Model Checking Suspendible Business Processes via
Statechart Diagramsand CSP

W. L. Yeund,, K. R. P. H. Leung, Ji Wang and Wei Dong
! Lingnan University, Hong Kong
2 Hong Kong Institute of Vocational Education, Hong Kong

3 National Laboratory for Parallel & Distributed Processing, Changsha, Hunan, P.R. China

Abstract. When using statechart diagrams, the history mechanism can be use-
ful for modelling the suspension of a “normal” business process upon certain
“abnormal” events together with the subsequent resumption, as illustrated by the
examples in this paper. However, previous approaches to model checking state-
chart diagrams often ignore the history mechanism. We enhanced such a previous
approach based on Communicating Sequential Processes (CSP) and developed a
support tool for it.

1 Introduction

An essential task of modelling business activities is to identify the different types of
business transactions and the order in which they are conducted. For this there are two
inter-related modelling concepts. The first one i®hject, which reflects how business
transactions are related to and distinguished from each otherinfatmation system,

e.g. two borrowing transactions conducted in a library may differ in the book objects
being borrowed; a borrowing transaction is related to a returning transaction if they are
applied to the same book object. The second modelling conceppriscess, which

is the order in which related transactions are carried out against/by a particular object
throughout its lifetime, e.g. a library membership object must first be createthemd
maybe renewed a number of timafore it is finally cancelled.

Process modelling has always been a challenging task. Poorly modelled processes
lead ultimately to information systems that handle business transactions incorrectly, and
hence to inaccurate information for managers. The problem is elevated to a larger scale
in enterprise information systems which involve unprecedented numbers of objects and
processes covering every major aspect of business nowadays.

Much research has been carried out on proposing, refining, extending, and integrat-
ing languages and notations for specifying processes, with the aim to ensure correctness
and make the task more efficient and manageable. The Unified Modelling Language
(UML) [1] settles with statechart diagrams, which is an adaptation of Harel's state-
charts [2]. UML also includes a kind of diagrams known as activity diagrams which
are mainly used for modelling workflows but may also provide an alternative view of
processes. This paper is, however, only concerned with statechart diagrams.

L. Yeung W., R. P. H. Leung K., Wang J. and Dong W. (2006).

Model Checking Suspendible Business Processes via Statechart Diagrams and CSP.

In Proceedings of the 4th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems, pages 97-107
DOI: 10.5220/0002476600970107

Copyright © SciTePress

98

A statechart diagram represents a process in terrasias andtransitions; transi-
tions among states are triggered dyents that correspond to occurrences of business
transactions. A process represented in such a way is tradily called a finite state ma-
chine (FSM). Compared with the traditional representadiodhiSM'’s (ie. state transition
diagrams), statechart diagrams are incorporated witlifesisuch as composite states
and concurrent states that, on one hand, facilitate the hraglef complex processes
in a more succinct and manageable manner while, on the osimek, present new chal-
lenges for the verification task due to a much richer semsntic

Formal methods are widely recognised as a useful means asing software
reliability. The formal verification of statechart diagrarhas been an active research
topic ever since UML was proposed. The syntax and semarftssi@chart diagrams
have been formalised in various ways with tools developeddpporting automated
verification through model checking.

The result of our research presented in this paper enhanpesvimus approach
to formalising and model checking statechart diagrams][3[He approach is based
on a mapping of statechart diagrams into the formalism of @amnicating Sequential
Processes (CSP) [5, 6] together the associated FDR2 modekialy tool [7]. This
approach, together with many others (e.g. [8—10]), do notvdver, supporhistory
states, which are often useful in modelling business activitiest thvolve suspension.
The main enhancement presented here is the support ofyhsttites for modelling
suspendible business processes.

The next section briefly outlines the previous approach oietwtiis work is based.
Section 3 discusses modelling of suspendible businessgses in statechart diagrams.
Section 4 explains the representation of suspendible psesein CSP via a mapping
from statechart diagrams. Section 5 introduces some s@ttemls that support the
application of model checking. Section 6 provides a concfuand some discussion.

2 A CSP Approach to Formalising Statechart Diagrams

In this section, an approach to formalising statechartrdiag originally proposed by
Ng and Butler [3] and subsequently improved by Yewh@gl [4] is briefly reviewed.
The reader is referred to [3, 4] for details.

2.1 ThelLanguage of CSP

In the language of CSP, a process is described in terms ofabsile interactions it
can have with its environment, which may be thought of astergbrocess or set of
processes. Interactions are described in terms of insteotes atomic synchronisations,
or events. A process can be considered as a “black box” with an interantaining a
number of events through which it interacts with other psses. The set of all events
in the interface of a proced®, written oP, is called itsalphabet. It is important to
note that interface events are intended as synchronisatietween the participating
processes and not as autonomous actions under the consrslrafle process.

The following paragraphs briefly introduce the CSP opesatised in this paper. A
comprehensive description of the language is found in [S[6¢ language of CSP used

99

in this paper is defined by the following pseudo Backus-Natmfdefinition:
P:=Sop|a—P|POP|ip|P; P[P| P[P\ A
A

whereX is the set of all possible eventsranges ovel, andA C X.

Let a andb be events an®®, Q, andR be CSP processes. The proc&swp is the
deadlocked process, unable to engage in any events or makwagress. The prefix
processa — P is ready to engage in eveat(and in no other event). It will continue
to wait until its environment is also ready to perfoamat which point synchronisation
on this event will occur. Once the event is performed, thesegbent behaviour of
a — P will be that of proces$. Given two processeB andQ, an external choice
P O Q is initially ready to engage in events that eitieor Q is ready to engage
in. The first event performed resolves the choice in favouhefcomponent that was
able to perform it, and the subsequent behaviour is giverhisydcomponentsip is
the process that does nothing but terminates successfuthe sequential composition
P; Q, the combined process first behavefasdQ becomes active immediately after
the successful termination &t P || Q is the parallel composition & andQ in which

A

the two processes must synchronise on events in the §efr instance,

(@a—POb—Q) || @—=R =a—P | R
{a} {a}

Finally, inP \ A, P's ability to synchronise with the environment on any evert A is
disabled, with all such events taking place internally dleid) as soon as they are ready.

SHELVED reserve

HELD = borrow — UNRENEWED
o RESERVED = return — HELD
RENEWED = return — SHELVED O reserve — RESERVED
UNRENEWED = return — SHELVED O renew — RENEWED

RN o O reserve — RESERVED
\ SHELVED = borrow — UNRENEWED O reserve — HELD
renew o~
[RESERVEDJ BOOK = SHELVED

borrow

Fig. 1. Statechart diagram for a book object.

2.2 UML Statechart Diagrams

Figure 1 shows a statechart diagram for a book object in arljbecirculation record
system. For now, assume that there are only four types addrions, namely, borrow,
return, renew, and reserve, with corresponding eventsaisis¢éhe diagram. The reader
may notice the following properties about the order of eydrdm the diagram:

1. A borrowed book may be renewed at most once.

100

2. Once reserved, a borrowed book can no longer be renewed.
3. Once abookis reserved, it cannot be reserved again fietilzhas been borrowed.
4. A book on shelf can also be reserved (once) before it ihed.

Figure 1 also shows the CSP representation of the same prades overall process
is defined in CSP aBOOK, which is in turn defined by a set of mutual-recursively
defined CSP processes, each of which corresponds to anduadidtate in the state-
chart diagram and represents the behaviour of the book tofiting from that par-
ticular state. For instance, since SHELVED is the initiatst the overall behaviour
of a book (ie.BOOK) is defined by its behaviour starting from the SHELVED state
(ie. SHELVED).

[)
e HELD = borrow — BORROWED @)
o RESERVED = return — HELD
/ RENEWED = return — SHELVED O reserve — RESERVED
BORROWED UNRENEWED = return — SHELVED O renew — RENEWED
3 - O reserve — RESERVED
UNRENEWED BORROWED = UNRENEWED 2

l/renew
RENEWED

SHELVED = borrow — BORROWED O reserve — HELD(3)
BOOK = SHELVED

Fig. 2. Statechart diagram featuring a composite state for a book object.

Figure 2 shows an alternative statechart diagram for th& bbgect, together with
a corresponding CSP representation. The new diagram tdkeatage of using a com-
posite state to represent exactly the same process in dlsligbre compact manner.
The CSP representation has also been revised, with a newgsORROWED and
the definitions ofHELD and SHELVED changed, to reflect the new diagram’s struc-
ture. As an assurance that the new and old diagrams bothsegyirthe same process,
substituting (2) into (1) and (3) gives the original CSP esgntation.

2.3 Mapping Statechart Diagramsinto CSP

The CSP processes defined in Figures 1 and 2 can be systdiypat&raved from the

corresponding statechart diagrams through a set of mafpimagions. Given a finite

state machin® represented in a statechart diagram, we can define a function
Hwm : Mg -+~ CSP

whereM; is the set of states of machifé. Given a statX € Ms, Hyu(X) is the CSP
process that represents the (subsequent) behaviour ofmeddtstarting at state.

101

The complete definition ol can be found in [3, 4]. Here, as an example Nkt
be the FSM represented by the statechart diagram in Figuve Bave

Hwm(HELD) = borrow — Hy (BORROWED)
Hu (RESERVED) = return — Hy (HELD)
Hw(RENEWED) = return — Hw (SHELVED) O reserve — Hw (RESERVED)
Hwm (UNRENEWED) = return — Hy (SHELVED) O renew — Hu (RENEWED)
O reserve — Hw(RESERVED)
Hw (BORROWED) = Hyu (UNRENEWED)
Hm(SHELVED) = borrow — Hw(BORROWED) O reserve — Hu (HELD)

whereMs = {SHELVED, BORROWED, UNRENEWED, RENEWED, RESERVED, HELD}.
Since SHELVED is the initial of the entire FSKiy (SHELVED) as defined above rep-
resents the process of a book object, which is equivalemeBOOK process defined
in Figure 2.

The mapping functions as defined in [3, 4] support a numberapbnstatechart fea-
tures including composite states, entry and exit actioosadivities, inter-level transi-
tions, and choice states.

3 Suspendible Business Processes

Figure 3a shows yet another statechart diagram for the bbjgicto The new diagram
represents a process involving five additional types ofs@ations, namely, suspend,
resume, lose, recover, and write-off. The library may sodpebook from circulation
(for maintenance purposes) when a book is either being SHELor HELD and sub-
sequently resume it to its last state when suspended. Ontibelmand, a book on loan
could be reported as lost by the borrower and be effectivedpanded from circulation.
If a lost book is subsequently reported as recovered, itheillesumed to the last state
when reported as lost. A lost book may never be recoveredadually written off.
Figure 3b shows an alternative statechart diagram for thgendible book process.
The new diagram takes advantage of using a deep history($atgo represent the
same suspendible process in a visually more compact madeeping a (deep) his-
tory of the “normal” process represented by the NORMAL cosifstate allows the
number of “suspended” states (SUSPENDED FROM SHELVED/HHLOST FROM
UNRENEWED/RENEWED/RESERVED) to be reduced from five to two
(SUSPENDED and LOST) with a corresponding reduction in thmiper of resum-
ing/recovering transitions. Observe that the NORMAL statenly entered through its
history. While this is not compulsory in statechart diagrawss shall take advantage of
such cases in deriving the CSP representation as explairtbd following section.

4 Modelling Suspendible Processesin CSP

To help explain the modelling of suspendible processes iR, @8 first consider a sim-
plified version of the book object. Figure 4 shows a statdatiagram for the book

102

SUSPENDED SUSPENDED
FROM FROM HELD
SUELVED

I suspel
resume suspend resume suspend .%%,
reserve
@ (SHELVEDW [e reserve
Q ! SHELVED HELD
borrow return
borrow

BORROWED

SUSPENDED
resume\ suspend
nd

NORMAL

return BORROWED

[]
L _|RESERVED l
reserve
UNRENEWED relserve]
UNRENEWED| RESERVED

lose lose recover
renew renew
recover

RENEWED LOST FROM || LOST FROM s

UNRENEWED| | RESERVED
lose Tvecuvf/
lose recover
| Cor @
LOST FROM write off
RENEWED
(b)

Fig. 3. Statechart diagrams for a suspendible book process.

borrow
return

i

write off

object with only two “normal” states, SHELVED and BORROWEDafsitions be-
tween the two states are triggered by tiwrow and return events. Apart from the
“normal” process, the book may be reported as lost at anyaimdethen later recovered
again: alose event would trigger a transition to the LOST state, from vataaecover
event would trigger a transition back to the last active tatbswithin the NORMAL
state through its history. Initially, the book is in the SHED state.

NORMAL
.\' L4 ‘
SHELVED

borrow return

BORROWED

Fig. 4. Statechart diagram for a simplified book object.

LOST(X) = recover — if x = s then SHELVED

elseBORROWED
recover BORROWED
LOST
SHELVED

return — SHELVED O lose — LOST (b)
borrow — BORROWED O lose — LOST (s)

NORMAL
e BOOK = NORMAL

110 1y

SHELVED

Figure 4 also shows the corresponding CSP represent&i@®@l involves a pa-
rameter in its definition. It responds to thecover event and then chooses between
BORROWED and SHELVED based on the value of the parameter, which is set by
BORROWED and SHELVED each time when they “callLOST. While the mapping
in this example seems to work well and does maintain a cooregnce between states
and processes, there is a serious drawback: history infammabout BORROWED and
SHELVED are not only handled by the corresponding CSP pesaseRBORROWED and

103

SHELVED) only, but alsd_OST which makes use of such history information—this can
be considered as contrary to the principlambrmation hiding [11]. The implication
is that any state with a transition directly or indirectlpdng to the history indicator of
another (composite) state has to carry history informagioout the latter.

An alternative approach to handling history informatioattrespects the principle
of information hiding is illustrated by the following CSP stziption of the same dia-
gram in Figure 4:

LOST = (0.LOST — recover — (N.NORMAL — LOST
BORROWED = return — SHELVED
O lose — (M.LOST — (NH.NORMAL — BORROWED
SHELVED = borrow — BORROWED
O lose — (M.LOST — (NH.NORMAL — SHELVED
NORMAL = SHELVED

BOOK = (LOST <|£ NORMAL) \ {®.LOST, M.NORMAL}
{({®.LosT,(I").NORMAL}

There are two concurrent processe®ST and NORMAL, and the behaviour of the
book is described by the parallel composition of these twar@sses. The two con-
current processes synchronise with each other on two dpmaats,().LOST and
(M.NORMAL, which correspond to transitions to the LOST and NORMAL estate-
spectively. For instance, after aecover event,LOST is ready for 8T).NORMAL event,
which corresponds to a transition to the NORMAL state. Siheetransition is meant
to take place automatically following the trigger evene h.NORMAL event, together
with the (N.LOST, are designated as internal and hidden from the environosng
the “\"” operator.

The definition of a set of functions based on [3, 4] for mapEtegechart diagrams
with history states into CSP can be found in [12], with thédwing restrictions on the
use of history states:

1. Incoming transitions do not “penetrate” inside a histbearing composite state—
they stop at the boundary. In other words, a history-beatorgposite state must
always be entered through its history.

2. A history-bearing composite state remembers its lagteastibstate at any level of
its enclosure, i.edeep history.

3. A history-bearing composite state may not contain angratistory-bearing com-
posite states at any level of its enclosure, ie. no nestédriis

Furthermore, our mapping does not support concurrentsstate it does support
entry and exit actions, final states, and inter-level titzonss.

The above restrictions on the use of history-bearing coitgpstates render them
behaviourally analogous tmroutines: an initial transition to a history-bearing compos-
ite state corresponds to a call to a coroutine; transitiomsray substates of the history-
bearing composite state correspond to the coroutine’miakstate changes; transitions
out of the history-bearing composite state correspond $pending the coroutine and
transferring control away to other coroutines or the maogpam; incoming transitions
resume the coroutine.

104

In this paper, a suspendible business process is consideteaving a “normal” life
with some “normal” events, together with some “abnormakrmtg that could suspend
the normal life temporarily. The restrictions on the useisfdry is least severe where
the “normal” life is always resumeda the point of last suspension as in our book ex-
ample. In those cases where the “normal” lifent always resumed at the point of
last suspension, restriction (1) would undermine the ugestbry. For instance, in the
book example, if a suspended book may also be replaced faparteing resumed)
and assume that a replaced book is always returned to tHfewwbehay modify the stat-
echart diagram in Figure 3b by adding a transition from SUSBED to SHELVED,
triggered by aeplace event. However, this violates restriction (1). To get rotinid,
one has to give up (or reduce) the use of history and resohetdess compact style
exemplified in Figure 3a.

channel borrow, |ose, recover, renew, reserve, return, suspend, witeoff
datatype States = BOOKTop' | BOOKTop | SUSPENDED | LOST | FINAL | NORMAL |
SHELVED | HELD | RESERVED | BORROWED | UNRENEWED | RENEWED

subtype Process = BOOKTop | NORVAL

subtype Rstates = NORMAL | SUSPENDED | LOST

subt ype SUSPENDED_s = NORMAL subtype LOST_s = NORMAL

subtype NORMAL_s = LOST | SUSPENDED

channel Resurme: Rstates.Rstates

St (BOOKTop') = Resume. SUSPENDED?x: SUSPENDED_s - > St (SUSPENDED) [] Resume.LOST?x: LOST_s -> St (LOST)
St (BOOKTop) = St (BOOKTop’)

St (NORMAL) = St (SHELVED)

St (BORROVED) = St (UNRENEWED)

St (UNRENEVED) = renew -> St(RENEWED) [] reserve -> St(RESERVED) [] |ose -> Resume. LOST! NORVAL - >
Resume. NORMAL?x: NORMAL_s - > St (UNRENEVED) [] return -> St (SHELVED)

St (RENEWED) = reserve -> St (RESERVED) [] |ose -> Resune. LOST! NORVAL ->

Resume. NORVAL?x: NORVAL_s -> St (RENEWED) [] return -> St (SHELVED)

St (SHELVED) = suspend -> Resume. SUSPENDED! NORVAL - > Resune. NORVAL?x: NORMAL_s - >

St (SHELVED) [] reserve -> St(HELD) [] borrow -> St (BORROAED)

St (HELD) = suspend -> Resune. SUSPENDED! NORVAL -> Resune. NORVAL?x: NORVAL_s - >

St (HELD) [] borrow -> St (BORROVED)

St (RESERVED) = return -> St(HELD) [] |ose -> Resume. LOST! NORVAL ->

Resume. NORVAL?x: NORVAL_s - > St (RESERVED)

St (SUSPENDED) = resune -> Resume. NORVAL! SUSPENDED - > St (BOOKTop')

St (LOST) = recover -> Resunme. NORVAL! LOST -> St (BOOKTop') [] wite_off -> St(FINAL)
St(FINAL) = STOP

BOOK = (St(BOOKTop) [|{|Resume|}|] St(NORMAL)) \ {|Resure|}

Fig.5. CSPu representation of the book process and a screenshot of FDR2.

5 Software Toolsfor Model Checking

The mapping functions defined in [12] have been implemensed software tool for
supporting the model checking of suspendible processessepted in UML statechart
diagrams. Figure 6 shows how the tool interfaces with thesidos UML CASE tool
and the FDR2 model checker [7], which is the standard modetiar for CSP. We
use Poseidon as a graphical tool for editing statechartaliag) The software tool itself
is written as a set of XSLT templates which takes as input arl ¥resentation of
statechart diagrams from Poseidon and genef@®%, a machine-readable represen-
tation of the CSP language for model checking with FDR2. Fédushows the&€SPy,
representation of the statechart diagram in Figure 3b asrgtad by the software tool.

6 Reated Work

Von der Beeck [13] gave a survey of several variants of states, prior to the arrival
of UML statechart diagrams. UML statechart diagrams hawenlfermalised in nu-

105

Model

Editing Mapping Checking
Statechart | poseidon XM XSLT CSRy FDR2
diagram script tool script

Fig. 6. Software tools for editing, mapping, and model checking statchartatizgr

merous other formalisms such as pi-calculus [14], LOTOS,[ASM [16]. Closest to
our work is the work by Ng and Butler [3] in which a formaligatiof UML statechart
diagrams in CSP is presented in a style that is followed mghper. Yeungt al [4] im-
proved this formalisation on inter-level transitions. NMosthe previous formalisations
do not tackle history states. von der Beeck [17] gave a strakbperational seman-
tics to statechart diagrams which does cover shallow/destpria states and composite
AND-states.

Well-known commercial model checkers for statechartie|STATEMATE [18].
Other statecharts model checkers include [19, 20]. We nexhigobtain three publicly
available support tools and environments specifically fodeil checking UML state-
chart diagrams, namely, JACK [21], UMLAUT [8], and UMC [10Jone of these three
tools support the history mechanism. Other UML model chegkbols found in the lit-
erature include vUML [22] and Rhapsody [23]. Roscoe [24palsveloped a compiler
(translator) for translating a textual representationtafecharts into CSP for model
checking with FDR2 [7]. Finally, progress has been made imehahecking UML
statechart diagrams with time [25].

7 Discussion and Conclusion

An approach to verifying suspendible business procesgeesented in statechart dia-
grams has been presented. It involves a mapping that ttasslatatechart diagram into
a CSP representation in a way that maintains a strong “straittcorrespondence be-
tween the former and the latter. This helps relate any eremesaled by model checking
to the original statechart diagrams.

The use of parallel processes to model a state machine nyolélae well known
state explosion problem and indeed considerable care e ta ensure that parallel
processes are tightly coupled b§)” events so that the state space is kept under control
during model checking. See [12] for the mapping in details.

The mapping assumes the use of history states under cegdiictions as stated
towards the end of section 4. These restrictions affect hewnwdel business processes
involving suspension and resumption. One may consideetresdrictions too much an
obstacle to modelling as one is bound to find cases and reésonsmoving them.
We admit to such shortcomings but would like to note thatmfimur experience, mod-
elling a suspendible business process can often benefly frantn the restricted use
of history. Besides, liberal use of history could lead to ptioated statechart diagrams
that are difficult to comprehend. On the other hand, theiotisins afford us the anal-
ogy between a history-bearing composite state and a camuthich might actually
encourage someone not familiar with the former to use it wathfidence in modelling.

106

Finally, the mapping functions used in defining the semargie readily imple-
mentable and allows for a prototyping approach to the semdefinition, ie. we ex-
perimented with the software tool that implemented the rivapfunctions while devel-
oping and refining the mapping itself. Currently, we ard stihtinuing to extend and
refine the mapping to cater for more features of statechagradims such as concurrent
states and actions.

Acknowledgements

The first author is supported by Research Grant DRO5A1 fronghan University.
The third and fourth authors are supported by National NatBcience Foundation of
China Grants No. 60233020, 60303013. The authors woulddikeank the anonymous
referees for their helpful comments and suggestions.

References

1. Object Management Group: OMG Unified Modeling Language Spatiific \ersion 1.5.
(2003)
2. Harel, D.: Statecharts: A visual formalism for complex systems. nSei®f Computer
Programming (1987) 231-274
3. Ng, M.Y., Butler, M.: Towards Formalizing UML State Diagrams in C8P Proc. 1st IEEE
International Conference on Software Engineering and Formal Msthact. Notes Comp.
Sci., IEEE Computer Society (2003) 138-147
4. Yeung, W.L., Leung, K.R.P.H., Wang, J., Dong, W.: Impments towards formalizing
UML state diagrams in CSP. In: Proc. 12th Asia Pacific Software Engimge&onference,
December, 2005, Taipei. (2005)
. Hoare, C.A.R.: Communicating Sequential Processes. Prentic€lBiB5)
. Roscoe, A.W.: The Theory and Practice of Concurrency. Peehiid! (1998)
. Formal Systems (Europe) Ltd.: Failures-Divergence Refinea®xR2 User Manual. (2003)
. Ho, WM., Jquel, J.M., Guennec, A.L., Pennaneac’h, F.: WML: An extendible UML
transformation framework. In: Proc. Automated Software Enginget®09. (1999) 275—
278
9. Schafer, T., Knapp, A., Merz, S.: Model checking UML state hiraes and collaborations.
Electronic Notes in Theoretical Computer ScieAZ€2001) 1-13
10. Gnesi, S., Mazzanti, F.: On the fly model checking of communicatiy State Machines.
In: Proc. Second ACIS International Conference on Software Eeging Research Man-
agement and Applications (SERA2004), Los Angeles, USA, May, 2(ED04)
11. Parnas, D.: On the criteria to be used in decomposing systems intdeso@€omm. ACM
(1972)
12. Yeung, W.L.: Towards formalizing UML state diagrams with history 8FC Technical
report, Lingnan University (2005) http://cptra.ln.edu.hk/ wlyeung/injsps.
13. der Beeck, M.V.: A comparison of statecharts variants. In:.Ffoenal Techniques in Real
Time and Fault Tolerant Systems. Volume 863 of LNCS., Springer4)1998—-148
14. Lam, V.S.W., Padget, J.: Formalization of UML statechart diagramthe pi-calculus. In:
Proc. 13th Australian Software Engineering Conference. (2005223
15. Cheng, B., Campbell, L., Wang, E.: Enabling Automated Analysiegh the Formaliza-
tion of Object-Oriented Modeling Diagrams. In: Proceedings of IEEE iational Confer-
ence on Dependable Systems and Networks, IEEE (2000) 305-314

0 ~NO Ol

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

107

Borger, E., Cavarra, A., Riccobene, E.: Modeling the dynamics ofLUithte machines.
In: Proc. Abstract State Machines: Theory and Applications (ASM20@@lume 1912 of
LNCS., Springer-Verlag (2000) 223-241

von der Beeck, M.: Formalization of UML-Statecharts. In: UML 2000lume 2185 of
LNCS., Springer (2001) 406-421

Bienmulller, T., Damm, W., Wittke, H.: The STATEMATE verificatiorvtnonment - making
it real. In Emerson, E.A., Sistla, A.P., eds.: CAV 2000. Volume 18bkecture Notes in
Computer Science., Springer (2000) 561-567

Mikk, E., Lakhnech, Y., Siegel, M., Holzmann, G.J.: Implementistatecharts in
PROMELA/SPIN. In: Proc. Second IEEE Workshop on Industrial i@te Formal Spec-
ification Techniques, IEEE (1998) 90-101

Pingree, P.J., Mikk, E.: The hivy tool set. In: CAV 2004. Volugid 4 of LNCS., Springer
(2004) 466-469

Gnesi, S., Latella, D., Massink, M.: Model checking UML statectimgrams using JACK.
In: HASE '99: The 4th IEEE International Symposium on High-Assem8ystems Engi-
neering, IEEE (1999) 46-55

Lilius, J., Paltor, I.P.: vUML: A Tool for Verifying UML Models. InProceedings of 14th
IEEE International Conference on Automated Software Engineetfitigfz IComputer Soci-
ety (1999)

Schinz, ., Toben, T., Mrugalla, C., Westphal, B.: The Rhap&#idL Verification Environ-
ment. In: Proc. 2nd International Conference on Software Engimgand Formal Methods
(SEFM 2004), Bejing, China, IEEE (2004) 174-183

Roscoe, B.: Compiling statemate statecharts into CSP and verifying ubiexp FDR -
abstract. http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/publicatidaf/ps (2003)
Bianco, V.D., Lavazza, L., Mauri, M.: Model checking UML sffications of real time
software. In: Proc. 8th IEEE International Conference on Engingef Complex Computer
Systems (ICECCS’02), IEEE (2002) 203-212

