acti-
vated. The new component, calle@Mai n, can be transparently incorporated within
existing applications since the interfaces are unchanged.

5 Thelmportance of Power Management

Energy is the most valuable resource of sensor nodes. $essearch studies propose
architectures to optimize energy consumption, where &ffesolutions are strictly
connected to specific application scenarios. Howeverdbedhe benefits achievable
through architectural solutions, experience highlightsimportance of low-level im-
plementation and precise access to hardware resources.

In fact, controlling the power status of hardware devices sgmple, yet effective,
energy saving solution that can be adopted by any softwsee.1Besides duty cycle
optimizations included inside low-level software compatsethe whole application for
sensor nodes may also present high level components thaedaggled on and off.

Let us imagine a scenario where a sensor network is used tisantre level of light
inside a building. The application periodically sampleslight and sends a message to
the sink node. Each message contains the ID of the sendeanddée corresponding
sampled value. Let us also assume that single hop commiamdatused for wireless
transmission. This application is characterized by avagteriod where the application



|~ Std. TinyOS Lib. - TComm-Lib|
35
—_ 3 =
£25
B 2
& 15 ~\\
S 1
- \\
0 2 | e
1 2 4 8 16
Sample Period [secs]

Fig. 1. Energy consumption varying the period of operation.

performs data acquisition and communication and an inagtariod where the node is
idle. This periodical model of operation is representatiza wide class of applications
for sensor networks.

During the inactive period the node must enter the low powaesin order to save
as much energy as possible. The amount of energy that carveé g entering the
low power state can be relevant, especially when the iragiriod becomes longer.

Figure 1 shows the difference, in terms of energy consumptibtwo versions of
the applicatiof: the first one uses TComm-Lib to enter the low power state as so
as possible (i.e., immediately after the transmission oéieket), the second one does
not take care of driving the components used by the appdicatito the low power
state. As expected, when the period of operation of the eain becomes longer, the
difference becomes even more relevant.

From the programmer’s perspective, power management caadig done by us-
ing the TComm-Lib revised components and interfacesRftrConmcomponent can
be safely switched on/off as required, since it providesegli@ack of its state to the
application, and th&lsbCommcomponent is left turned off and will never be activated
since not needed. Power management is more troublesomedftbe standard TinyOS
communication library. For example, the USB subsystem cbba switched off, as it
is hidden withinGener i cComm Also, safely switching the radio on and off requires
an additional programming effort to avoid using the radiaipment when it is still in
an inconsistent state.

For testing purposes, we included these mechanisms alsimwhie application im-
plemented with the standard TinyOS communication librévg. observed that within
the simulation environment everything worked fine and olgdithe same power con-
sumption of TComme-Lib. Nevertheless, after installingsthodified version on real

2 We used PowerTOSSIM [7] to estimate the energy consumption.



nodes, we experienced that nodes were not able to transgninassage at all, and
sometimes they crashed. We attributed these malfuncttigetincomplete power-up
phase of the radio (these problems are not visible in thelabedienvironment).

This problem can be avoided, for example, by introducinglaydeetween the ac-
tivation of the radio subsystem and its usage. However,rdgsires the programmer
to know the length of the transition phase of the radio corepofrom the low power
state to the operational state, that can be different onahis lof the hardware platform.

6 Conclusions

Creating software abstractions suitable for sensor nésisrchallenging since the sen-
sor nodes require software architectures radically difiefrom traditional networking
systems.

As known, the application logic is central for defining areetive strategy for en-
ergy saving. To make these strategies real, applicatioed the cooperation of the un-
derlying layers, which must expose mechanisms for powerag@ment. As described
in [8], the strategies adopted by applications are in masgshased on few and recur-
ring principles, for this reason the underlying layers c#arabstractions that appear
to be general and reusable.

In this paper we have described our experience on devel@pplications for sen-
sor networks, focusing on the abstractions provided by thgQS communication li-
brary. On the basis of the lessons learned we rationalizédeanrganized the original
communication library, not only to provide cleaner prognaimg abstractions, but also
to generate more energy efficient code.

References

[EnY

. TinyOS: (http://webs.cs.berkeley.edu/tos/)

2. Gay, D., Levis, P, von Behren, R., Welsh, M., Brewer, E., Culle: The nesC language: a
holistic approach to networked embedded systems. SIGPLAN38¢2003) 1-11

3. Moteiv Inc.: (http://www.moteiv.com)

4. Gay, D, Levis, P., Culler, D.: Software Design Patterns for Tiny@®ceedings of the ACM
SIGPLAN/SIGBED 2005 Conference on Languages, Compilers, audsTor Embedded
Systems (LCTES'05), Chicago (2005)

5. Handziski, V., Polastre, J., Hauer, J., Sharp, C., Wolisz, Alle€D.: Flexible Hardware
Abstraction for Wireless Sensor Networks. Proceedings of the Sé€orapean Workshop
on Wireless Sensor Networks (EWSN '05), (2005)

6. Levis, P., Madden, S., Gay, D., Polastre, J., Szewczyk, Ro, \Wo Brewer, E., Culler, D.:
The Emergence of Networking Abstractions and Techniques in Tiny@8eBdings of the 1st
USENIX/ACM Symposium on Networked Systems Design and Implement@ti&D12004)
(2004)

7. Shnayder, V., Hempstead, M., Chen, B., Welsh, M.: PowerTRS&fficient power simula-
tion for tinyos applications. Proceedings of ACM SenSys 2003 (2003)

8. Levis, P., Hill, J., Buonadonna, P., Szewczyk, R., Woo, A.: Awdek-Centric Approach to

Embedded Software for Tiny Devices. Lecture Notes in Computer Sei@to1)



