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Abstract: During the last decade airborne laser scanning (LIDAR) has become a mature technology which is now 
widely accepted for 3D data collection. Nevertheless, these systems have the disadvantage of not 
representing the desirable bare terrain, but the visible surface including vegetation and buildings. To 
generate high quality bare terrain using LIDAR data, the most important and difficult step is filtering, where 
non-terrain 3D objects such as buildings and trees are eliminated while keeping terrain points for quality 
digital terrain modelling. The main goal of this paper is to investigate and compare the potential of 
procedures for clustering of LIDAR data for 3D object extraction. The study aims at a comparison of K-
Means clustering, SOM and Fuzzy C-Means clustering applied on range laser images. For evaluating the 
potential of each technique, the confusion matrix concept is employed and the accuracy evaluation is done 
qualitatively and quantitatively. 

1 INTRODUCTION 

In recent years LIDAR data has become as a highly 
acknowledged data source for interactive mapping 
of 3D man-made and natural objects from the 
physical earth’s surface. The dense and accurate 
recording of surface points has encouraged research 
in processing and analysing the data to develop 
automated processes for feature extraction, object 
recognition and object reconstruction. However, the 
algorithm for segmentation of this kind of data, i.e. 
distinguish between ground surface and objects on 
the surface, is still on going researched (Haala and 
Brenner 1999; Axelsson, 1999; Maas and 
Vosselman, 2001).  

Nowadays, laser-scanning systems are able to 
collect of two different types from the ground 
surface and the objects over it; first-pulse and last-
pulse data. Laser pulses have one important 
advantage that partially they penetrate the vegetation 
in gaps between leaves and obtain data reflected 
from points underneath the vegetation. This property 
of the laser defines the difference between first- and 
last- pulse data. That means in first-pulse data, the 
data of the vegetation’s surface is available, while it 
is not the case in last-pulse. The other main property 

of laser scanning systems is the ability to provide the 
range data from the objects in addition to the 
reflectance image data (intensity data). This range 
data obtained from the elevation points over the 
earth’s surface or other 3D objects can be converted 
to a digital range image. Therefore the laser 
scanners, nowadays, can provide both range image 
and intensity image in two different types, first- and 
last-pulse data (Sithole, 2003; Roggero, 2002). 

The paper shows the potential of the analysis of 
height texture for the automatic segmentation of 
LIDAR regular range datasets and 3D objects 
extraction in the segmented data. Based on the 
definition and computation of a number of texture 
measures used as bands in three clustering 
approaches (i.e. K-Mean, FCM and SOM), 3D 
objects like buildings and trees can be recognized 
from bare terrain. 

2 CLUSTERING OF LIDAR DATA  

Cluster analysis is a difficult problem because many 
factors (such as effective similarity measures, 
criterion functions, algorithms and initial conditions) 
come into play in devising a well tuned clustering 
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technique for a given clustering problem. Cluster 
analysis is an unsupervised learning method that 
constitutes a cornerstone of an intelligent data 
analysis process. It is used for the exploration of 
inter-relationships among a collection of patterns, by 
organizing them into homogeneous clusters. It is 
called unsupervised learning because unlike 
classification (known as supervised learning), no a 
priori labeling of some patterns is available to use in 
categorizing others and inferring the cluster structure 
of the whole data. Intra-connectivity is a measure of 
the density of connections between the instances of a 
single cluster. A high intra-connectivity indicates a 
good clustering arrangement because the instances 
grouped within the same cluster are highly 
dependent on each other. Inter-connectivity is a 
measure of the connectivity between distinct 
clusters. A low degree of interconnectivity is 
desirable because it indicates that individual clusters 
are largely independent of each other.  

K-Means: The most well-known partitioning 
algorithm is the K-Means (Rottensteiner and Briese, 
2002). The K-Means method partitions the data set 
into k subsets such that all points in a given subset 
are closest to the same centre. In detail, it randomly 
selects k of the instances to represent the clusters. 
Based on the selected attributes, all remaining 
instances are assigned to their closer centre. K-
Means then computes the new centres by taking the 
mean of all data points belonging to the same 
cluster. The operation is iterated until there is no 
change in the gravity centres. If k cannot be known 
ahead of time, various values of k can be evaluated 
until the most suitable one is found. The 
effectiveness of this method as well as of others 
relies heavily on the objective function used in 
measuring the distance between instances. The 
difficulty is in finding a distance measure that works 
well with all types of data. 

FCM: Traditional K-Means clustering 
approaches generate partitions; in a partition, each 
pattern belongs to one and only one cluster. Hence, 
the clusters in a hard clustering are disjoint. Fuzzy 
clustering extends this notion to associate each 
pattern with every cluster using a membership 
function. Larger membership values indicate higher 
confidence in the assignment of the pattern to the 
cluster. One widely used algorithm is the Fuzzy C-
Means (FCM) algorithm, which is based on K-
Means. FCM attempts to find the most characteristic 
point in each cluster, which can be considered as the 
“centre” of the cluster and, then, the grade of 
membership for each instance in the clusters.  

Let us assume as a Fuzzy C-Means Functional 
where, [ ]{ }cjyY j ,1∈=  is the set of centers of 
clusters; )( kj xE is a dissimilarity measure (distance 
or cost) between the sample  jx  and the center jy  
of a specific cluster j; U = [ujk] is the c × n fuzzy c-
partition matrix, containing the membership values 
of all samples in all clusters; ),1[ ∞∈m is a control 
parameter of fuzziness. 
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The clustering problem can be defined as the 
minimization of Jm with respect to Y, under the 
probabilistic constraint: 
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The Fuzzy C-Means algorithm consists in the 
iteration of the following formulas: 
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Where, in the case of the Euclidean space: 

 

2
)( jkkj yxxE −=        (4) 

 
SOM: Among the other types of artificial neural 

networks, the self organizing neural network 
resembles real biological neural networks more than 
the other types. It was first introduced by Kohonen 
(Kohonen, 1989) as the "Self Organizing Feature 
Map". SOM can be seen as an extension to the 
competitive learning neural network. In the SOM, 
the output units are ordered in some fashion, often in 
a two dimensional grid or array. The ordering of 
output units determines which neurons are 
neighbours. 

When learning patterns are presented to the 
SOM, the weights to the output neurons are thus 
adapted such that the order present in the input space 
is preserved in the output space. This means that 
learning patterns which are near to each other in the 
input space must be mapped on output units which 
are also near to each other. 

SOM can be described step by step as follows: 
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1. Random Initialization of neurons weights (Wij), 
where i and j are the identifiers of the input and 
output neurons, respectively. 

2. Introduce randomly selected learning pattern (Pj) 
to the network. Compute the dissimilarity 
between input pattern and all neurons in the 
output layer of SOM and determine the winner 
(closest) neuron, using the Euclidean distance, 
where n

jp  is the input to neuron i at iteration n. 
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3. Find winner neuron neighbours using defined 
neighbourhood function. 

4. Update the weights of winner and its neighbours, 
using Hebbian learning rule. 
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using Eq. (7) nα denotes the learning rate in the 
iteration n expressed as below and ( )n

iN γ′  is the 
neighbourhood function of the winner neuron i'.  
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5. Repeat step 1 to 4, until network converges. 
6. Introduce all patterns to the network. 
7. Find winner neuron for each input pattern. 
8. Assign presented pattern to the cluster which 

winner neuron points to it. 

2.1 Clustering Validity Checking 

Clustering is perceived as an unsupervised process 
since there are no predefined classes and no 
examples that would show what kind of desirable 
relations should be valid among the data. As a 
consequence, the final partitions of a data set require 
some sort of evaluation in most applications 
(Kohonen, 1989). For instance questions like “how 
many clusters are there in the data set?”, “does the 
resulting clustering scheme fits our data set?”, “is 
there a better partitioning for our data set?” call for 
clustering results validation and are the subjects of a 
number of methods discussed in the literature. They 
aim at the quantitative evaluation of the results of 
the clustering algorithms and are known under the 
general term cluster validity methods. 

The procedure of evaluating the results of a 
clustering algorithm is known under the term cluster 
validity. In general terms, there are three approaches 
to investigate cluster validity. The first is based on 
external criteria. This implies that we evaluate the 

results of a clustering algorithm based on a pre-
specified structure, which is imposed on a data set 
and reflects our intuition about the clustering 
structure of the data set. The second approach is 
based on internal criteria. We may evaluate the 
results of a clustering algorithm in terms of 
quantities that involve the vectors of the data set 
themselves (e.g. proximity matrix). The third 
approach of clustering validity which we used in our 
research work is based on relative criteria. 

Here the basic idea is the evaluation of a 
clustering structure by comparing it to other 
clustering schemes, resulting by the same algorithm 
but with different parameter values. There are two 
criteria proposed for clustering evaluation and 
selection of an optimal clustering scheme: 
1- Compactness, the members of each cluster should 

be as close to each other as possible. A common 
measure of compactness is the variance, which 
should be minimized. 

2- Separation, the clusters themselves should be 
widely spaced. There are three common 
approaches measuring the distance between two 
different clusters: 
Single linkage: It measures the distance between 
the closest members of the clusters. 
Complete linkage: It measures the distance 
between the most distant members. 
Comparison of centroids: It measures the 
distance between the centers of the clusters. 
The two first approaches are based on statistical 
tests and their major drawback is their high 
computational cost. Moreover, the indices related 
to these approaches aim at measuring the degree 
to which a data set confirms a-priori specified 
scheme. On the other hand, the third approach 
aims at finding the best clustering scheme that a 
clustering algorithm can be defined under certain 
assumptions and parameters. 
 
A number of validity indices have been defined 

and proposed in literature for each of above 
approaches (Halkidi et al., 2001). The indices which 
are used in this paper are the Davies-Bouldin (DB) 
index and Hubert index. 

Davies-Bouldin index: A similarity measure Rij 
between the clusters Ci and Cj is defined based on a 
measure of dispersion of a cluster Ci and a 
dissimilarity measure between two clusters dij 
(Davies and Bouldin, 1979). One choice for Rij that 
satisfies the above conditions is: 

 

                 Rij = (si+s j)/di j                        (9) 
 

Then the DB index is defined as: 
 

(8)

(5)
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It is clear for the above definition that DBnc is the 
average similarity between each cluster and its most 
similar one. It is desirable for the clusters to have the 
minimum possible similarity to each other; therefore 
we seek clustering that minimizes DB. The DBnc 
index exhibits no trends with respect to the number 
of clusters and thus we seek the minimum value of 
DBnc in its plot versus the number of clusters. 

Hubert Index: The definition of the Hubert Γ 
index (Hubert, 1985) is given by the Eq. (11) where 
N is the number of objects in a dataset, M=N(N-1)/2, 
P is the proximity matrix of the data set and Q is an 
N×N matrix whose (i,j) element is equal to the 
distance between the representative points (vci, vcj) of 
the clusters where the objects xi and xj belong. 
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3 EXPERIMENTS AND RESULTS 

The airborne LIDAR data used in the experimental 
investigations have been recorded with TopScan 
Airborne Laser Terrain (TopScan, 2004). The 
average density of the measured 3D points is about 
1.7 per m2. Figure 1 shows the first-pulse and the 
last-pulse LIDAR range image from the city of 
Rheine in Germany. The impact of the Vegetation in 
the first- and last- pulse images can be easily 
recognized by comparing the two images of this 
figure. 

 

First pulse range Last pulse range 
Figure 1: LIDAR dataset. 

 
The first step in every clustering process is to 

extract the feature image bands. The features of 
theses feature bands should carry useful textural or 
surface related information to differentiate between 
regions related to the surface.  

Relief range first Top-Hat range last 

 
NDVI range 

Figure 2: Three applied Feature. 
 

Several features have been proposed for 
clustering of range data. Axelsson (1999) employs 
the second derivatives to find textural variations and 
Maas (1999) utilizes a feature vector including the 
original height data, the Laplace operator, maximum 
slope measures and others in order to classify the 
data. In our work, three types of features are taken 
into account. These features are: NDDI ratio, 
Morphological Opening and relief of range 
information of LIDAR data. Figure 2 shows the 
output of three mentioned features on LIDAR data 
set. 

To assess the validity of clustering algorithm we 
experimented the algorithm for nc = 1 to nc = 10. 
Using Davies-Bouldin (DB) and Hubert indices, 
three clusters are optimum according to input data. 
Plot of the indices versus nc is depicted in Figure 3.  
 

  
Hubert Index DB Index 

Figure 3: Optimum Clusters. 
 
Figure 4 shows outputs of the K-Mean, FCM and 

SOM algorithms for the situation of optimum cluster 
number (i.e. 3).  

 

            Maximum Hubert Index

            Optimum Cluster 

            Minimum DB Index 

            Optimum Cluster 

(11)
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K-Means 

  
SOM FCM 

Figure 4: The situation of optimum cluster number. 

4 ANALYSIS OF CLUSTERING 
RESULTS 

After performing clustering algorithms (K-Means, 
FCM and SOM), it is necessary to assess their 
accuracies. In this context, the term accuracy means 
the level of agreement between labels assigned by 
the clustering algorithm and class allocation based 
on truth data. To generate an appropriate truth data, 
we used aerial image of the scene and first-pulse 
range of LIDAR data. Using these data we produced 
the ortho-image. Then, Buildings and vegetation 
have been digitized, manually. Figure 5 shows the 
truth data. 

The method used in this paper to assess the 
accuracy of clustering results is based on analysis of 
the confusion matrix. The most common tool for the 
clustering accuracy assessment is in term of a 
confusion matrix. The columns in a confusion 
matrix represent truth data, while rows represent the 
labels assigned by the clustering algorithm. The 
confusion matrix of K-Means, FCM and SOM 
results, are presented in Table 1, respectively. 

Several indices of clustering accuracy can be 
derived from the confusion matrix. One of these 
indices is "overall accuracy", which is obtained by 
dividing the sum of main diagonal entries of the 
confusion matrix by the total number of patterns. 
Figure 6 shows the "overall accuracy" of K-Means, 
FCM and SOM. 
 

  
Man-made objects Vegetation 

 
Truth Data 

Figure 5: The truth data. 
 

Table 1: Confusion matrix of K-Means, FCM and SOM. 
Truth Data  

 Buildings Vegetation Bare-Land Sum 
Buildings 64338 1551 338 66227 
Vegetation 3561 58692 5930 68183 
Bare-Land 54341 10509 290740 355590 

K
-M

eans 

Sum 122240 70752 297008 490000 
 Buildings Vegetation Bare-Land Sum 

Buildings 108835 4292 1697 114824 
Vegetation 921 49488 517 50926 
Bare-Land 12484 16972 294794 324250 

FC
M

 

Sum 122240 70752 297008 490000 

 Buildings Vegetation Bare-Land Sum 
Buildings 116002 591 4666 121259 
Vegetation 2224 63953 3344 69521 
Bare-Land 4014 6208 288998 299220 

SO
M

 

Sum 122240 70752 297008 490000 

 
 
 
 
 
 
 
 
 
 
 
The accuracy measurements shown above, 

namely, the overall accuracy and producer's 
accuracy, though quite simple to use, are based on 
either the principal diagonal or columns of confusion 
matrix only, which does not use the information 
from the whole confusion matrix. A multivariate 

 
 
 
 
 
 
 
 
Figure 6: Overall accuracy of K-Means, FCM and SOM. 
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index called the kappa coefficient (Cohen, 1960) has 
found favour. The kappa coefficient is defined as 
Eq. (12) where k is number of clusters, +iM and 

iM+ are the marginal totals of row i and column i, 
respectively and N is the total number of patterns. 
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Figure 7 shows the "kappa coefficient" of K-

Means, FCM and SOM. 
 

 
The value of kappa for each cluster can be 

derived as follows: 
 

iii

iiii
i MMMN

MMMN

+++

++

⋅−⋅

⋅−⋅
= ,κ                  (13) 

5 CONCLUSION 

Airborne laserscanning is being used for an 
increasing number of mapping and GIS data 
acquisition tasks. Besides the original purpose of 
digital terrain model generation, new applications 
arise in the automatic detection and modeling of 
objects such as buildings or vegetation for the 
generation of 3-D city models. A crucial prerequisite 
for the automatic extraction of objects on the Earth's 
surface from LIDAR height data is the clustering of 
datasets. Besides the height itself, height texture 
defined by local variations of the height is a 
significant feature of objects to be recognized.  

We have presented the results of applying three 
different clustering techniques on LIDAR data for 
3D object extraction. Using these methods we have 
been able to filter non-terrain 3D objects such as 
buildings and trees while keeping terrain points for 
quality digital terrain modelling. 

However, as it appear from obtained results of 
applying different clustering methods on LIDAR 

data; the SOM has the most reliable potential for 
extraction of 3D objects like building and trees from 
bare terrain. 
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Figure 7: Kappa coefficient of K-Means, FCM and SOM.
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