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Abstract: We present a novel algorithm that allows producing animated textures. The basic pattern of the texture is
given by an example and by a vector control field that defines how anisotropic textures have to be adapted
and deformed locally. By changing this vector control field over time, animations and variations of the texture
can be generated. The method is simple, general and allows managing control and manipulation. Signifi-
cant applications can be found in producing textures in motion, in generating dynamic features’ variation in
non-homogeneous textures, and, especially, in visualizing time-varying image-based rendered flow fields for
scientific visualization.

1 INTRODUCTION

Textures are fundamental for many applications
in computer graphics, computer vision and image
processing. Since many years, the analysis, recog-
nition and synthesis of textures are very active and
productive areas of research. Textures are useful for
many applications, especially, as they enrich synthetic
objects and computer generated scenes with variety
and realism, helping perception of shape, curvature
and material.

Objects appearance can be influenced by several
surrounding circumstances over time, and, as such,
temporal texture synthesis plays a fundamental role.
In addition, controllability is a crucial point to gener-
ate desires outputs.

In this paper, we present a flexible methodology for
controllable synthesis of time-varying textures. The
objective is to animate textures in a general way, gen-
erating motion along given directions and simultane-
ously influencing the texture’s appearance in a dy-
namic way. The proposed algorithm allows produc-
ing a variety of outputs and provides a smooth and
continuous frames’ temporal animation.

Essentially, the novelty and contribution of this
work is to provide a straightforward methodology to
perform the synthesis of dynamic textures in a user-
defined way: such approach permits intuitive image-

based texture synthesis enriched by a variety of cus-
tomizable effects. In particular, our method allows
local control to change the texture resolution, beside
its color and other attributes.

The paper is organized as follows: in the next sec-
tion we introduce previous research done in this area,
indicating the differences with our work. In chapter 3,
we introduce our approach and explain the algorithm.
In chapter 4 we present some obtained results. We
consider advantages and limitations, and we describe
attempts for optimizations. In chapter 5 we suggest
extensions and fields of application, discussing our
present and ongoing work. Finally, we conclude with
a summary and main contribution of the paper.

2 MOTIVATION AND RELATED
WORK

Significant techniques have emerged in the computer
graphics and image processing literature; much effort
has been invested in producing useful and effective
algorithms, nevertheless, the need for visualization of
variable complex phenomena requires further investi-
gation.

Methods have been developed to generate dynamic
textures. In particular, we review here on existing ap-
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proaches for the synthesis of time-varying textures,
while we refer you to some good and comprehensive
surveys on texture synthesis procedures for a general
description and the basics of static textures. See for
instance (Efros and Leung, 1999), (Dischler et al.,
2002).

2.1 Motion in Texture Synthesis

Although many advances have been achieved in tex-
ture synthesis, the lack of control still remains a fo-
cal issue in designing new synthesis techniques. As
recognized by (Lefebvre and Hoppe, 2005), most
techniques that offers some kind of control, only pro-
vide little amount of texture variability and are mainly
restricted to random seeding of boundary conditions,
obtaining rather unpredictable results. Lefebvre and
Hoppe propose texture variability, but their target and
approach differs from ours. They desire an aperiodic
infinite texture that they modify introducing new ele-
ments via drag-and-drop. (Kwatra et al., 2005) visual-
ize textures controlled through a flow field. Neverthe-
less, the approaches are basically different: they use a
global synthesis optimization process, which takes ef-
fect on the whole output texture, while we want local
control and we can manage several texture attributes
(such as resolution, color, shading, embossing besides
orientation) in a general way, in order to provide addi-
tional degrees of freedom for controlled synthesis of
the evolution of texture flow and texture variation.

Regarding statistical methods that model textures
in motion and produce a sort of variation in textures,
they mainly concentrate on repetitive processes and
deal with the modelling and reproduction of tempo-
ral stationarity, like in sea-waves, smoke, steam, fo-
liage, whirlwind but also talking faces, traffic scenes
etc. (see Figure 1). These approaches typically sug-
gest to use a sequence of textured frames to simulate
cyclic motion or periodic effects that are in some way
similar to movement.

For this task, an input sequence of samples - input
movie - is needed. This input has the function of train-
ing data, from which the procedures directly acquire
the necessary information and reproduce it through
statistical learning in an output sequence.

The first approach that gives a statistical character-
ization of textures is the early work of Julesz (Julesz,
1962); successively, about twenty years ago, he intro-
duced (Julesz, 1981) the concept of textons as ”puta-
tive elementary units of texture perception” and there-
with opened the road to a very extensive research, also
in the field of modelling motion in texture.

In recent years, Wei and Levoy (Wei and Levoy,
2000) propose a 3d extension to their model to cre-
ate solid textures or, as particular case, temporal tex-
tures, in case the motion data is local and station-
ary both in space and time. Bar-Josef et al. (Bar-

Figure 1: Temporal regularity is exploited in animation of
clouds, smoke, fire, steam, waves, waterfall.

Joseph et al., 2001) employ multi-resolution analysis
(MRA) of the spatial structure of 2d textures and ex-
tend the idea to dynamic textures (movie texture), they
directly analyze a given input movie and generate a
similar one through statistical learning. Akin to this,
Pullen and Bregler (Pullen and Bregler, 2002) pro-
pose, modelling local dynamics, a multi-level sam-
pling approach to synthesize motion textures: new
(cyclic) motions that are statistically similar to the
original. Li et al. (Li et al., 2002) propose a tech-
nique named motion texture for synthesizing human-
figure motion: they model a motion texton by a Lin-
ear Dynamic System (LDS). Schdl et al. (Schoedl
et al., 2000) also model textons with LDS for video
texture, looping the original frames in a manner that
the synthetic reproduction is minimally noticeable to
the user. Doretto et al. (Doretto et al., 2004) generate
dynamic textures. Dynamic textures are sequences of
images of moving scenes that exhibit temporal regu-
larity, intended in a statistical sense. In the specific
case of spatially coherent textures (textures that ex-
hibit temporal statistics), Soatto et al. (Soatto et al.,
2001) (and (Doretto et al., 2004) for both spatial and
temporal regularity) synthesize a homogenized ver-
sion of the original sequence, through a model de-
signed for maximum-likelihood or minimal predic-
tion error variance. They use LDS to model a tex-
ture by an auto-regressive, moving average (ARMA)
multi-scale process. Similarly, Fitzgibbon (Fitzgib-
bon, 2001) uses an autoregressive (AR) model. Again
for stationary data, Szummer and Picard (Szummer
and Picard, 1996) use a spatial-temporal autoregres-
sive model (STAR), which provides a base for both
recognition and synthesis. This model produces con-
vincing results, nevertheless, it cannot capture curva-
ture and rotational motion.

Modelling more complex variations - nonlinear dy-
namics - is difficult, it requires the use of multiple lin-
ear systems, and thus it is still challenging (see (Li
et al., 2002)).
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3 ANIMATING TEXTURED
IMAGES

The works cited above mainly consider sequences
of images that exhibit certain stationary properties,
specifically repetitivity or cyclicity, in time. A prob-
lem is that the synthesized motion may lack global
variations when the training data is limited. These
techniques require a starting frames’ sequence, or in-
put movie, which has to be learned from the system
and then reproduced. Therefore, these methods par-
ticularly focus on statistical learning, having as task
texture analysis and recognition besides texture syn-
thesis. They usually assume the texture to have been
generated from an unknown stochastic source process
that they need to estimate and model.

3.1 Approach

Also for this reason, our work is different from the
ones described above. Our intention is not con-
strained to reproduce repetitive or cyclic motions; we
want to model general animations and variations of
textures. Instead of visualizing cyclic processes such
as repetitive waves, we concentrate on distorting a
given pattern by progressively varying some of the at-
tributes that define its structure. Starting with an input
texture, a control field and an suitable synthesis algo-
rithm, it is possible to arbitrarily modify textures in
a variety of ways and then to continuously animate
this transformation. Briefly, we synthesize a frames
sequence that depicts the evolution of a texture over
time.

Figure 2: Block diagram for the generation of multiple sub-
sequent frames: their animated succession generates a time
varying texture.

Our algorithm works at a per-pixel level, and the
synthesis is performed in multi-resolution. Refer to
(Bonet, 1997), (Heeger and Bergen, 1995), (Portilla
and Simoncelli, 1999) for a complete explanation
about multi-resolution sampling procedures for tex-
ture synthesis.

3.2 Field-driven Synthesis

The motion and variation in time are controlled
through the selection of a control field. This field
is potentially multi-valued and multi-dimensional; it
varies the texture’s structure aligning and adapting
it along new directions. Such vector field is vari-
able over time, hence, at each time step, the synthesis
process produces a corresponding texture frame. User
intervention is allowed in defining the field to influ-
ence a given example. In this way, textures may be
arbitrarily controlled, deformed, varied over time.

t = 0

t = 1

t = 0

t = 1

Win Wout

Hin
Hout

squared
neighbourhood

L-shaped
neighbourhood

xo

yo

Figure 3: Synthesis schema for the generation of two suc-
cessive frames using neighborhood size = 3.

3.3 Recursive Passes

The block scheme of Figure 2 sketches the generation
of the outputs’ sequence.

We recursively iterate the synthesis a desired num-
ber τ of frames. The dashed block representing
the single frame generation (used for standard tex-
ture synthesis) has been appropriately extended to
additionally acquire information from the previous
synthesized frame. For this scope, we define a
novel model for the neighborhood: we build a three-
dimensional cubic structure around the pixels. Fig-
ure 3 shows how to construct spatio-temporal neigh-
borhoods; it illustrates three-sized models in single-
resolution. Figure 4 shows a five-sized model in
multi-resolution.

Let consider the current pixel to synthesize, then
its cubic neighborhood incorporates the adjacent pix-
els in the L-shaped neighborhood - spatial informa-
tion - plus a number of square-shaped neighborhoods
- temporal information - at corresponding location
from the underlying complete layers at previous time
steps.

Such neighboring pixels carry coherence informa-
tion; in this way, this synthesis procedure achieves
continuity and preserves smoothness in the spatial do-
main (x, y) and in the temporal domain t as well.
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In the following section, we give more details for
possible re-implementation.

3.4 Algorithm

We call I(x) the selected input sample and define
T (x) to be an output texture in desired resolution,
where x is a vector, for simplicity in two-dimensions:
x = (x, y). Our target is to generate an animation of
T (x) under the action of a control field D(x, t) and
during an arbitrary period of time τ : t ∈ [τ ] (see Fig-
ure 2).

The basic pattern of the texture is controlled
through the time-varying deformation field and its
features are potentially controlled through ad hoc de-
finition of transfer functions T (x, t). More precisely,
D(x, t) and T (x, t) influence the specified texture ex-
ample over time, respectively by forcing it along new
directions, and by modifying its appearance.

For simplicity, we first explain the temporal anima-
tion scheme; we illustrate later in section 3.6 how to
combine it with filter transformations.

Formally, we synthesize a texture’s sequence
T (x, t), with t = 0, 1, ..., τ , and T (x) ∈ R2. As
drafted below in sub-section 3.5, we generate this
frames’ set in an automatic way with a recursive sys-
tem (refer to Figure 2): each temporal frame is in-
fluenced in a straightforward manner by information
derived from the previous frame (or from a set of pre-
vious frames), this facilitates achieving smoothness
along the temporal evolution.

Figure 3 illustrates the synthesis of two successive
frames in single pass resolution and using a 3x3-sized
neighborhood. Assuming to have already completed
the starting frame (t = 0) using standard planar syn-
thesis, we explain now how to synthesize a generic
pixel (the dark blue one) inside the following frame
(t = 1). At this synthesis stage, the light green part
of the image has already been synthesized, and pro-
ceeding in scan-line order only the neighboring pix-
els above and on the left of the current pixel at posi-
tion (x0, y0) are known. Consequently, the neighbor-
hood - bright blue pixels - is L-shaped. The light grey
part of the image is then generated in the same way in
raster scan order.

In order to incorporate temporal information, we
consider the pixel at the corresponding location
(x0, y0) that belongs to the previous step. That frame
has been entirely synthesized, therefore we can con-
sider the complete squared neighborhood around that
pixel. In this way, we build three-dimensional neigh-
borhoods, which comprise of the L-shaped neighbor-
hood from the current frame t plus the corresponding
squared neighborhood from previous time step (t−1).

The pixels that build the extended neighborhood
have to be adequately taken into consideration: it is
important to note that the preceding temporal frames

contribute to the 3d-neighborhood with different -
non-uniform - weights, as pixels in the current frame
present less correlation with pixels that belong to pre-
vious frames.

Figure 4: Five-sized neighborhood model (L-shaped plus
square-shaped) with two-level multi-resolution synthesis.

This is shown in Figure 4, which describes the tech-
nique for a three-frames process in case of larger sized
neighborhood (size = 5) and with two levels of multi-
resolution image pyramids. From left to right, the
illustrations show the texture evolution in time: the
right-most output slice represents the current frame.
Looking instead from right to left, we go back in
time and the layers influence to the right most one de-
creases. From bottom (coarse scale) to top (details),
multi-pass synthesis is executed using sub-band trans-
forms.

3.5 Implementation Steps

The algorithm synthesizes all the output pixels of a
single frame, and this for each frame in succession.

A cubic neighborhood N3 is build for every output
pixel Po(x, y), with x ∈ [0,Wout], y ∈ [0,Hout], be-
ing Wout and Hout, respectively, the width and the
height of the output image. A similarity metric, based
on these neighboring pixel values, is computed with
least squares, and used as distance function to mea-
sure pixel similarity. In this way the best matching
pixels can be chosen.
The fundamental steps are:

1. Initialization: set values of output image dimen-
sion, time period, pyramid levels; define the con-
trolling deformation field

2. First step: two-dimensional synthesis (t = 0)

3. Further steps: three-dimensional synthesis (t > 0)

We use the algorithm of (Taponecco and Alexa, 2004)
for the first step of the algorithm. The synthesis steps
for the generation of the frames at general time step
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t > 0 are conducted as follows:

• Build a neighborhood N3 for every pixel Po(x, y),
including the L neighborhood and further squared
neighborhoods (in number and resolution depend-
ing on the N3 size and levels l of the pyramid)

• Evaluate the deformation field D at the current out-
put position and time instant, and calculate promi-
nent field features (phase, magnitude, curl, . . . )

• Use this information to accordingly modify the in-
put sample influencing its structure and setting the
calculated directions to be the new orientation

• Build all possible N3 around Pi(i, j) inside the in-
put sample and calculate the similarity metrics

• Compare the entries of the input neighborhoods
array - on the base of distance function - with
N3(Po(x, y)) and choose the most similar one

• Select that value Pi(i, j)|Max similarity and set it
to be the current output pixel

• Proceed in scan-line order till the output texture is
completed

• Repeat this procedure for all levels l of image
pyramid and for all following temporal frames t in
the sequence of temporal range τ

Pi ,   i = Xi + Yi * Wout

Xi

Yi

Wout

Hout

Tout

Pj

T1   (W1 * H1)

T2   (W2 * H2)

Tj    (Wj * Hj)

Ti    (Wi * Hi)

.......
.........................

PN ,  N = (Wout * Hout)

P1 P5

.......

Tn  (Wn * Hn)

T0    (W0 * H0)

Filter

Filter

Filter

Filter

.......
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.......

Filter

Figure 5: Filters’ bank for sample variation in non-
homogeneous texture synthesis.

3.6 Filtering

As shown in Figure 4, in addition to the use of a de-
formation field, textures may be modified over time in
a progressive way through filtering operators. We in-
tegrated such functionalities in our approach to allow
more manipulation.

Figure 6: A sinusoidal distortion field modifies a sample
(top), and a filter based on a blue component additionally
highlights the field intensity in the same frames serie (bot-
tom).

Figure 5 shows one of the possible blocks schemes
for progressive filtering. This operation may be in-
serted in the temporal synthesis scheme to extend its
functionalities (note the filter blocks in Figure 2).

3.7 Input Seed Processing

The filters and operators that act over the input texture
example may operate at runtime, at a pre- or at a post-
processing stage.

Some filters are applied during the synthesis
process to modify the sample seed, as in the case of
the scaling operator, which is responsible of varying
the resolution of the example texture.

Some operators may modify the input texture be-
fore the synthesis starts: for example the rotating op-
erators pre-computes rotated versions of the original
sample, generating an input set to be used as source
during the synthesis.

Some others DSP filters, as blurring, brightening,
embossing, coloring, may be applied directly on the
synthesized output, as they get - from the synthe-
sis process block - the relevant field variables, which
have to be used as parameters to define the kernel.

4 RESULTS AND DISCUSSION

We have tested our approach in a variety of cases, in
particular for structured textures (Figure 6, 7, 8, 9).
We have mainly used directional samples, since pat-
terns that present accentuated features along a major
axis better exploit movement in the given directions.
Using textures having anisotropic pattern, it is easier
to visualize and enhance the information carried by
the control vector field.
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Figure 7: Examples of filtered texture frames sequences. In both cases, four temporal frames extracted from a longer sequence
are shown. They represent the time-varying texture at different time instants.

We believe this approach is promising for many
applications, including the visualization of animated
textures and the texturing of dynamically varying sur-
faces, as it is possible to generate animations of tex-
tures in an automatic and straightforward way. The al-
gorithm does not present any restriction for the choice
of the control field expression and of the filtering pa-
rameters. This offers a technique, which is easily
adaptable for a variety of applications.

The values we mostly used to produce the outputs
presented in this paper are 32x32 pixels for the size of
the input samples, and 256x256 and 256x512 for the
generated output. The synthesis time is essentially
comparable to the other pixel-based approaches. The
length of the frames’ sequence can be arbitrary and
animations could in theory be endless. An interesting
example of this is to opportunely design a cyclic con-
trolling function, which can repetitively deform the
pattern without producing artifacts or discontinuities
between different animation cycles.

4.1 Limitations and Optimization

When using texture patterns characterized by having
a complex structure, a large sized neighborhood is re-
quired to allow the synthesis algorithm to learn and
reproduce the sample statistics. In such a case, the
computational complexity rapidly increases. In addi-
tion, the eventual use of time-varying scaling opera-
tors over the input sample also leads to a larger neigh-
borhood size.

An important point to consider is the following: in
a few cases, we noted the occurrence of a sort of flick-
ering effects in the transition between some frames

during the animation. The input sample may occa-
sionally strongly varies (through rotation, scaling and
other operators) between the different time steps: in
such a case, the collection of successive neighbor-
hoods for the best pixel choice could present discon-
tinuity. We solve this problem by considering, for the
neighborhood matching, only samples that we have a
posteriori re-rotated, with respect to the current pixel
as center of the operation. This guaranties better and
smoother results. Occasional spatial or temporal dis-
continuities might occur due to the pattern structure
of the chosen sample and they result from the nature
of the algorithm: in this case they can be removed
in a simple way by using a larger neighborhood or a
higher pyramid levels’ number, or could be blurred
away.

5 APPLICATIONS AND
EXTENSIONS

Image-based scientific visualization: the presented
texture-based synthesis procedure results to be useful
for the visualization of time-varying vector and flows
fields. This is similar to the approach in (Taponecco
and Alexa, 2003), which we have here adapted and
extended from the spatial to the spatio-temporal do-
main. With our approach, field properties such as
magnitude, phase and direction can be simply visu-
alized in their temporal evolution through the use of
adequate operators over the given input sample.

Non-homogeneous textures: our approach contains
techniques for non-homogeneous texture generation.
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Figure 8: A fabric (top) and a directional (bottom) texture are controlled by a vector field. Scaling of the sample reflects
magnitude information of the field; the resolution of the original sample is accordingly adjusted.

Figure 5 shows an example of how filter banks can
influence an input sample to generate a sample set (re-
fer to (Taponecco and Alexa, 2004) for more details).
The filters can be variable in time as well; we insert
the dashed block in the chain of the temporal synthe-
sis process (Figure 2).

Texture flow: besides modelling general and con-
trolled motion, our technique may visualize repeti-
tive stationary motion, similarly to the approaches de-
scribed in § 2.1. Using directional samples, it is possi-
ble to generate an animated flow of the texture’s struc-
ture along the pattern’s major direction.

Texture mixture and metamorphosis: Mixture and
metamorphosis in textures has recently become very
popular (see for instance (Zhang et al., 2003)). Our
methodology can contribute to produce interesting
texture transformations over time. Part of our future
work is to combine it with those techniques.

6 CONCLUSION

This paper outlines a technique for the synthesis of
varying textures. We propose a novel methodol-
ogy for the generation of continuous texture anima-
tions and, as specific case, smooth time-varying and
texture-based fields visualization. Interesting applica-
tions include decoration of surfaces that are deformed
or in motion such as cloths or other materials; textures
are a valid solution in helping shape and material per-
ception, and local control in their generation and vari-
ation is fundamental to augment such features.

Our algorithm is based on a recursive synthesis pro-
cedure that uses a three-dimensional neighborhood

model. The method is simple and general, but also
flexible and capable of generating a variety of effects.
User intervention is offered: it is possible to pro-
duce specific output sequences through easy and in-
tuitive control parameters and formulæ. The synthe-
sized output frames conserve appearance and struc-
tural properties similar to the input sample. They are
controlled through a specified vector field: they have
to be adapted locally to follow specified directions,
and accordingly vary their structure and attribute in
a non-homogeneous way. Resolution of the original
texture pattern, as well as color or shading attributes
can be easily varied. This synthesis procedure, being
pixel-based, does not run at interactive rates. The ad-
vantages, on the other hand, include the smoothness
of the outputs, and the presence of extra degrees of
freedom in the texture synthesis process, as local con-
trol has effect over individual pixels. In conclusion,
the main contribution of this work is to offer a general
and intuitive technique to synthesize variable textures
and animate them. These frames’ animation can de-
scribe a broad variety of temporal pattern variation.
Furthermore, this methodology is also a straightfor-
ward solution for the visualization of unsteady vector
fields, which is usually still challenging and calcula-
tion intensive.
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