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Abstract: We propose an accurate method for establishing point correspondences between two images taken by an un-
calibrated stereo. We explores the case of a scene with multiple planes and we detect the homographies of the
planes by using a RANSAC-like algorithm. For random sampling in RANSAC, we define three nonuniform
sampling weights that are computed from feature points in the images. By introducing these weights, our
method can detect more accurate matches than the usual methods. Furthermore, our method can establish the
correspondence stably irrespective of the scene is faraway or not. We demonstrate effectiveness of our method
by real image examples.

1 INTRODUCTION

Establishing point correspondences over multiple im-
ages is the first step of many computer vision appli-
cations. Therefore, various matching methods have
been proposed (Kanazawa and Kanatani, 2004b; Ma-
ciel and Costeira, 2002; Olson, 2002; Zhang et al.,
1995)

RANSAC (Fischler and Bolles, 1981) and LMedS
(Rousseeuw and Leroy, 1987) are very powerful
methods for estimating parameters over images. They
are also very robust to outliers in data. So, for estab-
lishing point correspondences, many methods based
on them have been proposed (Torr and Davidson,
2003; Torr and Zisserman, 1998; Torr and Zisserman,
2000). In those procedures, we usually use a uniform
distribution for sampling data. It is reasonable when
we want to estimate global parameters over images.
For example, for estimating the homography to make
the panoramic image from two images, RANSAC and
LMedS work very well. For estimating the funda-
mental matrix of an image pair, they also work fine.
Because these matrices are the global parameters be-
tween the two images.

When there are multiple planes in a scene, we can
compute the fundamental matrix from the homogra-
phies of the planes (Hartley and Zisserman, 2000).
Such the fundamental matrix is more accurate than
that computed from point matches and can be de-
composed into camera parameters stably (Kanazawa

et al., 2004). However, if we want to estimate the ho-
mographies for small planes in the scene, RANSAC
and LMedS with a uniform distribution do not work
well. Because the probability of the four matches,
which are chosen by a uniform distribution, being on
the same plane is very small. Then, we need many
iterations for estimating such the homographies. In
addition, we often obtain the homographies for non-
existing planes. For such the case, we need some
knowledge about the existing planes (Dick et al.,
2000), a criterion for judgment whether the region
is planar or not (Kanazawa et al., 2004), or detect-
ing special features for planar regions (Matas et al.,
2002).

In this paper, we propose an accurate method for
establishing point correspondences based on detect-
ing the homographies of multiple planes in a scene
using a RANSAC-like algorithm. Instead of using a
uniform distribution for random sampling, we intro-
duce three nonuniform sampling weights: concentrate
likelihoods, coplanarity likelihoods, and correspond-
ing likelihoods. These likelihood distributions are de-
fined from the locations of feature points and residu-
als of template matching. By introducing these likeli-
hoods, our method can detect more accurate matches
than other methods. Furthermore, our method can es-
tablish the correspondence stably irrespective of the
scene is faraway or not. We demonstrate effectiveness
of our method by real image examples.
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Figure 1: The camera model and the co-
ordinates systems.
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Figure 2: Coplanarity likelihood.
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Figure 3: Planar point likelihood.

2 COMPATIBILITY OF
FUNDAMENTAL MATRIX AND
HOMOGRAPHIES

We assume that the camera model is the pinhole
model. We take the first camera as a reference coordi-
nate system and place the second camera in a position
obtained by translating the first camera by vector t
and rotating it around the center of the lens by matrix
R. The two cameras may have different focal lengths
f and f ′.

Let (x, y) be the image coordinates of a feature
point P projected onto the image plane of the first
camera, and (x′, y′) be those for the second camera.
We use the following three-dimensional vectors to
represent them (the superscript � denotes transpose):

x = (x/f0, y/f0, 1)� , x′ = (x′/f0, y
′/f0, 1)� .

(1)
Here, f0 is a scale factor for stabilizing computation.

We consider the vectors xi and x′
i for feature points

Pi, i = 1, ..., N . As shown in Fig. 1, the vectors xi

and x′
i must satisfy the following epipolar equation

(Hartley and Zisserman, 2000; Kanatani, 1996):

(xi,Fx′
i) = 0. (2)

Here, (a, b) denotes the inner product of vectors a
and b. The matrix F , which is called the fundamental
matrix, is a singular matrix of rank 2.

When all the point Pi lie on a plane Π, the vectors
xi and x′

i are related in the following form (Hartley
and Zisserman, 2000; Kanatani, 1996):

x′
i = Z[Hxi]. (3)

Here, Z[ · ] designates a scale normalization to make
the third component 1. The matrix H , which is called
the homography, is a nonsingular matrix.

When the feature points Pj , j = 1, ..., M lied on a
plane in a scene, Eqs. (2) and (3) are satisfied simulta-
neously. This time, the homography H is compatible
to the fundamental matrix F (Hartley and Zisserman,
2000) and the matrix product FH must be a skew-
symmetric matrix:

FH + H�F� = O. (4)

Using the compatibility (4), we can compute the
fundamental matrix F from two or more homogra-
phies H1, ..., HK , K ≥ 2. In addition, if we
compute the homographies by an optimal method
(Kanatani et al., 2000) and compute the fundamental
matrix from the homographies, the obtained funda-
mental matrix is more accurate than that directly com-
puted from point matches (Kanazawa et al., 2004).

3 WEIGHTS FOR RANDOM
SAMPLING

For detecting multiple planes from two images taken
by an uncalibrated stereo, we must estimate homo-
graphies for the planes from point matches between
the two images. Generally, we can robustly esti-
mate a global homography between two images by
RANSAC (Fischler and Bolles, 1981) and LMedS
(Rousseeuw and Leroy, 1987). But, if we want to es-
timate the homographies of local or small planes in
the scene, RANSAC and LMedS do not work well.
Because the probability of chosen four matches being
on the same plane is very small due to using a uni-
form distribution for random sampling. Therefore, we
need many iterations, but we may often obtain the ho-
mographies for non-existing planes. However, if we
know some knowledge about the planes in the scene
and we defined the sampling weights for random sam-
pling using the knowledge, we can efficiently choose
pairs on the same plane and can estimate the homog-
raphy for them. So, we define three weights for doing
random sampling. We compute them from the loca-
tions of feature points and the residuals of template
matching.

3.1 Coplanarity Likelihoods

First, we define coplanarity likelihood between two
feature points in an image. The same likelihoods
have been proposed by the Kanazawa and Kawakami
(Kanazawa and Kawakami, 2004), however, we add
physical interpretation to them in this paper.

Considering two points that are on a 3-D surface
(Fig. 2), we can regard the proximity two points are
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on the same plane whether the surface is exactly pla-
nar or not. On the other hand, when the distance be-
tween the two points is long, we regard the two points
are not on the same plane if the surface is not planar.
So, the proximity two points on the image have high
likelihood that they are on the same plane. Then, we
define a likelihood of coplanarity with respect to the
two points by the distance between them.

Let I1 and I2 be the sets of all the feature points
in I1 and I2, respectively. For Pα, Pβ ∈ I1, let dαβ

be the Euclidean distance between them. We define
the conditional likelihood p(Pβ |Pα) by the following
equations.

p(Pβ |Pα) =
{

1
Zα

e−sαd2
αβ · · · α �= β

0 · · · α = β
, (5)

where, Zα =
∑N

β �=α e−sαd2
αβ and N is the number of

the feature points on the image I1. We call this like-
lihoods the coplanarity likelihoods, which indicates
a likelihood about that Pα and Pβ are on the same
plane. Here, the parameter sα is determined by solv-
ing the following equations.

N∑
β=1

(dαβ − d̄α)e−sαd2
αβ = 0, d̄α =

1
N

N∑
β=1

dαβ .

(6)

3.2 Planar Point Likelihood

Next, we define a planar point likelihood of the
feature point Pα using the coplanarity likelihood
p(Pβ |Pα).

For each Pα, we define the following conditional
cumulative likelihood

q(Pβ |Pα) =
β∑

µ=1

p(Pµ|Pα), (7)

where, the p(Pµ|Pα) are sorted in descending order
with respect to Pµ for each Pα.

In the space of the cumulative likelihood q(Pβ |Pα),
we consider a line y = aαx passing through the origin
and the point that q(Pβ |Pα) = ρ (Fig.3). Using the
coefficient aα of the line, we define the planar point
likelihood p̂(Pα) for the point Pα by

p̂(Pα) =
aα∑

α∈I1
aα

. (8)

3.3 Corresponding Likelihood

Finally, we define corresponding likelihoods by the
residuals of template matching.

Correlations or residuals obtained by template
matching are often used for establishing point corre-
spondences between two images. We must not ab-
solutely trust them, because it depends on the posi-
tions and the orientations of the two cameras. How-
ever, the correct pairs usually have high correlation
values. So, we define the likelihood of correspon-
dence for each match by the residual of template
matching.

Let Pβ be a feature point in I1 and Qβ′ be a feature
point in another image I2. Let jββ′ be the residual
of template matching between them. Using jββ′ , we
define the conditional likelihoods p′(Qβ′ |Pβ) as fol-
lows:

p′(Qβ′ |Pβ) =
1

Zβ
e−tβj2

ββ′ , Zβ =
M∑

β′=1

e−tβj2
ββ′

(9)
Here, M is the number of the feature points in the im-
age I2. We call this likelihoods the correspondence
likelihoods, which indicate that the pair {Pβ , Qβ′}
is the correct match. Here, the parameter tβ is deter-
mined by the same way as the coplanarity likelihoods:

M∑
β′=1

(jββ′ − j̄β)e−tβj2
ββ′ = 0, j̄β =

1
L

L∑
β′=1

jββ′

(10)
Here, the residuals jββ′ are sorted in ascending order
for each β and L is the average index number of the
correct matches (1 ≤ L ≤ M ).

3.4 RANSAC with the Three
Nonuniform Likelihoods

Using these likelihood as the weights for random sam-
pling, we can efficiently choose candidate matches
that are coplanar in the scene and have high corre-
lation values. We also can avoid combinational ex-
plosion for choosing the candidate matches.

Here, in advance, we sort the likelihoods in de-
scending order and compute cumulative likelihoods,
respectively. In each random sampling, we first gen-
erate one random number x in the range [0, 1) using a
uniform distribution, then increase β from 1 and find
β that satisfies

qβ−1 ≤ x < qβ , (11)

where qβ is a cumulative likelihood and q0 = 0.
The procedure of our method is as follows:

1. Randomly choose a point Pα in I1 using the planar
point likelihood p̂(Pα).

2. Choose 4 points Pβ1 , Pβ2 , Pβ3 , and Pβ4 in I1 using
the coplanarity likelihood p(Pβ |Pα) with respect to
Pα.
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Figure 4: (a) A stereo image pair and detected feature points. (b) Correspondences and planar regions and obtained by the
proposed method. (c) 3-D shape (top view) from (b). (d) Correspondences obtained by the method of Kanazawa and Kanatani
(Kanazawa and Kanatani, 2004b). (e) 3-D shape (top view) from (d). (f) Correspondences obtained by the standard RANSAC.
(g) 3-D shape (top view) from (f).

3. Choose 4 matches {Pβ1 , Qβ′
1
}, {Pβ2 , Qβ′

2
},

{Pβ3 , Qβ′
3
}, and {Pβ4 , Qβ′

4
} using the corre-

sponding likelihoods p′(Qβ′ |Pβ1), p′(Qβ′ |Pβ2),
p′(Qβ′ |Pβ3), p′(Qβ′ |Pβ4), respectively. Here,
Qβ′

1
, Qβ′

2
, Qβ′

3
, Qβ′

4
∈ I2.

4. Check the chosen 4 matches are skewed or not
(Kanazawa and Kawakami, 2004). If the matches
are skewed, back to the step 1.

5. Compute a homography Hα from chosen 4
matches.

6. Let Sα be the set of the matches {Pγ , Q′
γ} which

satisfy
E(Pγ , Q′

γ ,Hα) < d and p′(Q′
γ |Pγ) < t.

where Pγ ∈ I1 and Q′
γ ∈ I2. Here, t and d

are the thresholds specified by users. The func-
tion E(Pγ , Q′

γ ,H ) is an error function (or resid-
ual) of the match {Pγ , Q′

γ} and the homography
Hα, which is obtained by Eq. (3). Then, let Mα

be the number of the elements of Sα.

7. Repeat the above computation until Mα reaches its
maximum.

8. Finally, enforce uniqueness with respect to
E(Pγ , Q′

γ ,Hα) to the resulting Sα and re-
compute the homography Hα from them.

By repeating the above procedure, we can obtain one
or more homographies of the planes in the scene.

We summarize the above procedure as follows. In
the first image, by using the planar point likelihood,
we first choose a “seed” in the region that includes
many feature points. Such region can be regarded as
planar in the scene. We then choose 4 points that
are close to the seed by using the coplanarity likeli-
hood about the seed. We finally choose correspond-
ing points in the second image for the 4 points chosen

from the first image by using the correspondence like-
lihoods. After computing a homography from the 4
matches, we then make the consensus set for the com-
puted homography from the set of the matches that
have high correspondence probabilities and satisfy the
specified degree to the computed homography. By re-
peating this procedure, we can find the consensus set
that have the maximum number of the elements. So,
we can regard all the correspondences in the obtained
consensus set are in the same planar region. Finally,
we compute the homography from them by an op-
timal method (Kanatani et al., 2000). If we obtain
multiple homographies in the scene, we compute the
fundamental matrix from the obtained homographies
using the compatibility (4). Furthermore, if we need
the correspondences which original 3-D points are not
on any planes, we can check each candidate matches
using the epipolar equation (2) using the computed
fundamental matrix.

4 EXPERIMENTAL RESULTS

We show some experiments using real images.
Fig. 4 shows a real image example of a scene of

brick walls. Fig. 4 (a) shows a stereo image pair
and the feature points detected by Harris operator
(Harris and Stephens, 1988). Fig. 4 (b) shows the
correspondences and the planar regions obtained by
our method. Here, we show only the correspon-
dences on the detected planar regions. Fig. 4 (d)
shows the correspondences obtained by the method of
Kanazawa and Kanatani1 (Kanazawa and Kanatani,

1We used the program code placed at
http://www.img.tutkie.tut.ac.jp/programs/index-e.html
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(a) (b) (c)
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Figure 5: (a) A stereo image pair and detected feature points. (b) Result by the proposed method. (c) 3-D shape (top view)
from (b). (d) Result by the method of Kanazawa and Kanatani (Kanazawa and Kanatani, 2004b). (e) 3-D shape (top view)
from (d). (f) Result the standard RANSAC. (g) 3-D shape (top view) from (f).

2004b). Fig. 4 (f) shows the result obtained by the
standard RANSAC only using the epipolar constraint.
In these results, we show the correspondences using
line segments whose endpoints are the positions of a
pair of points. We can see that the proposed method
can establish many correct matches compared with
the other methods.

Fig. 4 (c), (e), and (g) show the reconstructed 3-
D shapes from the correspondences (b), (d), and (f),
respectively. Here, we use the method of Kanatani
and Matsunaga (Kanatani and Matsunaga, 2000) for
decomposing the fundamental matrix into the camera
parameters. In these 3-D reconstructions, the angles
of the walls are about 90 degrees in Fig. 4 (c), 95 de-
grees in Fig. 4 (e), and 100 degrees in Fig. 4 (g). We
see the fundamental matrix obtained by our method is
accurate compared with the other methods.

Fig. 5 shows an example in a scene of buildings.
We see that there are many wrong matches in the re-
sults obtained by the other methods. But, we see that
there are few wrong matches in the result obtained by
our method. The angles of the walls in 3-D shapes
are about 94 degrees in Fig. 5 (c), 80 degrees in Fig. 5
(e), and 69 degrees in Fig. 5 (g). Again, we see the
3-D shape obtained by the proposed method is more
accurate than the other methods.

Fig. 6 shows an example for a faraway scene. Gen-
erally in a faraway scene, we can detect only one
plane, but we cannot compute the fundamental ma-
trix because the scene is degeneracy. So, we can-
not obtain the correspondences using the standard
RANSAC. We compare the results by our method
and the method for image mosaicing proposed by
Kanazawa and Kanatani 2 (Kanazawa and Kanatani,

2We used the program code placed at
http://www.img.tutkie.tut.ac.jp/programs/index-e.html

2004a). Fig. 6 (b) and (c) show the correspondences
obtained by our method and the method of Kanazawa
and Kanatani. Fig. 6 (d) and (e) show panoramic
(difference) images from (b) and (c). We see our
method detect many correct matches and the gener-
ated panoramic image is also accurate.

In our method, we need not the judgment whether
the scene is degenerated or not (Kanazawa and
Kanatani, 2004b). In other words, our method can es-
tablish the correspondence stably irrespective of the
scene is faraway or not.

For these examples, we stopped the search when
no update occurred 20000 times consecutively in the
iteration in our method. The total computation times
were 335 seconds for Fig. 4, 341 seconds for Fig. 5,
and 58 seconds for Fig. 6. We used Pentium 4, 2.4
GHz for the CPU with 512 MB main memory and
Linux for the OS.

5 CONCLUSION

We have proposed an accurate method for establish-
ing point correspondences based on detecting one or
more planes by random sampling. Instead of using
a uniform distribution in random sampling, we intro-
duce three nonuniform likelihoods, which are defined
by the feature points and their correlations. By us-
ing these likelihoods, our method can choose correct
matches efficiently in random sampling. So we can
detect more correct matches than the other methods.
Furthermore, our method can establish the correspon-
dence stably irrespective of the scene is faraway or
not. By real image examples, we have demonstrated
that the proposed method is robust and accurate.

In future works, we must reduce processing times
of the method.
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(a) (b) (c)

(d) (e)

Figure 6: (a) A stereo image pair and detected feature points. (b) Result by the proposed method. (c) Result by the method of
Kanazawa and Kanatani (Kanazawa and Kanatani, 2004a). (d) Panoramic image from (b). (e) Panoramic image from (c).
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