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Abstract: In this paper, we present an approach that unifies sub-space feature extraction and support vector 
classification for face recognition. Linear discriminant, independent component and principal component 
analyses are used for dimensionality reduction prior to introducing feature vectors to a support vector 
machine. The performance of the developed methods in reducing classification error and providing better 
generalization for high dimensional face recognition application is demonstrated. 

1 INTRODUCTION 

Choosing an appropriate set of features is critical 
when designing pattern classification systems under 
the frame-work of supervised learning. Ideally, we 
would like to use only features having high 
separability power while ignoring or paying less 
attention to the rest. Recently, there has been an 
increased interest in deploying feature selection in 
applications such as face and gesture recognition 
(Sun et al., 2004). Most efforts in the literature have 
been focused mainly on developing feature 
extraction methods (Jain et al., 2000, Belhumeur, et 
al., 1997) and employing powerful classifiers such 
as probabilistic (Moghaddam, 2002), hidden Markov 
models (HMMs) (Othman and Aboulnasr, 2003), 
neural networks (NNs) (Er et al., 2002) and support 
vector machine (SVM) (Lee et al., 2002).  

The main trend in feature extraction has been 
representing the data in a lower dimensional space 
computed through a linear or non-linear transform-
ation satisfying certain properties. Principal 
component analysis (PCA) (Turk and Pentland, 1991) 
selects features which are maximally variant across 
the data. With independent components analysis 
(ICA) (Liu and Wechsler, 2003) statistically 
independent features result. Linear discriminant 
analysis (LDA) (Yu and Yang, 2001) encodes the 

discriminatory information in a linear separable 
space by maximizing the ratio of between-class to 
within-class variances.  

SVM have shown to be very effective classifiers 
for face recognition applications and provide the 
ability to generalize over imaging variants (Heisele 
et al., 2001). SVM provide an optimal decision 
hyperplane by employing kernel learning, projecting 
the data into a high-dimensional space (Vapnik, 
1995). Some authors used PCA and ICA for 
dimensionality reduction before using SVM for face 
recognition (Wang et al., 2002, Qi, et al., 2001). 
Without using effective schemes to select an 
appropriate subset of features in the computed 
subspaces, these methods rely mostly on 
classification algorithms to deal with the issues of 
redundant and irrelevant features. This might be 
problematic, especially when the number of training 
examples is small compared to the number of 
features. Fortuna and Capson (Fortuna and Capson, 
2004) proposed an iterative component algorithm for 
feature selection by combining PCA and ICA 
methods and SVM classifier. 

In this paper, we present an approach that uses 
SVM to classify PCA, ICA and LDA extracted 
features and a hybrid iterative method for improving 
the generalization of the classifier. Application of 
the developed algorithm to a facial image database 
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demonstrates the improvement in correctness, 
margin and number of support vectors of the 
classifier. The rest of the paper is organized as 
follows: Section 2 provides a brief review of feature 
extraction algorithms including PCA, ICA and LDA. 
In section 3, we present the classification algorithm 
using SVM and the iterative method for improving 
the generalization of the classifier. Section 4 is 
devoted to experimental results and discussion. 
Finally, concluding remarks and plans for future 
works are given in section 5. 

2 FEATURE EXTRACTION  

Given a set of centred input vectors Nxxx ,...,, 21  of 
n  variables, a data matrix X  is defined with each 
vector forming a column of X . The goal of feature 
extraction algorithms is to construct a decomposition 
of the data such that a set of basis vectors for the 
data which are maximally decorrelated can be found. 
In other words, we look for a matrix A  such that:  

XAS t=                                                                  (1) 
where the columns of S  are decorrelated. For 
pattern recognition, the decorrelated space S  is used 
for dimensionality reduction. 

2.1 Principal Component Analysis  

Finding the principal components from N  
observations of X  creates an nn×  covariance 
matrix tXXΣ = . When nN ; , this is a convenient 
form of the covariance matrix to use. An NN ×  
covariance matrix results from XXt  and is useful 
when Nn ; . This is typically the case when an 
image forms an observation and n  is very large. If 
the SVD is used to decompose X  as, tVUΛX 2/1=  
the  nn×  covariance matrix is found by: 

ttt UUΛUVΛVUΛΣ == 2/12/1                              (2) 
This can be recognized as an eigen-

decomposition on tXX  where U is an nn×  matrix 
whose columns are the eigenvectors of tXX , V is 
an NN ×  matrix whose columns are the 
eigenvectors of XX t  and Λ is an Nn×  matrix 
whose first r  diagonal elements correspond to non-
zero eigenvalues of the covariance matrix in 
descending order. Thus the r dimensional subspace 
is formed by selecting the first r  rows of the 
transformed data matrix LDX : 

XUX t
LD =                                                               (3) 

The NN ×  covariance matrix XX t  gives:             
tttt t

VVΛVUΛUVΛXX == 2/12/1                           (4) 
and the following relation may be used for 
dimensionality reduction when Nn ;  (Fortuna and 
Capson, 2004): 

XVX =LD                                                               (5) 

2.2 Independent Component 
Analysis  

ICA is originally developed for blind source 
separation whose goal is to recover mutually 
independent but unknown source signals from their 
linear mixture without knowing the mixing 
coefficients. ICA decorrelates X  by finding a 
matrix A  such that s  is not just decorrelated but 
statistically independent. The degree of 
independence is measured by the mutual information 
between the components of the random variable s : 

ssss d
)(

)(log)()(
∏∫=

k kk sp
ppI                                  (6) 

where )(sp  is the joint probability of s  and )( kkp s  
are the marginal densities. If a nonlinear mapping 

)(sy g=  is applied such that y  has uniform 
marginal densities, it has been shown that mutual 
information is obtained by (Bartlett and Sejnowski, 
1997): 
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)(yI  can then be minimized with:                                               
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where [ ]E  denotes expected value. Multiplying 
by AA t  leads to the natural gradient algorithm (Shi 
et al., 2004): 

[ ] AxxAIA ))(( ttgE+∝Δ                                         (9) 

2.3  Linear Discriminant Analysis  

LDA criteria are mainly based on a family of 
functions of scatter matrices. For example, the 
maximization of )( 1

bwtr ΣΣ−  or wb ΣΣ /  is used, where 

bw ΣΣ , are within and between-class scatter matrices, 
respectively. In LDA, the optimum linear transform 
is composed of )( nr ≤  eigenvectors of bw ΣΣ−1  
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corresponding to its r  largest eigenvalues. 
Alternatively, mw ΣΣ−1 can be used for LDA, where mΣ  
represents the mixture scatter matrix )( wbm Σ+Σ=Σ . 
A simple analysis shows that both bw ΣΣ−1   and mw ΣΣ−1  
has the same eigenvector matrixφ . In general, bΣ  is 
not full rank, hence mΣ  is used in place of bΣ . The 
computation of the eigenvector matrixφ from mw ΣΣ−1  
is equivalent to the solution of the generalized 
eigenvalue problem Λφφ wm Σ=Σ , where Λ  is the 
eigenvalue matrix (Fukunaga, 1990).  

3 SUPPORT VECTOR 
MACHINES 

To perform classification with a linear SVM, a 
labelled set of features },{ ii yx  is constructed for all 
r  features in the training data set. The class of 
feature ic  is defined by }1,1{ −=iy . If the data are 
assumed to be linearly separable, the SVM attempts 
to find a separating hyperplane with the largest 
margin. The margin is defined as the shortest 
distance from the separating hyperplane to the 
closest data point. If the training data follow:    

iby ii ∀≥−+ 01)( wx                                            (10) 

Then the points for which the above equality 
holds lie on the hyperplanes 1=+ biwx  and 

1−=+ biwx . The margin can be shown to be 
(Cristianini and Shawe-Taylor, 2000):  

w
2

=Margin                                                        (11) 

The SVM attempts to find the pair of hyperplanes 
which give the maximum margin by minimizing 

2w  subject to constraints on w . Reformulating the 
problem using the Lagrangian, the expression to 
optimize for a nonlinear SVM can be written as: 
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),( xx ′K  is a kernel function satisfying Mercer’s 
conditions. An example kernel function is the 
Gaussian radial basis function: 
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where σ  is the standard deviation of the kernel’s 
exponential function. The decision function of the 
SVM can be described by:   
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For data points which lie closest to the optimal 
hyperplane the corresponding iα  are non-zero, and 
these are called support vectors. All other 
parameters iα are zero. As such, any modification of 
the data points which are not support vectors will 
have no effect on the solution. This indicates that the 
support vectors contain all the necessary information 
to reconstruct the hyperplane. 

3.1 General Subspace Classification  

An SVM can be used to classify subspace features 
(including PCA, ICA and LDA extracted features) 
as described below: 

 i) The Transformation matrix A  is determined                              
using the training data set trainX ,  

 ii) The training and test data sets in the reduced      
dimension subspace are determined as follows: 

trainttrain XAS =   ,      testttest XAS =  
iii) Define data pairs ( i

train
i y,s ) and apply a support 

vector classifier to classify testS . 

3.2 Iterative Subspace Classification  

In order to improve the generalization of the 
classifier, an iterative algorithm which moves outlier 
feature vectors toward their class mean and modifies 
the basis vectors S  to fit the new features has been 
proposed (Fortuna and Capson, 2004). We used this 
algorithm with all three feature extraction methods 
as follows:  

 i)    find A  from trainX . 
 ii)   initialize:                                     

        
trainttrain XAS =     ,     

testttest XAS =  
 iii) initialize the support vector coefficient matrix  

Γ  to the    identity matrix. 
 iv)   repeat 
  v)   move the support vectors toward the mean by 
        an amount proportional to the support vector α  
         by:   

  )( meantraintraintrain SSSS −Γ−=  
 vi)  recalculate A by:                    

trainSXA +=  
        where + denotes pseudo-inverse. 
vii)  calculate:  
                 

trainttrain XAS =    ,    
testttest XAS =  
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viii)   define data pairs ( i
train
i y,s ) and apply a support 

vector classifier to classify testS .        
  ix)   until margin change ≺ 0.01. 

4 EXPERIMENTAL RESULTS  

4.1 Gaussian Mixture Data  

An example of two classes, each comprising a 
mixture of three Gaussian random variables, is used 
to illustrate the relationship between PCA, ICA and 
LDA extracted features classified by SVM. The 
mixture of Gaussian data points ]c2xc1[xX =   are 
defined by: 
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Figure 1: Example mixture of Gaussian data set: (a) 
original data, (b) principal component coefficients, (c) 

independent components coefficients, (d) Linear 
discriminant coefficients. 

Figure (1.a) illustrates the distribution of the original 
data points in two dimensional space. Figures (1.b-d) 
illustrate the transformed data by PCA, ICA and 
LDA, respectively. Table (1) shows the 
classification results using direct and iterative 
implementation of each method. As shown, LDA 
extracted features provide slightly improved 
recognition performance compared to PCA and ICA 
features. 
 
Table 1: Classification results for mixture of Gaussian data 
set. 

4.2 Facial Image Database  

The developed algorithms were also applied to Yale 
face database B (Georghiades, et al., 2001). For this 
experiment, 2 class recognition experiments are 
performed over 36 pairs of subjects. For each pair of 
subjects, a training data set is constructed from the 
first 32 lighting positions for pose 1 and 2 of each 
subject. The test data set comprised the same pair of 
subjects imaged under the last 32 lighting position 
from pose 7 and 8. The training and test images were 
histogram equalized and mean centred before 
subspace calculation and classification. For this 
example Nn ; , so we used XX t  to compute the 
eigenvectors. Recognition performance (margin, 
number of support vectors and error rate) was tested 
for each subject pair for kernel σ ranging from 1 to 
5. The dimensionality of the training subspace is 
reduced to 25 prior to recognition. Figures (2.a) and 
(2.b) show the training images for two faces 
(selected randomly) from the data set. Figs. 2(c) and 
(d) show the test images for the same two faces. Fig. 
3 shows the resulting principal, independent and 
linear basis images for the training images shown in 
Figs. 2(a) and (b). Table (2) shows the average 
number of support vectors, margin and recognition 
rate for the entire data set. As illustrated in Table 
(2), iterative algorithms provide better generalization 

Method Mean of 
Margin 

Mean of SV Mean of 
Recognition 

Rate 
   No subspace 0.0030 11.2720 99.4867

  PCA 0.0030 11.2680 99.4800
  ICA 0.0030 11.2720 99.4867
  LDA 0.0029 11.0080 99.4600

   PCA iterative 0.0298 7.8800 99.3397

   ICA iterative 0.0260 8.1200 99.5107
   LDA iterative 0.0295 6.9480 99.2941
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of the SVM classifier. The improvement in 
generalization the iterative techniques illustrated by 
improved margin and reduced number of support 
vectors is statistically significant for all results on 
the face database. 

 
 
 
 
 
 
 

 
 
 
 
(a)                                                     (b) 

 
 
 
 
 
 
 
 
 

 
(c)   (d) 

Figure 2: Example of training and test images: (a) class 1 
training, (b) class 2 training, (c) class 1 test, (d) class 2 
test. 

 

        

              (a)                                                     (b) 
     (a)                              (b)                            (c)         

                                              

 

 
    (d)                              (e)                            (f)                               

Figure 3: Example components (contrast enhanced): (a) 
images of PCA, (b) images of ICA, (c) images of LDA, 
(d) images of iterative PCA, (e) images of iterative ICA, 
(f) images of iterative LDA. 

Moreover, among three feature extraction 
algorithms, LDA component representation exhibits 
higher performance with respect to margin, number 

of support vectors and recognition rate. In all of the 
experiments, ICA consistently increased the margin 
and the number of support vectors compared to raw 
data and PCA component representations.  

Table 2: Classification results for Yale face. 

5 CONCLUDING REMARKS 

In this paper, we used three feature extraction 
methods including PCA, ICA and LDA to reduce the 
dimensionality of the training space.  An iterative 
algorithm was utilized to further enhance the 
generalization ability of the feature extraction 
methods by producing compact classes. Our 
experimental results on simulated data illustrated 
that the proposed methods improve the performance 
of the SVM classifier both in terms of accuracy and 
complexity. These results also illustrated that LDA 
provides slightly improved generalization compared 
to PCA and ICA. Experimental results on a facial 
database demonstrated the same improvement in 
classification performance using LDA extracted 
features. In our future work, we plan to evaluate the 
performance of adaptive PCA and LDA algorithms 
for feature extraction in facial data. 
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