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Abstract: The concept of Regions of Interest (ROIs) within a video sequence is useful for many application scenarios.
This paper concentrates on the exploitation of ROI coding within the H.264/AVC specification by making use
of Flexible Macroblock Ordering. It shows how ROIs can be coded in an H.264/AVC compliant bitstream and
how the MPEG-21 BSDL framework can be used for the extraction of the ROIs.
The first type of ROI extraction that is described, is simply dropping the slices that are not part of one of
the ROIs. The second type is the replacement of these slices with so-called placeholder slices, the latter
being implemented as P slices containing only macroblocks that are marked as ‘skipped’. The exploitation of
ROI scalability, as achieved by the presented methodology, illustrates the possibilities that are offered by the
single-layered H.264/AVC specification for content adaptation.
The results show that the bit rate needed to transmit the adapted bitstreams can be reduced significantly.
Especially in the case of a static camera and a fixed background, this bit rate reduction has very little impact
on the visual quality. Another advantage of the adaptation process is the fact that the execution speed of the
receiving decoder fairly increases.

1 INTRODUCTION

The concept of Regions of Interest (ROIs) within a
video sequence is useful for many application sce-
narios. A ROI is an area within the video pane that
usually contains visual information that is more im-
portant or interesting than the other parts of the video
image. If one or more ROIs are defined in a video
sequence, they can be used to steer the bit allocation
algorithm in such way that the ROIs are coded with a
higher quality than the ‘background’. This function-
ality is part of the JPEG2000 standard for still images
(Taubman and Marcellin, 2002). The Fine Granular-
ity Scalability (FGS) profile of MPEG-4 Visual (Li,
2001) also has provisions to support the coding of a
ROI at a higher quality level.

Besides the fact that the idea of ROIs is adopted by
various (standardized) coding schemes to provide dif-
ferent levels of quality within one picture, there are
many applications that can benefit from the clever
use of ROI coding. In the domain of video surveil-
lance for instance, cameras are developed that capture
360 degrees of video footage resulting in high reso-
lution pictures. Within these large pictures, a ROI is

defined and only a coded representation of that area is
transmitted over the network in order to reduce the re-
quired bandwith. The relative location of the ROI and
its size can often be adjusted by an operator in real
time. This technique was developed to avoid the de-
lays that are introduced by traditional Pan Tilt Zoom
(PTZ) cameras.

The domain of video conferencing is another do-
main where the use of ROIs can have advantages. In
these scenarios, the ROI itself is easy to detect and
its position is rather fixed in time. Next to this, the
background is virtually always fixed and semantically
unimportant; this is in contrast with video surveil-
lance where the background can contain a lot of mo-
tion. For instance, such a video conferencing system
is deployed in the European Parliament where every
speaker is recorded in close-up.

With the emergence of standardization efforts by
the Joint Video Team (JVT) regarding Scalable Video
Coding (SVC) (Reichel et al., 2005), it has become
clear that there is a broad interest in ROI coding
and ROI-based scalability (Ichimura et al., 2005; Yin
et al., 2005; Thang et al., 2005). Applications that are
often mentioned in this context include video surveil-
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lance (real-time monitoring) and multi-point video
conference. More details about ROI coding and scal-
ability can be found in the requirements document of
SVC (ISO/IEC JTC1/SC29/WG11, 2005).

This paper concentrates on the exploitation of ROI
coding within the H.264/AVC specification (Wie-
gand et al., 2003). Notwithstanding the fact that the
H.264/AVC standard does not explicitly define a sys-
tem for ROI coding, the authors have shown that the
use ofslice groups(often called Flexible Macroblock
Ordering or FMO) enables an encoder to perform ROI
coding (Lambert et al., 2006). Furthermore, it was il-
lustrated that this approach can form the basis for con-
tent adaptation (Dhondt et al., 2005). The exploita-
tion of ROI scalability, as well as the exploitation
of multi-layered temporal scalability (De Neve et al.,
2005), illustrates the possibilities that are offered by
the single-layered H.264/AVC specification for con-
tent adaptation. The way the MPEG-21 BSDL frame-
work can be used for this content adaptation process,
is elaborated in later sections.

In this paper, the authors show how H.264/AVC
FMO is to be used to encode one or more ROIs; how
the MPEG-21 BSDL framework can be applied to
extract the coded ROIs from a given bitstream; how
placeholder slices can be used for the replacement of
the background slices (not belonging to a ROI); and
what the benefits are of this approach by means of
some experimental results.

The rest of the paper is organized as follows. The
two main enabling technologies, FMO and MPEG-
21 BSDL, are described in Section 2 and 3. Section
4 describes the actual ROI extraction process. The
concept of placeholder slices is introduced in Section
5. The experimental results are presented in Section 6
while Section 7 draws the conclusion of this paper.

2 ROI-CODING WITH FMO

Flexible Macroblock Ordering is one of the new error
resilience tools that is defined within the H.264/AVC
standard. Conceptually, it creates an additional level
in the hierarchy from picture to macroblock. When
applying FMO, a picture is made up of maximally 8
slice groups, and every slice group contains one or
more slices. Finally, a slice is a collection of mac-
roblocks. The most important aspect of FMO is the
fact that every macroblock can be assigned individu-
ally to one of the slice groups of a picture, in contrast
with the default raster scan order. This results in a so-
calledMacroBlock Allocation map(MBAmap) which
is coded in a Picture Parameter Set (PPS). When this
map is constructed, an encoder will code the mac-
roblocks of a slice group in raster scan order (within
that particular slice group), and they can be further

grouped into slices.
Besides the coding of the entire MBAmap, the

H.264/AVC standard has specified 6 predefined types
of FMO. For these types, the MBAmap has a specific
pattern that can be coded much more efficiently. In
this paper, we focus on FMO type 2 (this only re-
quires two numbers to be coded for each slice group
– see later). This means that the slice groups of a pic-
ture are rectangular regions within the video pane, as
shown in Figure 1. We will consider these regions
as Regions of Interest. A more in-depth overview of
FMO is given in (Lambert et al., 2006).

Figure 1: H.264/AVC FMO type 2.

While many applications would implement auto-
matic ways to define ROIs (e.g., by using image pro-
cessing techniques), the ROIs in the context of this
paper were defined manually. To be more precise,
an in-house defined syntax for a configuration file
was developed that is parsed by the encoder; the lat-
ter being a modification of the H.264/AVC reference
encoder (JM 9.5). This configuration file contains
the macroblock numbers of the top left and the bot-
tom right macroblock of the ROIs. These macroblock
numbers are obtained by using a self-developed ap-
plication that allows one to graphically select one or
more rectangular regions within a video sequence on
a picture-by-picture basis.

Since the slice group configuration is coded in
a Picture Parameter Set, a PPS is inserted into the
bitstream before every picture in which the ROI
configuration changes (e.g., a ROI is moving across
the video pane, a ROI is appearing or disappearing).
Every slice has a reference to the PPS that is appli-
cable for the picture the slice belongs to. Note that
this may cause some overhead, especially if the ROI
configuration changes every picture. In this paper, the
size of a PPS mainly depends on the number of slice
groups and on the magnitude of the macroblock num-
bers that are coded within. The biggest PPS in our test
set was 21 bytes long (without the 4-byte start code).
At 30 Hz, this results in a worst case overhead of 5040
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bits per second, which is still reasonable.
There are four syntax elements of a PPS that

are important in the context of this paper. The
syntax elementnum slice groups minus1 in-
dicates the number of slice groups. In this pa-
per, the number of ROIs is equal to the number of
slice groups minus one (the ‘background’ also is a
slice group). Because we only discuss FMO type 2,
the syntax elementslice group map type is al-
ways equal to 2. Finally, for every slice group, the
macroblock numbers of the top left and the bottom
right macroblock of that slice group are coded by
means of the syntax elementstop left iGroup
andbottom right iGroup.

3 MPEG-21 BSDL

In order to be able to deliver (scalable) video in a het-
erogeneous environment, it is important to be aware
of the need of complementary logic that makes it pos-
sible to adapt the bitstream or to exploit the scalabil-
ity properties of the bitstream. This bitstream adapta-
tion process typically involves the removal of certain
data blocks and the modification of the value of cer-
tain syntax elements.

One way to realize this, is to rely on automatically
generated XML-based descriptions that contain in-
formation about the high-level structure of (scalable)
bitstreams. These descriptions can subsequently be
the subject of transformations, reflecting the desired
adaptations of the bitstream. Lastly, they can then be
used for the automatic generation of an adapted ver-
sion of the bitstream in question.

The Bitstream Syntax Description Language
(BSDL), part of the Digital Item Adaptation stan-
dard (DIA) of MPEG-21 (Vetro and Timmerer, 2003),
is a language that provides solutions for discovering
the structure of a multimedia resource resulting in an
XML description (called a Bitstream Syntax Descrip-
tion, or BSD) and for the generation of an adapted
multimedia resource using a transformed description.
In Figure 2, the entire chain of actions within the
BSDL framework is given.

As illustrated by the figure, one starts from a given
bitstream that is encoded with a certain codec. Depen-
dent on the codec, a Bitstream Syntax (BS) Schema is
developed that represents the high-level structure of
bitstreams generated by the codec in question. Note
that the granularity can be chosen freely, often depen-
dent on the application. The language of a BS Schema
is standardized in the MPEG-21 DIA specification,
as is the functioning of the BintoBSD tool. Once a
bitstream description is available in XML, it can be
transformed based on, for instance, the characteristics
of the network or the consuming terminal.

BintoBSDBitstream XML

BSDtoBinBitstream '

Transformation

XML’

Encoder

Decoder

BS

Schema

BintoBSDBitstream XML

BSDtoBinBitstream '

Transformation

XML’

EncoderEncoder

DecoderDecoder

BS

Schema

Figure 2: The MPEG-21 BSDL framework.

The way the BSD transformation is to be realized
is, however, not defined by the BSDL specification.
For instance, one can use Extensible Stylesheet Lan-
guage Transformations (XSLT, (Kay, 2001)); Stream-
ing Transformations for XML (STX, (Cimprich,
2004)) or an implementation based on an XML API
(such as Simple API for XML, SAX, or Document
Object Model, DOM).

The final step in the framework for media re-
source adaptation is the regeneration of the adapted
bitstream. This is realized by the BSDtoBin tool, tak-
ing as input the adapted description, the BS Schema,
and the original bitstream. The latter is needed be-
cause the coded data is not part of the BSDs. The
functioning of this tool is also standardized within the
BSDL specification.

As such, the BSDL framework provides all nec-
essary ingredients for the construction of a generic
(i.e., format-agnostic) and modular content adapta-
tion engine: a BSD transformation engine and the
format-agnostic bitstream generation by means of the
BSDtoBin Parser. In practice, this is supplemented
with an Adaptation Decision Taking Engine (ADTE)
to steer and control the adaptation process. If such
a framework is to support a new coding format, then
only a new BS Schema is to be uploaded, accompa-
nied by some transformations. The actual software
(the BintoBSD Parser and the BSDtoBin Parser) does
not have to be modified.

4 ROI EXTRACTION

In this paper, the extraction of ROIs that are defined
within a coded video sequence goes together with
the deletion of the ‘background’ or the replacement
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thereof by other coded data. When a bitstream is dis-
posed of its non-ROI coded parts, the required band-
width to transmit the bitstream will be much lower.
Next to this, the use of placeholder slices (see Sec-
tion 5) results in a speed-up of the decoder, a de-
crease of the decoder complexity, and an easing of the
decoder’s memory management (e.g., cache behav-
ior). As will be shown in later sections, this extrac-
tion, replacement, and adjustment process can even
be used to transform a bitstream conforming to the
H.264/AVC Extended Profile to a bitstream that is
compliant with the H.264/AVC Baseline Profile.

In order to extract the ROIs from an FMO type
2 coded H.264/AVC bitstream, one has to decide
for every slice if that particular slice is part of one
of the rectangular slice groups. Every slice header
contains the syntax elementfirst mb in slice.
This number can be used to determine whether or not
this slice is part of one of the rectangular slice groups.
This can be done in the following manner.

Let S be a slice of a picture containing a
number of ROIsRi and let FMBS be the mac-
roblock number of the first macroblock of slice
S (first mb in slice). Further, letTLi and
BRi be the macroblock numbers of the top left
and bottom right macrobock of ROIRi. Finally,
let W be the width of a picture in terms of mac-
roblocks (pic width in mbs minus1, coded in a
Sequence Parameter Set). Then,S is part ofRi if

(TLi mod W ≤ FMBS mod W )

∧ (FMBS mod W ≤ BRi mod W )

∧ (TLi div W ≤ FMBS div W )

∧ (FMBS div W ≤ BRi div W )

Note that the div operator denotes the integer de-
vision with truncation and the mod operator denotes
the traditional modulo operation. In other words,S is
part ofRi if its first macroblock is located inside the
rectangular region defined byRi. After a BSD is gen-
erated by the BSDL framework, the above calculation
can be performed by means of an XPath expression
within an XSL Transformation. The result of such a
transformation is a BSD in which the descriptions of
non-ROI slices are removed. The BSDtoBin Parser
can then generate the adapted bitstream.

It should be noted that I slices are not removed from
the bitstream in the context of this paper. This is to
prevent major drift errors due to the fact that the in-
ter prediction of macroblocks in a given ROI can be
based on macroblocks outside the ROI in question.
In other words, the ROIs that are used here are no
isolated regions, as described in (Hannuksela et al.,
2004). Ifall background slices would be dropped (in-
cluding I slices), then prediction errors would contin-
uously build up at the inner boundaries of the ROI.

It is also important to note, however, that a bit-
stream obtained in this way is not compliant with the

H.264/AVC standard because the latter specifies that
all slice groups need to be present in an H.264/AVC
bitstream. This means that an H.264/AVC compli-
ant decoder will not guarantee the correct decoding
of such a bitstream. Notwithstanding the fact that
only minor modifications of an H.264/AVC decoder
are needed for the correct decoding of the adapted bit-
stream (thanks to the independent nature of slices in
H.264/AVC), this may be considered a disadvantage
or gracelessness of the procedure described above. It
should also be noted that the requirement that all slice
groups need to be coded is proposed to be relaxed in
the currently developed SVC specification (Reichel
et al., 2005).

5 PLACEHOLDER SLICES

In order to avert any deviation of the H.264/AVC
specification, as explained in the previous section,
the authors propose the use of placeholder slices. A
placeholder slice can be defined as a slice that is iden-
tical to the corresponding area of a certain reference
picture, or that is reconstructed by relying on a well-
defined interpolation process between different refer-
ence pictures (De Neve et al., 2006). This implies
that only a very limited amount of information has to
be stored or transmitted. In this paper, placeholder
slices are used to fill up the gaps that are created in a
bitstream due to the removal of certain background
slices. Taking into account the appropriate provi-
sions of the H.264/AVC specification, these place-
holder slices are in this paper implemented by means
of P slices in which all macroblocks are marked as
skipped (skipped P slices).

How the XML-driven content adaptation approach
can be exerted for the substitution of coded back-
ground P or B slices by skipped P slices, is em-
broidered here. We first focus on background P
slices (both reference and non-reference), as this is
the most straightforward case. In this situation, there
is no need to change any of the syntax elements of
the NAL unit header or the slice header: only the
actual slice data are to be substituted. The neces-
sary slice data for the definition of a skipped P slice
is the number of skipped macroblocks in that slice
(by means of the syntax elementmb skip run).
Additionally, the slice layer has to be filled with a
number of trailing bits (by means of the syntax el-
ementrbsp slice trailing bits) in order to
get byte-aligned in the bitstream. The XML descrip-
tions of both the original and the adapted P slice are
given in Figure 3. Note that some simplifications
were introduced in the code in order to meet the place
constraints and to improve the readability.

Regarding the syntax elementmb skip run, it
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------------------- original description ------------------
<coded_slice_of_a_non_IDR_picture>

<slice_layer_without_partitioning_rbsp>
<slice_header>
<first_mb_in_slice>0</first_mb_in_slice>
<slice_type>5</slice_type>
<pic_parameter_set_id>0</pic_parameter_set_id>
<frame_num xsi:type="b4">1</frame_num>
<!-- ... -->

</slice_header>
<slice_data>
<bit_stuffing>7</bit_stuffing>
<slice_payload>7875 1177</slice_payload>

</slice_data>
</slice_layer_without_partitioning_rbsp>

</coded_slice_of_a_non_IDR_picture>

------------------- adapted description -------------------
<coded_slice_of_a_skipped_non_IDR_picture>

<skipped_slice_layer_without_partitioning_rbsp>
<slice_header>
<first_mb_in_slice>0</first_mb_in_slice>
<slice_type>5</slice_type>
<pic_parameter_set_id>0</pic_parameter_set_id>
<frame_num xsi:type="b4">1</frame_num>
<!-- ... -->

</slice_header>
<skipped_slice_data>
<mb_skip_run>108</mb_skip_run>

</skipped_slice_data>
<rbsp_trailing_bits>
<rbsp_stop_one_bit>1</rbsp_stop_one_bit>
<rbsp_alignment_zero_bit>0</rbsp_alignment_zero_bit>

</rbsp_trailing_bits>
</skipped_slice_layer_without_partitioning_rbsp>

</coded_slice_of_a_skipped_non_IDR_picture>

Figure 3: P slice replaced by a skipped P slice.

should be noted that the value of this element depends
on the size of the slice being replaced. Since the ROIs
are varying in time, the number of macroblocks in
the slices of the background is not the same for every
picture. Without loss of generality, consider the case
that there is only one slice in the background slice
group. The number of macroblocks in this slice is
equal to the total number of macroblocks in a picture
(denoted byPicSizeInMbs) minus the number of
macroblocks that are contained by the various ROIs
in that picture. Using the notation of Section 4, it is
rather straighforward to calculate this number using
TLi, BRi andW (taking into account the fact that
ROIs may overlap each other). If there are multiple
slices in the background slice group, then they can all
be substituted by a single skipped P slice containing
the same number of skipped macroblocks as in the
case of a single background slice.

If the background slice group also contains B
slices, then several changes have to be made to the
slice header if one wants to substitute that particular
slice with a skipped P slice. First, the slice type (indi-
cated by the syntax elementslice type) has to be
changed from1 or 6 (B slice) to0 (P slice). Changing
slice type to 5 (also indicating a P slice) would
not be correct since this would imply that all other
slices of the current picture are P slices, which is not
always the case since the ROI in the current picture
can contain B slices. Next to changing the slice type,

B slices contain some slice header syntax elements
that cannot appear in the slice header of a P slice.
These syntax elements are related to the specific na-
ture of B slices (associated with, for instance, refer-
ence picture list L1 or weighted prediction), and need
to be removed. To be more specific, the following
elements (and the syntax elements that are implied
by these syntax elements) are removed by the XSL
Transformation in the XML domain:

• direct spatial mv pred flag;

• num ref idx l1 active minus1;

• ref pic list reordering flag l1;

• luma weight l1 flag (if applicable);

• chroma weight l1 flag (if applicable).

The actual slice data is replaced by a serie of
skipped macroblocks in the same way as described
above. Note that in all cases, the value of the syntax
elementslice qp delta can be set to zero to save
some aditional bits during the adaptation process. An
example of a B slice and a corresponding skipped P
slice, as generated by the adaptation process, is given
in Figure 4.

One could argue that the use of the MPEG-21
BSDL framework for the substitution process is
somehow too complicated because the encoder could
simply be instructeddirectly to code the background
slices as skipped P slices. This would surely reduce
the overall complexity, but if the bitstream is deliv-
ered to multiple receivers, each one would receive an
adapted version, whereas the method using MPEG-21
BSDL could be applied only in those network nodes
where an adaptation is needed or wanted.

6 RESULTS

In this section, the experimental results of a series of
tests are presented. These results give some insight
into the implications of the approaches that are de-
scribed in the previous sections. An overview will
be given of the impact on the properties of the bit-
streams and on the decoder. Next to this, some perfor-
mance measurements will be presented regarding the
content adaptation process (the BSDL framework).
While most of the results demonstrate the benefits of
the proposed methods, certain results indicate some
drawbacks and the need for further research.

Four well-known video sequences were used in the
experiments: Hall Monitor, News, Stefan, and Crew.
The latter sequence has a resolution of1280 × 720
pixels whereas the former three have a CIF resolu-
tion (352× 288). Within these sequences, some ROIs
were identified: the moving persons in Hall Monitor
and the little bag that is left behind by one of these
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------------------- original description ------------------
<coded_slice_of_a_non_IDR_picture>

<slice_layer_without_partitioning_rbsp>
<slice_header>
<first_mb_in_slice>0</first_mb_in_slice>
<slice_type>6</slice_type>
<pic_parameter_set_id>1</pic_parameter_set_id>
<frame_num>2</frame_num>
<pic_order_cnt_lsb>2</pic_order_cnt_lsb>
<direct_spatial_mv_pred_flag>1</direct...>
<num_ref_idx_active_override_flag>1</num...>
<num_ref_idx_l0_active_minus1>1</num...>
<num_ref_idx_l1_active_minus1>0</num...>
<ref_pic_list_reordering_flag_l0>0</ref...>
<ref_pic_list_reordering_flag_l1>0</ref...>
<slice_qp_delta>2</slice_qp_delta>

</slice_header>
<slice_data>
<bit_stuffing>6</bit_stuffing>
<slice_payload>9543 851</slice_payload>

</slice_data>
</slice_layer_without_partitioning_rbsp>

</coded_slice_of_a_non_IDR_picture>

------------------- adapted description -------------------
<coded_slice_of_a_skipped_non_IDR_picture>

<skipped_slice_layer_without_partitioning_rbsp>
<slice_header>
<first_mb_in_slice>0</first_mb_in_slice>
<slice_type>0</slice_type>
<pic_parameter_set_id>1</pic_parameter_set_id>
<frame_num>2</frame_num>
<pic_order_cnt_lsb>2</pic_order_cnt_lsb>
<num_ref_idx_active_override_flag>1</num...>
<num_ref_idx_l0_active_minus1>1</num...>
<ref_pic_list_reordering_flag_l0>0</ref...>
<slice_qp_delta>0</slice_qp_delta>

</slice_header>
<skipped_slice_data>
<mb_skip_run>264</mb_skip_run>

</skipped_slice_data>
<rbsp_trailing_bits>
<rbsp_stop_one_bit>1</rbsp_stop_one_bit>
<rbsp_alignment_zero_bit>0</rbsp...>

</rbsp_trailing_bits>
</skipped_slice_layer_without_partitioning_rbsp>

</coded_slice_of_a_skipped_non_IDR_picture>

Figure 4: B slice replaced by a skipped P slice.

persons; the heads of the two speakers in News; the
tennis player in Stefan; the first two persons of the
crew and a separate ROI for the rest of the crew in the
sequence Crew. Note that these ROIs have changing
positions, as well as sizes in the course of time, and
that some ROIs are disappearing at certain points in
time.

The sequences were encoded with a modified ver-
sion of the reference software (based on JM 9.5), once
conform to the Baseline Profile and once conform to
the Extended Profile (the only difference being the
use of B slices). A constant Quantization Parame-
ter (QP) of 28 was used, every slice group contains
only one slice, and the GOP size was 16. Table 1
summarizes some other properties of the resulting bit-
streams, as well as the impact of the adaptation pro-
cess on the bit rate. In the table, brp stands for the
bit rate of the bitstream in which all background P
and/or B slices were replaced by skipped P slices and
brd stands for the bit rate of the bitstream in which
all background P and/or B slices were dropped (lead-
ing to bitstreams that are no longer compliant with the

H.264/AVC specification – see also Section 4). Also
note that the number of slice groups is one more than
the number of ROIs.

Table 1: Bitstream characteristics (bit rate in kbit/s).
sequence # ROIs # PPSs # slices br brp brd
IP crew 1–3 48 2020 3856 1379 1376

hall monitor 1–3 26 924 457 274 272

news 2 3 904 382 193 190

stefan 1 31 632 1657 758 756

IBBP crew 1–3 48 2020 3725 1403 1400

hall monitor 1–3 26 924 444 277 274

news 2 3 904 402 193 190

stefan 1 31 632 1829 819 817

It is clear from the numbers in Table 1 that the
bit rate is reduced significantly when performing the
adaptation (up to 64%). Of course, this usually has a
profound impact on the resulting visual quality (also
because the ROIs are not coded as isolated regions).
However, in the case of a static background (as for in-
stance in Hall Monitor), the visual quality is almost
not affected at all: the resulting average PSNR-Y is
36.7 dB whereas the unadapted version has an av-
erage PSNR-Y of 37.7 dB (or 38.0 dB for the Ex-
tended Profile). Subjectively, even an expert viewer
can scarcely notice that the bitstream has undergone
any content adaptation. This also indicates that the
encoder could have coded the bitstream much more
efficiently if a minor decrease in quality was allowed.
This opens up exciting new possibilities for video
conferencing applications. Indeed, when the video
feeds are to be sent over unreliable networks (as is
more and more the case), rather big decreases in avail-
able bandwidth can be sustained easily without jeop-
ardizing the visual quality, provided that the network
has some Quality of Service (QoS) implemented so
that if packets are to be dropped, only the background
is affected.

Another important consequence of replacing coded
background slices with skipped slices is the impact
thereof on the decoding speed of the receiving de-
coder. Since a considerable amount of macroblocks
within a picture are marked as skipped when place-
holder slices were inserted into the bitstream, it is ex-
pected that this is reflected on the behavior of the de-
coder because the latter can rely directly on its de-
coded picture buffer in order to decode the current
skipped macroblock without the need for additional
computations. To get some more insight, the decod-
ing speed of the reference decoder (JM 10.2) was
measured when decoding the various bitstreams sev-
eral times. The averages of these measurements are
summed up in Table 2.

As one can see from this table, the decoding speed
increases significantly when placeholder slices are in-
serted into the bitstreams compared to the decoding
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Table 2: Impact on decoding speed (frames per second).
sequence original placeholders dropping

IP crew 1.5 2.0 1.8

hall monitor 15.6 16.9 17.9

news 16.7 18.9 18.2

stefan 10.4 14.9 13.9

IBBP crew 1.1 1.3 -

hall monitor 13.8 17.0 17.2

news 14.3 17.5 17.2

stefan 9.5 14.4 13.3

speed for the original bitstream. The decoding speeds
of the decoder, when decoding bitstreams in which
the background was dropped, are merely given for
completeness. These speeds are comparable to the
case of the inserted placeholder slices, but it is im-
portant to note that the reference decoder applies a
spatial interpolation algorithm to conceal the appar-
ent transmission errors in the background slices by
default, rendering a comparison with these numbers
unjustified. It should also be noted that, to the best of
the authors’ knowledge, the reference decoder is the
only implementation of the H.264/AVC specification
that supports FMO. As a result, measurements for
other decoders (having real-time behavior) could not
be performed.

Another important observation is that, as men-
tioned earlier, when replacing coded B slices with
skipped P slices, one actually performs ‘profile scal-
ability’. Indeed, the bitstreams that are conform to
the Extended Profile can be adapted in such way that
the resulting bitstreams are conform to the Baseline
Profile if all coded B slices are replaced by skipped P
slices.

The final part of this results section deals with some
measurements related to the BSDL framework. It is
reported in literature that most performance issues of
the BSDL framework are related to the BintoBSD
Parser (Devillers et al., 2005; De Schrijver et al.,
2006). The results of this paper also lead to the same
conclusion. As an illustration, Figure 5 shows the ex-
ecution speed of the BintoBSD Parser in function of
the number of PPSs that are present in a bitstream. All
measurements were done on an Intel Pentium 4 2.8
GHz system running a 2.4.19 Linux kernel by mak-
ing use of thetime command. The execution speed
is given in terms of slices per second as slices are the
basic units of parsing for the BintoBSD Parser in the
context of this paper.

As one can clearly see from this figure, only
when very few PPSs are present in the bitstream,
the BintoBSD Parser achieves reasonable execution
speeds. The fundamental reason for this, however,
lies in the fact that the reference encoder puts all PPSs
in the beginning of the bitstream. If the PPSs would
appear scattered in the bitstream (at places where

0

10

20

30

40

50

60

70

80

90

100

1 6 11 16 21 26 31 36 41 46

# PPSs

#
 s

li
c
e
s
 /
 s

Figure 5: Decreasing execution speed of the BintoBSD
Parser.

the ROI configuration changes), the execution speed
would be independent of the number of PPSs, pro-
vided that a PPS is never referenced again once an-
other PPS appears in the bitstream. Nevertheless, the
fact that the BintoBSD Parser cannot cope with this
can be considered a disadvantage.

The transformation of the BSDs (embodying the
actual content adaptation) is currently implemented
in XSLT. The execution speeds of the transformations
barely reach real-time performance, which is caused
by the fact that the XSLT engine (Saxon 8) needs the
entire DOM tree in memory in order to perform the
transformation. The execution times are summarized
in Table 3. Therefore, future research will concentrate
on the implementation of the transformations by mak-
ing use of STX. This should dramatically improve the
performance.

Table 3: Execution times of XSLT (seconds).
sequence placeholders dropping

IP crew 50.0 48.4

hall monitor 13.5 13.1

news 12.9 12.5

stefan 5.7 5.5

IBBP crew 49.0 49.2

hall monitor 13.3 13.3

news 12.9 12.8

stefan 5.8 5.4

7 CONCLUSIONS AND FUTURE
WORK

In this paper, it is shown how Regions of Interest can
be defined within the H.264/AVC specification and
how these ROIs can be coded by making use of Flex-
ible Macroblock Ordering. For the adaptation of the
bitstreams, the MPEG-21 BSDL framework was ap-
plied for the extraction of the ROIs and for the re-
placement of the coded background slices with place-
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holder slices (skipped P slices).
By doing so, the bit rate needed to transmit the bit-

stream can be reduced significantly. Especially in the
case of a static camera and a fixed background, this
bit rate reduction has very little impact on the visual
quality. This opens up interesting new possibilities
for certain video applications such as video confer-
encing where the proposed approach can be seen as
the basis for QoS. Another advantage of the adapta-
tion process is the fact that the execution speeds of
the receiving decoder fairly increase. Next to this, the
concept of placeholder insertion can be used to switch
from one Profile to another; for instance going from
the Extended Profile to the Baseline Profile.

The XML-driven content adaptation process, as de-
scribed in this paper, is elegant and generic by de-
sign, but the results indicate that there are some per-
formance issues. These shortcomings will be exam-
ined in future research aiming to achieve a content
adaptation engine that is employable in real-life use
cases.
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