QOS MONITORING AND FAULT DETECTION USING CALL DETAIL RECORDS

A Different Approach that has Come to Add Value

Gean Davis Breda, Leonardo de Souza Mendes

Universidade Estadual de Campinas – Unicamp, Telecommunications Department, Faculty of Electrical Engineering
Campinas, Brazil

Keywords: QoS Monitoring, Performance Evaluation, Call Detail Records, Management Systems, Failure Detection.

Abstract: The purpose of this paper is to demonstrate an algorithm to monitor the QoS and, while monitoring, detect the occurrence of failures in wireless and wireline communication systems. It’s a new approach based on the analysis of data stored in Call Detail Records (CDR). Each time a call is made in a voice system, VoIP or PSTN, a detailed record is generated. Detail Records are tickets whose data provide information related to the system elements involved, such as time and duration of the call, phone types and numbers, SS7 signaling, etc. The tickets are generated and stored either in PSTN switches or in VoIP gateways. For VoIP systems the detail records are usually called IPDR (Internet Protocol Detail Record). As we have already mentioned, the algorithm works on the information stored in Detail Records. So, our main goal here is to show, analyze and classify this algorithm according to its performance and use.

1 INTRODUCTION

In the analysis and production of information performed by Telecom companies we often see a rather technical and immediate approach, frequently disregarding important information collected and stored in the Telecommunications Management Databases. An important example of such occurrence can be found when we analyze the use of Call Detail Record. Currently, their only function in Telecom Companies is dispose information to the billing system. CDRs are tickets whose data provide many information related to the call, such as time and duration, phone types and numbers, SS7 signaling, etc. The tickets are generated either in the PSTN switches or in VoIP gateways, in the case of Internet Protocol Detail Record, IPDRs.

The objective of this paper is to analyze an algorithm that can be used for monitoring the QoS and, in this process, detect failures in wireless systems (voice communication systems). It is based on a new approach to where the information contained in CDR is subjected to several treatments and analysis. For CDR we mean the Call Detail Records (Ginzboorg, 2000), for conventional networks, or the Internet Protocol Detail Record (IPDR Organization, 2004) (Borthick, 2001), for VoIP networks.

There are basically no conceptual differences between CDR and IPDR, therefore, the algorithm can be equally applied to both cases. Detail records have a complete range of information that contains the entire history of a call. It is unlikely that the information contained in the detail records can be found anywhere else on the telephone network. Some examples of information that a detail record contains are: switch’s name and point code, in/out voice trunks, in/out voice time slots, origin and terminal BTS (base transceiver station) number, origin and terminal RF channels (Radio Frequency), switch peripheral components (through where the call passes inside the switch), calling and called phone numbers, serial phone number, dialed number, transferred number, phone features, starting and ending conversation time, call duration, signaling duration time, SS7 signaling information, internal call transit, type of response for the call, what happened to the call, etc. The majority of the elements contained in detail records can be monitored in order to detect failures.

Another characteristic of the detail records is reliability. This allows us to work with the detailed information contained in the CDR to perform critical tasks with large confidence in the results. In a
broad view, we can consider the possibility of using CDR to perform from simple tasks like traffic monitoring (Chen, Hsu, Dayal, 2000) (Sestak, Kaye, 1990) to complex ones, like the analysis of social and economic aspects of the system (Yan, et al., 2005). Such analysis can be performed once each call received or originated from the system has a correspondent detail record, making it possible to analyze the behavior of each user/element in the network. Therefore, the use of detail records, along with the algorithms presented here, can help decrease economic losses as well as lower complaints associated to a deficient Quality of Service (Mozer, et al., 2000).

There is only a handful of publications available about CDRs and IPDRs. Since the CDR and IPDR carry very strategic information for the operators and suppliers, it is understandable the reason why Telecom companies choose to restrict the information associated to it. There are some works developed for the use of CDR in Fraud Detection (Dong, et al., 2004) (Rosset, et al., 1999). In these works, information is extracted from CDR and used to build up customer profiles. Other works that use CDR are related to data mining (Cortes, et al., 2004) (Trisolini, et al., 1999). As far as we know, there are no publications using detail records to monitor the QoS and, consequently, no ways to detect failures in communications systems.

The remainder of this paper is organized as follows: in section 2, we describe detail records classification; in section 3, the algorithm is introduced and its performance is analyzed; finally, in section 4, we present the conclusions of this work.

2 RECORDS CLASSIFICATION

The classification of a detail record, which we call event, is a representation of what happened in a specific telephone call. It’s much like attributing a badge or label to each possible call termination. For instance, if a call were successfully concluded, in which user “A” spoke to user “B” and the call was finalized by any of the users, we would have an OK call. This classification is necessary in order to identify the system behaviour in all of its range and paths where the call has been through.

In telephone switches of some Telecom companies, such as Nortel (Northern Telecom, 1998), Motorola (Motorola, 1998), and Ericson (Ericson, 2001), it is possible to classify a detail record in approximately 300 different ways of a call termination, which can be considered a highly detailed classification. This type of classification can be extremely useful when we are looking for the cause/origin of a problem in the system. Some examples of classification: Carrier Loss (CL), RF channel dropped (RFD), User B does not answer (UA), User B busy (UB), Technical failure (TF), Incorrect Dialing (ID), etc.

In Figure 1, we have a flowchart of a typical call showing some possible events that may happen in a call attempt.

3 ALGORITHM

We are going to use the algorithm for the monitoring of the different resources in a wireless communication system. By resource, we refer to all the elements in the system, both logical and physical. A physical resource, as the name says, is related to a physical component of the system, such as switch name, BTS number, RF channel, phone number, etc. A logical resource is a definition like the country and area codes in the call direction monitoring, switch software components, etc. The information about the resources are contained in the detail records. By monitoring these resources, we aim at following the behavior of all the events associated to that specific resource. A resource fails when one or more events associated to this resource fails. It means that when we are monitoring a resource in fact we are monitoring the QoS of each event related to that resource. In a general way the QoS term is related with the reliability of the resources, but it can have a different meaning depending the resource that is being monitored.

Following, we present the algorithm called Real Time Algorithm which can be used to detect failures using CDRs contained in database of telecommunication management systems of Telecom companies.

![Figure 1: Call’s Flowchart.](image-url)
3.1 Real Time Algorithm

The Real Time Algorithm is based on the Renewal Theory (Feller, 1968) (Cox, 1970) (Nunes, 2001) applied to Bernoulli trials. The term “Real Time” means that the algorithm can be run on tickets in the same time that they are generated and stored. Another possibility is to run the algorithm offline on tickets already generated and stored.

To explain the algorithm, we will start to model the events of the system as random variables. For example, let X be a random variable that represents a specific event in a Bernoulli experiment. The Sample Space of X can take two values

$$X = \begin{cases} 1 \\ 0 \end{cases},$$

(1)

where the value $X = 1$ stands for the occurrence of a specific event and 0 the occurrence of any other event. Let’s also assume the probability of $X = 1$ being equal to p.

Now, we introduce a new random variable Y, which is the number of events occurring until a sequence of r ones is formed for the first time, as we can see from Figure 2. According to the Renewal Theory, $N = E(Y)$, the mean or the expected value of Y, can be given as

$$E(Y) = N = \frac{1-p^r}{p^r(1-p)}.$$

(2)

Isolating variable r in (2), we obtain

$$r = \frac{-\ln[N(1-p)+1]}{\ln p}.$$

(3)

The value of r should always be rounded to the next integer number in order to assure that the probability of occurrence of a false positive alarm is restricted to a certain limits. Then, we should modify the last equation as

$$r = INT\left[\frac{-\ln[N(1-p)+1]}{\ln p}\right].$$

(4)

As a result, this last equation gives the correspondent fault to be considered as having happened. The quantity is directly related to the probability p and the value N. N is directly related to the guarantee that a false positive alarm will be generated in the stipulated limit. We can use many values for N in accordance with the necessities. In the example that follows N is equal to 100,000 meaning one false positive alarm in 100,000 alarms. This value is a good level of confidence to be used.

To analyze the relationship among the quantities, let’s suppose, for example, that an event has an average of occurrence of 1% ($p = 0.01$) and that N is 100,000. Then, by inserting these values in (4) we obtain that $r=3$. Therefore, if there are 3 or more consecutive events an alarm will be generated. If we want to have a greater guarantee, a bigger N, that a real fault in fact occurred, that is, a lower probability of a false positive alarm, we must observe the corresponding event sequentially occurring in a larger number of times.

![Figure 2: Random Variable.](image)

3.2 Experiment

The algorithm’s performance was tested using data from real voice communication systems, in this case, a Brazilian cellular communication company. This company has 5 million customers approximately and uses CDMA technology.

We applied the algorithm to analyze faults of various resources of the system, such as, Base Transceiver Station, RF channels, time slots, specific peripheral controllers, etc. The results shown in Figure 3 synthesize the behavior of a Base Transceiver Station (BTS) of a cellular system with high traffic density.

The algorithm behavior was tested over different quality levels or probability p, which assumed the values 1%, 2%, 7%, 17%, 27%, 37%, 47%, 57%, 67% and 77%. For each level we find, by using formula (4), the number r for detection of failure for that specific event. The quality level or probability p is used here as the Acceptance Quality Level (AQL).

The method adopted in the fault detection was to degrade the QoS of the BTS through random generation of problems in the RF channels. The troubleshooting was generated in a cumulative form, which means, a RF channel with a normal behavior starts to behave irregularly, presenting problems. In a second instant another channel starts to present the same failure and so on successively. As more channels present problems the QoS degrades. Each time the QoS degrades the algorithm is applied in order to detect any anomalies.
The detection of this type of failure is complex, considering that the generation of these problems is purely random. It will be easier and faster to detect it if there is some order in the degradation of resources. An order presumes smaller entropy or a greater amount of information than just purely random occurrences.

3.3 Results

Each curve in Figure 3 represents the algorithm’s behavior for one specific quality level or probability \(p \). Each curve was created through the degradation of QoS on the BTS, represented on the horizontal axes. Around 5,000 experiments were done for each probability \(p \), each curve, and evaluated in each experiment the value of degradation (%) of the QoS in which the failure was detected. The results are curves similar to Normal Distribution.

Each curve basically shows that if a resource starts to degrade its QoS, this degradation will be monitored by the algorithm according to the behavior of the specific curve shown in Figure 3. In order to know the probability of failure detection on a resource when the quality level is, for instance, 3% and the degradation is, for instance, 10%, it is necessary to integrate, on the relative curve, from the initial point until to the point 10%. This represents the Cumulative Distribution Function and expresses the chance of detection.

As the degradation in the QoS increases the probability of detection of the failure also increases. When the degradation in the resource is caused by a small failure that causes small changes in the QoS, the algorithm can or not detect the failure.

Another important variable that should be measured is the amount of time needed to detect the fault. We could observe that the algorithm’s behavior related to time detection varies according to the quality level as well as the QoS degradation level. We concluded that these algorithms are extremely efficient once there is a great degradation on the QoS of a resource. In these cases, the failure detection only takes a few seconds.

When degradation is not so critical, the algorithm may or may not detect the failure. Therefore, there is no way to guarantee the exact moment the degradation on the QoS will be detected. This can be verified by inspecting the four graphs in Figure 4, where we have a representation of the BTS behavior with quality level or \(p \) equals to 12% and with a degradation of 24.7%, 44.5%, 64.3% and 74.2%, respectively. Degradation of 24.7% means that 24.7% of all RF channels in the BTS are out of service. The horizontal axis represents the time in which the failure was detected and the vertical axis shows the amount of times in which the failure was detected in the total of 4,000 experiments.

![Figure 3: Response related to the BTS' degradation.](image-url)
4 CONCLUSIONS

Throughout this work we observed the development and behavior of Real Time Algorithm. This algorithm is more efficient in large proportion failures detection. A larger proportion failure is one that generates an excessive amount of system loss, paralyzing the system. The time of detection for this type of troubleshooting is in seconds. On the other hand, when the failure is not in large proportion the algorithm is not totally reliable.

As future work we intend to construct others algorithms, to detect small failures, that will work over the information contained on detail records. Currently we are developing algorithms based on Neural Networks. This new algorithm will work along with Real Time Algorithm.

ACKNOWLEDGEMENTS

Thanks to FAPESP for sponsoring the project.

REFERENCES

Knowledge discovery and data mining, pp: 409-413, August 1999.

