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Abstract: In this paper we address the problem of Multicast secure data over a multihop wireless ad hoc network. 
Many protocols that have been proposed are not really convenient for mobile ad hoc networks. We propose 
a key agreement protocol that aims to solve problems that are specific to ad hoc networks such as mobility, 
unreliable links, and multihop communication cost. The main idea is to focus on group dynamics and 
complete node mobility in ad hoc environment to develop an adaptive protocol that is suitable for the 
network and group changes. Doing so, we extend and adapt the proposed Tree based Group Diffie-Hellman 
(TGDH) protocol to pure mobile ad hoc network. Our method promotes the use of a fully balanced tree and 
eliminates the broadcasting of the entire tree as it appears in TGDH. We introduce a probabilistic value that 
gives the state of group dynamism. We simulated our protocol using C++ code and some results are 
presented in this paper and currently other simulations are going on the Network Simulator ns environment 
under various mobility, group size, and group dynamic scenarios. 

1 INTRODUCTION 

Multicast and mobile communications are emergent 
technologies that might enable interactive real time 
applications such video on demand and 
videoconference to name a few. In infrastructureless 
zones, ad hoc networks seem to be a natural 
extension of networks with fixed infrastructures. 
However, securing groups’ communications in these 
networks is very challenging, since they suffer 
cruelly from a lack of resources and significant 
topology changes. Four principal research axes are 
presently considered for securing multicast 
communications: sender and recipient access 
control, authentication of the communicating 
entities, key management and fingerprinting (Paul 
Judge, Mostafa Ammar, 2003).  

The purpose of key management is to optimize 
the generation of keys, their distribution and their 
maintenance. Unfortunately, the present key 
management methods are not optimal.  
The aim of our work is to develop a scalable key 
management approach that introduces the notion of 
group activity threshold allowing the choice of key 
tree management and distribution model adaptable 

to groups’ communications. This method will also 
try to reduce the encryption time, the number of 
keys transmitted or stored, and the quantity of 
bandwidth used.  

Our paper arises as follows: first of all, we 
present a brief review of the literature on keys 
management; second, we propose our solution with 
the whole necessary architecture to its modeling. 
Then we detail encoding keys management through 
the various operations of group management.  

2 RELATED WORKS 

Many Key Agreement protocols have been 
presented in the literature. One of them is the cliques 
suite, a variety of protocols that extend the Diffie-
Hellman two party protocol to groups (Michael 
Steiner, Gene Tsudik, Michael Waidner, 1998). In IKA.1 
(Initial Key Agreement protocol 1), the last member 
who joins the group plays the role of group 
controller. The key agreement is a linear process and 
every member Mi, i∈[1,n-1], contributes its own 
share in a round i upflow message. The last round n 
is a broadcast of data collected from the previous n-1 
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rounds. In this protocol the number of rounds 
increases linearly with joining events, the last 
member joining the group (the controller) may be a 
single point of failure. The order in which packets 
are transmitted must be properly defined. 
Nevertheless, these protocols have the advantage of 
consuming less bandwidth and managing partition 
events efficiently. 

 
 
 
 

 
 
 
 
Figure 1: IKA.1 round i; Mi member sending a set of 
collected values in an upflow message to Mi+1, i ∈ [1,n-
1]. 

Another group DH extension protocol is 
Octopus. It’s extending the 2nd-hypercube protocol 
(K.Becker, U. Wille, 1998) to unlimited number of 
members. In Octopus, n members are divided in five 
subgroups. Four members A,B,C and D become 
controllers of four subgroups GA,GB,GC,GD and the 
n-4 remaining members are distributed among this 
subgroups in a rectangular way. Every controller 
collects each subgroup member contribution ki in a 
2-party Diffie-Hellman key exchange, computes a 
subgroup key and exchanges this key in a 4-party 
Diffie-Hellman with its neighbouring controllers. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 2: Octopus four party key agreement protocol 
steps. 

     The third contribution is the Tree-Group Diffie-
Hellman (TGDH) proposed by Yondae Kim, Adriane 
Perrig and Gene Tsudik. TGDH is a contributive tree 

key management protocol which comes to optimize 
the performances of the IKA1/2 (Michael Steiner, 
Gene Tsudik, Michael Waidner, 1998). It is similar to 
OFT (One Way Function Trees) (D. Balenson, D. 
McGrew and A. Sherman, 2000) but each member can 
act as sponsor depending on his position in the key 
tree. The sponsor is responsible for the computation 
and the broadcasting of intermediate node keys to 
other members of the group. It is the rightmost 
member of the subtree or the rightmost member of 
the deepest subtree associated with the incoming or 
the leaving node. In the partitioning event, they may 
be several sponsors in the process of building a new 
group key. 

When a membership event occurs, the sponsor 
changes his own share, computes keys on his keys 
path and blinded keys on his co-path from the leaves 
to the root and broadcast blinded key tree. All 
members update the key tree and compute the group 
key. 

TGDH is not suitable for mobile ad hoc 
networks since the mobility of nodes might make it 
impossible for a simple node to broadcast a message 
to all members. Therefore, to operate properly, the 
network must be restricted so that nodes stay 
relatively close to each other throughout the entire 
multicast session so for instance, the bandwidth 
problem is resolved (Maria Striki, John S. Baras, 2003). 
The mobility of node can cause frequent link 
breakage, involving multiple partitioning events that 
may lead to a deeply unbalanced tree. Modular 
exponentiation is the most expensive operation in 
this protocol and depends on the key structure. In a 
deep unbalanced key tree, if a deepest node leaves, it 
might require O(n) exponentiations to compute the 
group key. Also, the broadcasting of the whole tree 
in membership events seems to be unnecessary and 
the protocol uses a lot of bandwidth notably in 
partitioning events. So, maintaining a well balanced 
tree almost in high dynamic environments such as ad 
hoc networks might maintain the computation cost 
to O(log(n)). The authors of TGDH did not describe 
the initialization phase. 
 

 
 
 
 
 
 
 
 

Figure 3: TGDH: Sponsor broadcasting new blinded key 
tree in leaving event. 

Let g be a generator of a cyclic finite group G 
of order q, A, B, C and D the four subgroups 
controllers, ka, kb, kc, kd their respective 
subgroups keys. The protocol operates as 
shown below: 

 Step 1: A and B, C and D exchanges their keys 
and compute the first round keys k1= gk

a * kb and 
k2= gk

c
* kd

   

Step 2: A and C, B and D exchanges the keys 
obtained in step1 and compute the group key        
k = g(k

1 * k2
) 

Let g be a generator of a cyclic finite group G 
of order q and Si a random contribution of 
member Mi, IKA.1 round i appears as follow: 
 
Mi          Mi+1 

{gS1*S2***Si/S
k / k∈[1,i] }, gS

1
* S

2
***S

i 

Let Ms be the sponsor, G* = {M1..Mn}-{ML} 
the group of remaining members in a leaving 
event and T(BK*) the new blinded tree, the 
protocol operate as follow: 
 

    Ms     T(BK*)           G* 
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3 GAKAP METHOD 

Our method GAKAP, witch stand for Group 
Activity based Key Agreement Protocol, is based 
on TGDH. However, it promotes the use of a fully 
balanced tree, eliminates the broadcasting of the 
entire tree as it appears in TGDH, and uses the 
elliptic curve cryptography algorithm ECDH for key 
exchange instead of the traditional Diffie-Hellman 
(DH) as in TGDH. The term fully means that the key 
tree is always entirely balanced in a high dynamic 
environment. It introduces the concepts of group 
activity and activity threshold. Group activity is a 
probabilistic value that gives the state of group 
dynamism in: 
 

- predominant additive state with high nodes 
mobility or note 

- predominant leaving state with high nodes 
mobility or note 

- equilibrium state which gives the value of 
the activity threshold suitable for the key 
management in a high dynamic ad hoc 
network.  

Keys are identified by their name, according to 
their positions in the key tree. The tree key 
management depends on the group activity threshold 
and keys are shifted instead of being deleted (M. 
Steiner, G. Tsudik, M. Waidner, 1996) when a 
membership event occurs. The concept of Group 
Activity includes group’s dynamics and node 
mobility in both the group and the entire network. 
We will explain thereafter the encoding keys 
management through the various operations of group 
management. 

4 GROUP MEMBERSHIP 
EVENTS  

In high dynamic groups and ad hoc networks, 
joining events as well as leaving, merging and 
partitioning can arrive very frequently. Therefore, 
the keys management may become very laborious in 
term of computation and bandwidth consumption. 
The protocol that follows tends to minimize these 
effects. 

4.1 Initialisation 

In this phase, the initial key tree is built and the 
initial group key is computed. The protocol operates 
as follow:  

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 4: GAKAP: Initialization protocol phase. 

At the end of the initialization phase, all 
members have completed the same key tree and 
computed the same group key. With the key naming 
introduced in this phase, members can determine the 
order of parenthood that exists among them. This 
parenthood will permit later to “elect” the sponsor. 
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Figure 5: Initialization key tree phase. 

4.2 Joining Event 

The new member broadcasts a join request 
containing its blinded key (bkey) BK. Each current 
member determines the insertion point which is the 
first empty leaf node when traversing the key tree 
from left to rigth. The sibling node of the new 
member if it exists, becomes the sponsor, otherwise 

Step 1: the initiator (or initial controller) 
publishes the opening of a multicast session, 
upon receiving the joining response in a 
predefined period of time, it builds up the list of 
participants, builds the tree containing the 
blinded keys and their names (or ID) and 
broadcasts them to the members. 

Step 2: round i: almost n/2i (with n the number 
of initial members and i ∈ [1,h] where h=log2n) of 
the group members become the sponsors, 
compute the keys and blinded keys on their path 
and co-paths from the leaves up to the root and 
broadcast the blinded keys to the group. 

Step 3: round h+1: Each member can compute 
the group key and the initial group activity 
probability.
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one of its cousin node (Figure 7) becomes the 
sponsor. 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 6: GAKAP joining event protocol. 

Figure 7: Key tree in joining event. 

The sponsor updates its key tree by computing all  
the keys and blinded keys on his path to the root and 
broadcasts the blinded modified keys to the other 
members and sends the tree of blinded keys in 
unicast mode to the new member. Every member 
determines the insertion point, computes both the 

new key and the activity threshold. If, after the 
addition of a new member, all the node of the tree 
are completed, a new tree must be build as follow: 
- A new group key node is constructed on the top of 

the tree; 
- The previous key tree becomes the left sub-tree of 

the new tree; 
- The right sub-tree is built as full as possible 

depending on the activity threshold.  
Upon receiving the blinded key tree from the 
sponsor, the new member computes the missing 
keys of all the parents on his way to the root. 

4.3 Leaving Event 

The member broadcasts a leaving request containing 
its ID. The sponsor generates a new contribution, 
updates his key tree by erasing all the keys and 
blinded keys on its path to the root and broadcast the 
blinded modified keys to all the other members. 
Every member updates the key tree by determining 
and “deleting” the keys to be changed, and replacing 
them by those contained in the list received from the 
sponsor. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 8: GAKAP leaving event protocol. 

 

Step1: The joining member Mn+1 broadcast the 
join request containg its bkey BKn+1 to the 
group. 
 
     Mn+1   BKn+1     {M1…Mn}               
 
 
Step2:  
• Each member: 

- Updates its key tree by erasing all bkeys 
to be changed on the sponsor path; 

- Determines the insertion point. 
• The sponsor Ms changes its share and 

broadcasts a set of all modified bkeys BK* 
and sends the bkey tree T{BK*} to the 
new member. 

 
      {M1…Mn}       {BK*

s}          Ms  
 
 
        Mn+1   T{BK*

s} Ms     
 
 
Step3: Every member can compute the group 
key using the necessary keys.  

Step1: The outgoing member ML broadcasts 
its leaving request containing its ID to the 
group. 
 

ML   IDL  G= {M1..M} 
 
Step2: Every member 

Updates its key tree by erasing the leaving 
member’s key and all the blinded keys on 
the sponsor path. 
 The sponsor additionally erases all keys 
on  

 It changes his share, computes new keys 
and blinded keys on his path and 
broadcasts the bkeys.  

 
               G*= {M1..Mn}-{ML} {BK*si} Ms 
 
Step3: Every member can compute the group 
key using the appropriate bkeys. 
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Figure 9: Key identification and key management in 
departing events. 

4.4 Multiple Join 

As in the simple join event, the joining members 
send their joining request at the same time. Since all 
joining requests are not received in the same order 
by all members, it is necessary to classify them in 
order to guarantee the same key structure. A 
temporary controller is then elected to this purpose. 
The temporary controller or group temporary 
sponsor is the rightmost member concerned by the 
additive event: this means the member in the 
righmost subtree concerned by the additive event. 
The temporary controller determines the various 
insertion points, inserts each new participant in an 
empty node. 

It chooses a new contribution, computes its new 
share and all keys and blinded keys (bkeys) on his 
path to the root, and broadcasts both the tree 
containing the bkeys and the activity threshold of the 
moment to all participants. Every current member 
updates its key tree by erasing all keys and bkeys to 
be changed. New members received the key tree 
structure. Each sponsor broadcasts modified blinded 
keys to all other members. Every member replaces 
all modified bkeys by those received from the 
sponsors. Each participant can then compute the 
group key. The new key tree may be constructed as 
indicated in the simple additive event if at some 
moments in the process the tree is full. If two new 
members are leaves of a previous intermediate 
empty parent node, one of them, the leftmost 
becomes the sponsor. 
In this method, we distinguish the multiple additive 
events from the merging event since the later 
suppose the addition of two different previous 
subgroups in the aim of forming a new group. 

 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Multiple join protocol in GAKAP. 

4.5 Multiple Leave 

As in the leaving event, many members leave the 
group at the same time by sending individual leaving 
events. Each sponsor identifies all the participants 
leaving. It changes its contribution and computes 
secretes and blinded keys of all the parents’ nodes 
on his way to the root. It broadcasts his parents’ 
blinded keys. It replaces all others modified blinded 
keys. It computes the group key. Each member 
identifies the leaving participants. It erases the 
leaving nodes keys and the parents’ nodes if it is 
necessary. It updates the tree by replacing all the 
blinded keys that have been modified by the 
sponsors. It computes the group key. 

Let p be the number of the new members. 
Step1: Every new joining member Mj broadcasts 
its joining request containing its BKj to the group
 
          Mj    BKj  G={M1..Mn} 
 
 
Step2: Each member: 

- Updates its key tree by erasing all bkeys 
to be changed on the sponsor path. 

 
Step3: 
Round 1 to h:  

- A temporary group controller Mtc
computes its new share, builds a new 
bkey tree with all members’ bkeys and 
broadcasts the tree to the group. 

 
Mtc            {M1..Mn}U{Mk} 

 
For k∈[n+1,n+p] : 

- Every sponsor Msi computes keys and 
bkeys on his path and broadcasts a set of 
all modified bkeys BK*

SI  .to the group. 
 

G*= {M1..Mn}-{MLi} {BK*si }  Msi 
 
  
Step4: Every member can compute the group key 
using the appropriate bkeys. 
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Figure 11: Multiple leave protocol in GAKAP. 

4.6 Merge Event 

Each sponsor chooses a new contribution and 
computes all secrete and blinded keys on his way up 
to the root. It broadcasts his subtree containing the 
blinded keys. Upon receiving other subtree, he 
builds a new tree in which the deepest one becomes 
the left subtree. Depending on the activity threshold, 
it builds a fully balance tree by completing the right 
sub tree and computes the group key. 

Each member determines the insertion point and 
depending of the activity threshold, it builds the new 
key tree. It finally computes the group key. 
 

4.7 Sponsor Election 

The election of the sponsor in a membership event is 
based on its parenthood closeness to the incoming or 
the leaving member. If the incoming or leaving node 
has a sibling, it becomes the sponsor; otherwise one 
of the nodes with which its share a common parent 
key in the smallest highest sub-tree becomes the 
sponsor. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: Order in which sponsor is chosen. 

5 RESULTS 

In this section, we introduce the simulation results. 
Simulations were done using C++ code and compare 
GAKAP to TGDH. 

To study the behaviour of GAKAP and TGDH, 
we have implemented a C/C++ code (in visual 
studio and Kdevelop environments) of the tree 
structure behaviour when group events occur. Group 
events where generated randomly. Link breakage 
and connexion due to nodes mobility were generated 
randomly. We first use group that the number of 
participants vary from 25 to 250 and the number of 
group events from 10 to 100. After, we maintain a 
group of 250 participants. We calculated the number 
of messages transmitted by the sponsors, the number 
of rounds done when computing group key. The 
results we obtained could be interpreted as follow: 
 

1. for both methods, the number of 
packets increases with the number of 
rounds; 

 
2. the number of rounds grow with the 

number of events; 

 
Let p be the number of leaving members. 
Step1: Every outgoing member MLi broadcasts 
its leaving request containing its ID to the group 
 

MLi   IDLi       G={M1..Mn} 
 

Step2: Every member: 
- Updates its key tree by erasing the 

leaving member’s key and all the 
blinded keys on the sponsor path. 

- The sponsor additionally erases all keys 
on his path up to the root..   

Step3: 
Round 1 to h:  

- A temporary group controller Mtc 
computes its new share, builds a new 
bkey tree with all members’ bkeys and 
broadcasts the tree to the group. 

 
   Mtc                   {M1..Mn}U{Mk} 

 
For k∈[n,n-q] : 

- Every sponsor Msi computes keys and 
bkeys on his path and broadcasts the 
bkeys. 

 
G*= {M1..Mn}-{MLi}       {BK*si}           Msi 
  
  
Step4: Every member can compute the group 
key using the appropriate bkeys. 
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3. to maintain the equilibrium of the 
TGDH key tree in high dynamic 
MANET, they must be 1.8 to 1.9 
joining member for 1 leaving member 
(Figure 19). This is the value of the 
activity threshold for which, in 
maintaining a constant flow of additive 
and leaving events, we can maintain a 
fully balanced tree, thus the group key 
computation order   of O(logN).  

5.1 Packets Exchanged 

The packets sends by sponsors are of two types: 
Unicast and Multicast. Unicast packets are only sent 
in simple join events. The number of packets where 
count in simulation. 

We can see that the number of total packets 
sends by sponsors in group events is higher in 
GAKAP than in TGDH, this is because sponsors 
delivered two packets: one multicast to the group 
and a unicast packet to the joining member (Figure 
13).  However, the size of packets sends in GAKAP 
protocol are fewer compare to that of TGDH, and 
the size of TGDH packets increases significantly 
with number of events (Figure 14). 
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Figure 13: Number of total packets sends for joining and 
leaving events. 
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Figure 14: Size of packets sends for all group events. 

5.2 Number of Rounds and 
Computation Cost 

In this section, we find the number of rounds 
necessary to compute group key in join and leave 
events. Figure 15 shows us the number of rounds for 
simple joins and multiple joins events. Figure 17 
gives us the number of rounds for simple leave and 
multiple leave events. Since the number of simple 
and multiple joins are taken as joins events and 
simple and multiple leave as leave events, figure 16 
and 18 give more precise value of the percentage of 
the number of rounds for joining and leaving events. 
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Figure 15: Number of rounds for joining events. 
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Figure 16: Ratio for Number of rounds in joining events. 
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Figure 17: Number of rounds for leaving events. 
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Figure 18: Ratio for number of rounds in leaving events. 

We can conclude from figure 16 and 18 that the 
number of rounds in group key computation for 
joining events is less in our method, while it is a 

little bit greater in GAKAP in group key 
computation for leaving events.  
The computation cost of the group key increases 
with the number of rounds and the size of tree node 
keys used for group key computation. Since the size 
of keys (123 bits) used in our method is less than 
1024 bits used in TGDH, the computation cost of the 
group key is less in our method.  
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Figure 19: Activity threshold value. 

6 CONCLUSION 

We presented some researches trends for key 
agreement techniques. The aim of this proposal was 
to bring another point of view in key distribution for 
group communication in MANET. Most of the 
solutions proposed by now are limited to a MANET 
with restricted node mobility. Our method bring an 
additional element since it is apply to fast moving 
nodes and high dynamic multicast groups.  

In an environment in which fast mobility and 
nodes dynamics are very concerned like mobile ad 
hoc networks, GAKAP provide efficient key 
agreement and tree management. It tends to reduce 
better the number of transmissions, the computation 
cost of both group keys and members keys.  The 
activity threshold is the better mobility and group 
dynamics index for key tree management in fast 
changing topology multi-hop wireless ad hoc 
networks.  

More simulations are currently under testing on 
NS simulator and the aim of these simulations is to 
confirm the results describe above, obtained using 
the C/C++ code.  

MULTICAST KEY AGREEMENT PROTOCOL FOR MOBILE AD HOC NETWORKS

93



REFERENCES 

Paul Judge, Mostafa Ammar. "Security Issues and 
Solutions in Multicast Content Distribution: A 
survey". IEEE Network, January/February 2003. 

Maria Striki, John S.Baras. "Key Distribution Protocols 
for Multicast Group Communication in MANETs", 
Technical Report, CSHCN, October 2003.  

M.Steiner, G. Tsudik, M.Waidner. "Diffie-Hellman Key 
Distribution Extended to Group Communication". In 
Proceedings of the 3rd ACM conference on Computer 
and communications security, January 1996. 

D. Wallner, E. Harder and R. Agee, "Key Management for 
Multicast: Issues and Architectures", Internet 
Engineering Task Force, no. 2627, June 1999. 

K.Becker, U. Wille. "Communication complexity of group 
key distribution". In Proceedings of the 5th ACM 
conference on Computer and communications 
security, Novembre1998. 

D. Balenson, D. McGrew and A. Sherman, "Key 
Management for Large Dynamic Groups: One-way 
Function Trees and Amortized Initialization" <draft-
balenson-groupkeymgmt-oft-00.txt>, IETF, Sep.2000. 

Michael Steiner, Gene Tsudik, Michael Waidner. 
CLIQUES: “a new approach to group key agreement”. 
In proceeding of the 18th international conference on 
distributed computing systems (ICDS’98), pp.380-
387, Mai 1998 

Yondae Kim, Adriane Perrig, Gene Tsudik.“Simple and 
fault-tolerant key agreement for dynamic collaborative 
groups”. In ACM conference on Computer and 
Communication security,pp.235-244, 2000. 

Danilo Bruschi, Emilia Rosti. ``Secure Multicast in 
Wireless Networks of Mobile Hosts: protocols and 
issues``, Kluwer Academic Plublishers, 2002/pp.503-
511,mobile ad hoc network and application, 
vol.7,no6,dec.2002. 

A.Selcuk, C. McCubbin and D. Sidhu, "Probabilistic 
Optimization of LKH-based Multicast Key 
Distribution Schemes," Internet Engineering Task 
Force, Jan. 2000. 

WINSYS 2006 - INTERNATIONAL CONFERENCE ON WIRELESS INFORMATION NETWORKS AND SYSTEMS

94


