Implementing a Pervasive Meeting Room: A Model
Driven Approach *

Javier Muioz, Vicente Pelechano, Carlos Cetina

Departamento de Sistemas Infdticos y Computadin
Technical University of Valencia
Cani de Vera s/n, E-46022, Spain

Abstract. Current pervasive systems are developed ad-hoc or using implementa-
tion frameworks. These approaches could be not enough when dealing with large
and complex pervasive systems. This paper introduces an implementation of a
pervasive system for managing a meeting room. This system has been developed
using a model driven method proposed by the authors. The system is specified
using PervML, a UML-like modeling language. Then, a set of templates are ap-
plied to the specification in order to automatically produce Java code that uses an
OSGi-based framework. The final application integrates several technologies like
EIB and Web Services. Three different user interfaces are provided for interacting
with the system.

1 Introduction

Currently pervasive systems development is a hot topic in computing research. Re-
searchers in this area have developed many software systems which try to achieve the
Weiser vision. These systems have been implemented completely ad-hoc or using im-
plementation frameworks that support the specific requirements of this kind of systems.
Developing a pervasive system following these approaches is a hard and error-prone
task. In order to improve the productivity and reduce the number of errors, we propose
to apply the newest trends in software engineering to the pervasive systems field.

Following this idea, we have developed a method that applies the Model Driven
Architecture (MDA) [1] and the Software Factories [2] approaches to the development
of pervasive systems [3]. These strategies propose to use models for automatically gen-
erating the final system, and not only for generating documentation or for guiding the
implementation process.

This paper introduces a case of study of a pervasive meeting room that has been
developed using our model driven method. The method is based on the specification
of the system using PervML, a UML-like language designed for easily describing the
functionality of pervasive systems. Then, the PervML specification is automatically
translated into Java code. The generated code extends an OSGi-based framework in
order to build the final pervasive application.

* This work has been developed with the support of MEC under the project DESTINO TIN2004-
03534 and cofinanced by FEDER.

Mufioz J., Pelechano V. and Cetina C. (2006).

Implementing a Pervasive Meeting Room: A Model Driven Approach.

In Proceedings of the 3rd International Workshop on Ubiquitous Computing, pages 13-20
DOI: 10.5220/0002477100130020

Copyright © SciTePress

14

The paper is structured as follow: Section 2 briefly intraakithe model driven
method that is applied in the paper. Section 3 describesutingtibnality provided by
the pervasive system that has been developed for improvimgeding room. Section 4
shows the specification of the pervasive system using theMRelanguage. Section 5
describes some implementation details, like the hardwadesaftware used for devel-

oping the prototype. Finally, Section 6 introduces someckgions and future lines of
research.

2 Method Overview

The proposed method for the development of pervasive sgsteirich was presented
in [3], applies the guidelines defined by the Model Driven Hitecture (MDA), that

is supported by the Object Management Group (OMG), and tlisv&® Factories,
that is supported by Microsoft. Following these guideling® method provides (1)
a modeling language (PervML) for specifying pervasive systems using conceptual
primitives suitable for this domain, (2) amplementation framework which provides

a common architecture for all the systems which are devdlogeng the method, and
(3) atransformation engine that translates the PervML specifications into Java code.

Interface v |["wap |[Voice
Layer View || View || View

‘ Drivers Layer ‘
3 3 3

Fig. 1. Framework architecture.

The implementation framework, which is introduced in [44shtbeen build on top
of the OSGi middleware. It provides similar abstract classethe PervML concep-
tual primitives Gervice, Trigger, Interaction, etc.) in order to facilitate the translation
process. Fig. 1 shows the overall framework architectuhgs &architecture has been
designed with the aim of providing facilities for integradi several technologies (EIB
networks, web services, etc.) and for supporting multiglerinterfaces.

(3) Drivers
Il Devel./Select. i
(4) PervML

Compilation

(6) Java files
Compilation
and deployment

(5) Java files
configuration

(1) System (2) System
Requirements Design

[’ervML Specification

N—

Fig. 2. Steps for applying the proposed.

15

Fig. 2 shows the steps that should follow a development t&éamgrey bubbles are
automatically carried out. Next we briefly introduce eaapst

1. Thesystem analyst specifies the system requirementising theservice concep-
tual primitive. The system analyst uses three kind of Peruktidels in order to
describe (1) the kind of services available on the systeinth@ number of ser-
vices which are availables in every location and (3) how tinégract when some
condition holds.

2. Thesystem architect selects the kind and number of devices or Eware sys-
temsthat are more suitable in order to provide the services fpddiy the analyst.
The selection could have into account economical reasoos@traints in the sys-
tem physical environment. The system architect uses ofinee tPervML models
for describing (1) the kind of devices or software systenas #ne used for provid-
ing the system services, (2) the specific elements that ang ¢g@implement every
service and (3) the actions that the device or software mystaust carry out for
providing every service operation.

3. An OSGi developer implements the drivers for managing the deces or soft-
ware systemsawhich were selected by the system architect. These drivexsdes
access from the OSGi-based framework to the devices ornaitsoftware sys-
tems. They must be developed by hand, since they deal wiinééagy-dependent
issues. If any device or external software system was usag@iiavious system, the
same driver can be reused.

4. Thetransformation engine is applied to the PervML specification Many Java
files and other resources (Manifest files, etc.) are autaaibtigenerated as a result
of this action.

5. TheJava files are configured in order to use the selected driver§ his configu-
ration only implies to set up the drivers identifiers.

6. Finally,the generated files are compiled, packaged into bundles (JARes) and
deployedin the OSGi server with the implementation framework anddiieers.

The proposed method is focused on the development of theaefisystem that is
part of the pervasive system. The physical installationedicks, networks, etc. is out
of the scope of this work.

3 Case of Study: The Pervasive Meetings Room

The case of study which is shown in this paper aims to imprbedunctionality pro-
vided by a meeting room. This section briefly describes thetfanal requirements that
must be fulfilled by the pervasive system.

The meeting room, which is shown in Fig. 3 provides two kindigtiting services:
the main lighting service, which covers all the room, andzet#ic service for lighting
a projector screen. Users must be able to switch thesergk#rvices manually using
some kind of device. When anybody is near the screen, thesityeof the specific
lighting must be decreased in order to provide a better lityidMoreover, a security
system must record what happens in the room if anybody ig tiveen the security is
activated.

16

Global Lighting
Activation

Global Presence’
Detection

Screen Lighting
Activation

Screen Presence
Detection

Fig. 3. The meeting room plan.

4 System Description using PervML

Perv-ML is a language designed with the aim of providing ® plervasive system de-
velopers with a set of constructs that allow to preciselycdbe the pervasive system.
Perv-ML promotes the separation of roles where developmise categorized as an-
alysts and architects. Systems analysts capture systartegnts and describe the
pervasive system at a high level of abstraction using thécsemetaphor as the main
conceptual primitive. System architects specify what desviand/or existing software
systems realize system services. Next we give a more dii@dscription of the lan-
guage and how it is applied to the meeting room case of study.

4.1 The Analyst View: Specifying System Requirements

The goal of the pervasive system analyst is to capture thersysequirements using
high level of abstraction primitives. PervML considerstth@ervasive system provides
services to the users in an environment. InBeevML Analyst View, the analyst de-
scribes the pervasive system using $hevice metaphor as the main conceptual primi-
tive. This view is composed by three models which are showrign4.

The system analyst uses tBervices Modelfor describing the kinds of services that
are provided in the pervasive system. The diagram whiclesgmts the Services Model
in Fig. 4 shows that the meeting room provides services fotrotling the lightings, for
detecting presence, for recording video, etc. Additigntdithe information shown in
Fig. 4, the description of a kind of service includesgtd and post conditions(which
are expressed using the Object Constraint Language (OGL@vVery operation, (2)
a Protocol State Machinewhich indicates the operations that can be invoked in a
specific moment, and (aJiggers which allow specifying the proactive behaviour of
the services.

The system analyst uses tBéructural Model to indicate the instances of every
kind of service which are provided by the system. The sesvére represented as com-
ponents whereas the kind of service that they provide isctiegbias an interface (using
the lollipop notation). Dependency relationships betweamponents can be included
in order to specify that one component uses the functignptitvided by another. In

17

IMeetingsRoom
[‘Activation | Security PresenceDetection ing:
[+isActivated() : Boolean [+enable() . Lr [*PresenceDetected() : Boolean ° °
[+disable() o Activation Security
1 [+isEnabled() : Boolean | 2
£] £]
N 0.1 MainLi ur
Lighting
[+switchon() o
yer
[+switchofi(1.0
+|stghung(()) Boolean [+on() - void Lighting
7aN [+off() : void PresenceDetector Record
Record [+play() : void Fal

[+on() : void MainLighting a]

[+off() : void

[+forward() : void
[+rewind() : void
[+record() : void +stop() void
+stop() : void [+currentMode() : String o

[Intensity : int) String mediaFile : String) Activation o

int Strin : String
L) 9) 9 PresenceDetector

GlobalPresence Recorder

GradualLighting

b
ScreenActivation | §

. NearScreenPresence
Services Model

o
i

GradualLighting Player

ScreenGradualLighting

Structural Model

ScreenGradualL ighting.isLighitng() = true and

ScreenGradualighting.getintensity() > 70 MultimediaPlayer

NearScreenPresence.presenceDetected() = true and j

l

-5
]

ScreenGradualLighting

Interaction Model
setintensity(70)

Fig. 4. The models that are used in the Analyst View.

our case, th&ecuri t yManagenent component that provides tt&ecurity kind of
service uses the functionality provided by tHeobal Pr esence and theRecor der
components.

The system analyst uses thteraction Model for describing the actions that are
carried out in the system when some condition holds. Thisehmdcomposed by a
set of UML 2.0 sequence diagrams. Fig. 4 shows the interadtiat is in charge of
decreasing the light intensity when anybody is near theescre

4.2 The Architect View: Designing the System

In order to provide a complete specification, an abstraatrg#sn is not enough. The
devices and software systems that conform the pervasiersgsare key elements,
since they are the final suppliers of the system functionde callbinding providers

to these elements (devices and software systems), bet¢emyskind the pervasive sys-
tem with its physical or logical environment.

In the PervML Architect View , the architect specifies what kind of devices and
software systems are used in the system, which elementerimapit every service and
how these elements provide the service. The system artHieisions must take into
account issues like the project budget, device availgbilite physical environment
structure, etc.

The system architect uses tBending Providers Model to describe the different
kind of devices or software system that are used in the pee/agstem. Fig. 5 shows
the Binding Providers Model for our meeting room. For ins&rthe diagram specifies
that thePresenceDetector sensor provides an operation which returns the probability
that anybody is detected in a location. It is important tcertbiat this model describes
the functionality provided by a kind of device or softwarestgm, but it is not tighted

18

e | Projector
= Switch [+moveT secondi - int) : void ighting 1| |Maintighting €]
+off() : void [#activated() - bool] sint
+on() : void patse() : void actuator>
[+isOn() : bool +switchOff() : void Objetol Objeto2 L3:Lamp
PresenceDetector +playFile(entrada fileURL : string,) : void
[+probabilityOfPresence() - int | [*getState() : int
[+length() :int
GradualLamp
Fdecrease) -void MotionDetectionCamera SereenActivation €] MainLightingActivation]
+isOn() : bool +saveTo(entrada fileName : string, entrada mode : string,) : void >
[+off() : void +getMotionDetection() : bool 2 Switch
+on() : void [+getState() : string S1: Switch
+increase() : void [+record() : void
[+currentPos() : int [+stop() : void
€]]
e o voneircanea)
Model PD1.: PresenceDetector 1 MotionbeteationCamera
MultimediaPlayer] Recorder]
bool presenceDetected(): <Sensom
returnValue = _PD1_. probabilityCfPresence() > 80; m
Component Functional SecurityManagement £]
Specification Component Structural
Specification

Fig. 5. The models that are used in the Architect View.

to any specific item. For instance, thamp described in the model could be finally
implemented as an EIB lamp or a X10 lamp or a lamp in any otheirobnetwork.

The system architect uses t®mponent Structure Specificationto assign de-
vices and software systems to every system component. Rate¢he same binding
provider can be used for implementing several servicesinstance, théMotionDetec-
tionCamerais used both for implementingRresenceDetection service and &ecorder
service.

The system architect uses tBemponent Functional Specificationto specify the
actions that are executed when an operation of a servicgoked. These actions are
specified using the Action Semantics Language (ASL) of UM\ery operation pro-
vided for every component must have associated a functipealification. Fig. 5 shows
the actions that are executed whenph@senceDet ect ed operation of theslobal-
Presenceis invoked. The specification determines the return valuepaying the prob-
ability returned by the presence detector device (c&led]) with a threshold value that
is fixed to 80%.

5 Implementation Details

In this section we provide some details about the finally poed pervasive system. Fig.
6 shows the overall network structure. The central sena@Fentium IV barebone with
512Mb RAM and connectivity by ethernet, 802.g and seriat.pbine barebone runs a
Windows XP Professional Edition. We have selected the Ridsymbedded Server 5.2
as the OSGi implementation.

In order to support the control devices (lights, switched presence detector), an
EIB network has been deployed. The pervasive system accésghis network by

19

Common Bulbs

USB Webcam . Movement
Video Camera »q' . ‘4':__ o, Sensor

cﬁ L * ® ’ g

H'Pnlijq i \Vm!Network |
22 e‘ibDUO |

L

Transcent Common
Switch Switch

Lynksis Internet

=1
d

Gateway
(Prosyst mBedded
Server)

PC +
Projector

@

(P4

Fig. 6. Network structure of the meeting room system.

means of the EIB bundle provided by Prosyst. The bareboneysigally connected to
the network by the serial port.

The camera with motion detection capabilitiesis a Linksys Wireless-G Internet
Video Camera. This camera provides the video as an ASF stream. Moredvanibe
configured to send an email when it detects some kind of mothave developed
an OSGi driver for integrating in our system these features.

Finally, theprojector has been implemented usingommon projector attached to
aPentiumll. This computer runs a Windows XP Home with a Windows Medig&a
full screen mode. The projector computer hosts a prograratwgriovides web services
for controlling the Media Player. We have developed an OS@édfor accessing these
web services from the pervasive system.

Fig. 7. The three user interfaces for managing the pervasive system.

Users interact with the system using several kind of deymesnultiple user inter-
faces must be provided. Currently, we provide three diffeuser interfaces, which are
shown in Fig. 7 : (1) AWeb interface for desktop browsers(Fig. 7, 1), (2) anative
PDA application (Fig. 7, 2), and (3) &Veb interface for PDA browsers(Fig. 7, 3).

20
6 Conclusions

This work introduces an application of the Model Driven Diegenent approach to the
field of pervasive systems. Following the proposed methwspecification of the sys-
tem functionality is independent of the devices selectednfiplementing the system.
Moreover, all the specification is independent of manufaetissues. The manufac-
turer dependent details are isolated in the drivers layezs& characteristics provide a
high degree of manufacturer an technology independenceawehange all the imple-
mentation technologies just replacing the drivers, butftbe user point of view the
functionality provided by the pervasive system still rensahe same.

As a future work, we plan to extend the expressiveness of\fleand the features
of the implementation framework in order to give supppor{tpthe specification of
richer user interfaces, maybe applying the SmartTempkgtpsoach [5] and/or using
a language for describing user interfaces like UsiXML [6]dd42) the specification as
first order entities of context-awareness characterisiicstheir implementation using
a framework like the proposed in [7].

References

[Eny

. Object Management Group: Model Driven Architecture Guide 8200

. Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factoviékey Publising Inc. (2004)

3. Mufioz, J., Pelechano, V.: Building a Software Factory for Pervaspgteths Development.
In: CAISE 2005, Porto, Portugal, June 13-17. Volume 3520 of LN@80%) 329-343

4. Mufioz, J., Pelechano, V.: Applying Software Factories to Pervasigte8)s: A Platform
Specific Framework. In: 8th International Conference on Enterprifgmation Systems
(ICEIS 2006), Paphos (Cyprus) (2006)

5. Nichols, J., Myers, B.A., Litwack, K.: Improving Automatic IntecEaGeneration with Smart
Templates. In: Intelligent User Interfaces (1Ul) 2004, Funchaltiyal (2004) 286-288

6. Limbourg, Q., Vanderdonckt, J.: Usixml: A User Interface Dgimn Language Supporting
Multiple Levels Of Independence. In: Engineering Advanced Web Apfibos. Rinton Press
(2004) 325-338

7. Rossi, G., Gordillo, S., Fortier, A.: Seamless Engineering of Locakiware Services. In:

On the Move to Meaningful Internet Systems 2005: OTM Workshophkurkle 3762 / 2005 of

LNCS. (2005) p. 176

N

