
TOWARDS A MAINTAINABILITY EVALUATION IN
SOFTWARE ARCHITECTURES

Anna Grimán, Luisana Chávez, María Pérez, Luis Mendoza, Kenyer Domínguez
Processes and Systems Department – LISI

Universidad Simón Bolívar
Caracas – Venezuela

Keywords: Architectural Evaluation, Maintainability, Software Architecture, Architectural mechanism, Scenario.

Abstract: Maintainability is an internal quality characteristic that is contemplated by many users and developers, and
therefore is deeply related to software architecture. It presents an organization of its components and
relation which promote or obstruct different attributes like testability, changeability, and analyzability. As
part of a research in progress, this article analyzes and organizes a set of architectural mechanisms that
guarantee software maintainability. To propose the architectural mechanisms we decided first to construct
an ontology, which helps identify all concepts related to Maintainability and their relationships. Then we
decided to focus and specify mechanisms that promote maintainability, also we present a set of scenarios
that will explore the presence at the architecture of those concepts previously identified, including the
architectural mechanism analyzed. With the products described in this article we have the bases to develop
an architectural evaluation method, which is based on maintainability.

1 INTRODUCTION

Bass et al. (2003) state that Architecture defines the
most fundamental design decision and largely
permits or precludes a system's quality attributes
such as performance or maintainability. Over the last
few years, fulfilling quality requirements of the
system has become more important than providing
functionality requirement. Maintainability is one of
the quality characteristics that systems should have,
in order for a software product to change and evolve.
New user requirements are often appearing after the
first delivery, maintenance is therefore required.
Frameworks, architectural styles, architectural and
design patterns are some of these mechanisms that
help assure Maintainability.

In this context, our research, which is now in
progress, is an attempt to develop an architectural
evaluation method, which is based on
maintainability. To achieve this objective, an
ontology for Maintainability evaluation in software
architectures is established, followed by the
description of mechanisms that ensure Software
Maintainability in software architectures, afterwards
a description of maintainability scenarios will be
made to close with conclusions and
recommendations.

Also, this article analyzes and organizes a set of
architectural mechanisms that guarantee software
maintainability.

2 MAINTAINABILITY
ONTOLOGY IN SOFTWARE
ARCHITECTURE
EVALUATION

We have created a model to represent concepts and
their relationship with Maintainability, because in
other recent literature these relationships are not
mature enough. Figure 1 shows a set of concepts
related to the Maintainability Evaluation in Software
Architectures. It can be observed that there is a large
number of conceptual relationships that, when
considered, shall help to perform a much more
systemic assessment of the architecture, which will
translate in a much more objective and effective
selection of the software architecture, ideal for the
development of Information Systems (IS). Some of
the concepts shown in Figure 1 are briefly described
below.

555
Grimán A., Chávez L., Pérez M., Mendoza L. and Domínguez K. (2006).
TOWARDS A MAINTAINABILITY EVALUATION IN SOFTWARE ARCHITECTURES.
In Proceedings of the Eighth International Conference on Enterprise Information Systems - ISAS, pages 555-558
DOI: 10.5220/0002462005550558
Copyright c© SciTePress

Figure 1: Ontology for Maintainability Evaluation in Software Architectures.

Evaluation methods determine the architecture
capability to support quality characteristics.
Evaluation methods are based on a Quality Model
that specifies the Quality characteristics to be
evaluated. This model should be based on ISO 9126
standard. Furthermore, a variety of qualitative and
quantitative techniques are used for analyzing
specific quality attributes, Barbacci (1995). Bosch
(2000) states that architectural evaluation methods
require the use of evaluation techniques. The
different kinds of techniques are: Scenarios,
Mathematical Models, Experience, and Simulation.

ISO 9126-1 proposes three aspects by which
software quality of a product can be measured:
External quality, measurable based on how the
software product acts or responds; internal quality,
measurable from the intrinsic characteristics of the
software product; and Use Quality, measurable from
the correct usage given by the user. These aspects
inspire the ISO 9126-1 quality model (ISO/IEC,
2002). ISO 9126-1 quality model, proposes a set of
six independent high-level quality characteristics,
which are defined as a set of attributes of a software
product by which its quality is described and
evaluated. Maintainability is one of these six

characteristics defined by ISO 9126 (2002).
Maintainability sub-characteristics are stability,
changeability, analyzability, and testability (ISO.IEC
9126, 2002). This characteristic is related to
software evolution and Maintenance process.

ISO/IEC 14764 defines four categories of
maintenance, as follows: Corrective, Adaptive,
Perfective, and Preventive maintenance. These four
kinds of maintenance imply different needs.
Maintainability then relates to the easiness to
perform maintenance activities. It also relates with
software evolution during development and after
software delivery.

Larman (2003) points out that evolutionary
software is a software development process by
which the software product is delivered in various
versions. This process however, does not exclude the
management of changes during the development
stage. Successive versions may provide a complete
implementation of the actual specification; however,
it provides a changed implementation correspondent
to the changes made on the product specification,
both the additional requirements as the removed
requirements.

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

556

Table 1: Benefits of Mechanisms that cause software Maintainability.
Mechanism ISO 9126 -1 Mechanism ISO 9126 -1

Builder Analyzability, Changeability,
Testability.(Modularity), Memento Stability, Testability,

Changeability.
Adaptor Changeability. (Reuse of Code). Bridge Changeability,

Analyzability, Stability
Iterator Changeability (Coupling) Prototype Analyzability, Stability,

Changeability

Design
Pattern

Chain of
Responsibility

Testability, Changeability

Pipes and
Filters

Changeability (Coupling,
Modularity). Reactor Testability (Modularity) Architectural

Pattern
Interceptor Analyzability, Changeability

Proxy
Changeability,

Analyzability. (Coupling)

Layer
System

Analyzability, Testability. (Code
Reuse) Changeability

Object
Oriented

Testability, Changeability.
(Modularity), Analyzability

Architectural
Style

Component
Based

Testability, Changeability
(Modularity)

Framework Testability, Changeability
(Modularity)

Evolutionary Software is achieved through an

incremental and iterative process. Evolutionary
software guarantees software stability, because it
helps avoid unexpected behaviors.

Mechanisms and other architectonic decision
(such as effective modularity) should be applied at
certain architectural levels in order to assure
Maintainability. The different architectural
approaches that guarantee software maintainability
are architectural patterns, design patterns,
architectural styles, and frameworks. Each of these
will be studied and analyzed in the next section as a
translation to ISO 9126-1.

3 ARCHITECTURAL
MECHANISMS

Table 1 shows the architectural mechanisms studied
that promote maintainability of a Software
Architecture. These mechanisms can be linked to
maintainability sub-characteristics defined by ISO
9126-1, which will be described bellow.

Buschman et al. (1996) establishes that design
patterns supply a diagram that refines subsystems,
components of a software system or the relationship
between them. Some of the design patterns that
Gamma et al. (1994) propose may cause software
maintainability. The ones we believe cause this
quality characteristic are shown in Table 1.

Shaw et al. (1996) define an architectural style as
a description of component types and their topology,
which includes a description of the pattern of data

and control interaction among the components.
Architectural Styles that cause maintainability are
shown in Table 1.

On the other hand, Szyperski et al. (2002)
defines framework as a set of cooperating classes,
some of which may be abstract, that make up a
reusable design for a specific class of software.
Frameworks are not necessarily domain specific,
however they are concept specific. We can then
conclude that frameworks enhance modularity and
therefore maintainability by covering
implementation details with simple and stable
interfaces. Frameworks modularity may help locate
changes, reducing the effort to maintain the
software.

Table 1, shows how each mechanism can be
interpreted as one of the sub-characteristics of
Maintainability defined by ISO 9126-1.

4 MAINTAINABILITY
SCENARIOS

Scenarios have been widely used and documented as
a technique during requirements elicitation, specially
with respect to the operator of the system according
to Bass et al. (2003). They have also been widely
used during designs a method of comparing design
alternatives.

The Maintainability analysis starts by
considering scenarios of change to the software
product. The goal of the architecture is to control in
a subtle way all the different types of maintenance:

TOWARDS A MAINTAINABILITY EVALUATION IN SOFTWARE ARCHITECTURES

557

corrective, adaptive, perfective, and preventive.
Twenty (20) Maintainability Scenarios were
proposed in this research. These are all exploratory
scenarios that seek a way to determine the presence
of some of the concepts identified during the
elaboration of the ontology. A set of them are
described bellow.

Scenarios for Corrective Maintenance:
1. An attribute must be added to the constructor of

a class in order to correct a fault.
2. A link of the home page of a web application

must be erased in order to reduce confusion of
users.

Scenarios for Perfective Maintenance:
3. A method must be added to a class in order to

add functionality.
4. A new class must be created and it should

inherit all properties from another class.
Scenarios for Adaptive Maintenance:

5. A two layer platform must be migrated to a
three layer one; the new layer must be a web
Interface.

6. A class is needed, and its interface doesn’t
match the one that is needed.

Scenarios for Preventive Maintenance:
7. An external audit must be made to verify

functionality.
8. An external audit must be made to verify

effectiveness.

To build this table, the scenario is broken down
into its Stimulus and Response, in order to ensure
that each one has been captured accurately. Each
scenario generates a sequence of steps. These steps
provide support for the group discussion, which
leads to the Architectural Decisions, the Risks, Non-
risks, Sensitivity Points and associated Tradeoffs.
An example of how each of the scenarios is broken
down is shown in Table 2.

Table 2: Analysis of Scenario #17.
Scenario #17 An external audit must be made to verify
functionality.
Attribute: Maintainability
Environment: During preventive maintenance work
Stimulus: External Audit in response to functionality
verification.
Response: -Existence of a mechanism, module or
component that support and registers transactions.
- Existence of a mechanism, module or component that
stores modification history of data structures and
architecture.
 - Existence of a mechanism, module or component that
allows backup and restores data and configurations.
- Existence of a mechanism, module or component that
allows remote administration.

The Ontology, the Architectural Mechanisms, and
Maintainability Scenarios presented in the previous
sections will serve as input for the Design of a
Method for Maintainability Assessment of Software
Architectures.

5 CONCLUSIONS AND FUTURE
RESEARCH

As established, Maintainability is a very important
quality characteristic but it relates to multiple issues
that should be taken in to consideration and
measured. A system Architecture should respond to
these variables, therefore the study of software
maintainability is very complex. It is not a
characteristic that can be studied apart from
reliability, and all its different types (perfective,
corrective, preventive, and adaptative) should always
be considered. An evaluation method should include
scenarios in combination with other techniques.
These scenarios help understand architectural
aspects that are not easy to determine. The final goal
is to implement an evaluation method that makes the
evaluation process more efficient.

REFERENCES

Bass,L., Clements,P.,& Kazman,R.(2003). Software
Architecture in Practice, 2nd edition. Addison
Wesley.

Buschman F., Meunier R., Rohnert H., Sommerlad P., &
Stal, M.(1996). Pattern-Oriented Software
Architecture. New York. John Wiley & Sons Inc.

Shaw M., & Garlan D. (1996). Software Architecture –
Perspective of an Emerging Discipline. Upper Saddle
River, New Jersey. Prentice Hall.

Bosch J. (2000). Design and Use of Software Architecture.
Harlow, England .ACM Press.

Szyperski,C.(2002). Component software: Beyond Object-
Oriented programming. Addison-Wesley.

Barbacci,M.,Klein,M.H.,Longstaff,T.A., & Weinstock,
C.B. (1995). Quality Attributes. Technical Report,
CMU/SEI-95-TR-021, December 1995.

ISO/IEC 9126-1:2001. (2001) Software Engineering-
Product Quality-Part 1: Quality Model, ISO and IEC.

ISO/IEC 14764-1999.(1999). Software Engineering-
Software Maintenance, ISO and IEC, 1999.

Larman,C.(2003). Agile and Iterative Development: A
Manager’s Guide. Addison Wesley.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994).
Design Patterns, Addison-Wesley.

ICEIS 2006 - INFORMATION SYSTEMS ANALYSIS AND SPECIFICATION

558

