
SPECIFICATION OF DEPENDENCIES FOR IT SERVICE FAULT
MANAGEMENT

Andreas Hanemann, David Schmitz
Munich Network Management Team, Leibniz Supercomputing Center

Boltzmannstr. 1, D-85748 Garching, Germany

Patricia Marcu, Martin Sailer
Munich Network Management Team, University of Munich (LMU)

Oettingenstr. 67, D-80538 Munich, Germany

Keywords: Dependency modeling, service management, event correlation, impact analysis.

Abstract: The provisioning of IT services is often based on a variety of resources and underlying services. To deal with
this complexity the dependencies between these elements have to be well-known. In particular, dependencies
are needed for tracking a failure in a higher-level service being offered to customers down to the provisioning
infrastructure. Another usage of dependencies is the impact estimation of an assumed or actual resource failure
onto the services to allow for decision making about appropriate measures.
Starting from a set of requirements an analysis of the state-of-the-art shows the contributions and limitations
of existing research approaches and industry tools for a configuration management solution with respect to the
dependencies. To improve the current situation a methodology is proposed to model dependencies for given
service provisioning scenarios. The proposed dependency modeling is part of a larger solution for an overall
service management information repository.

1 INTRODUCTION

In a competitive environment, service providers strive
to deliver services in a lean and agile manner, de-
spite the rising complexity and heterogeneity within
the network. The advent of new technologies such as
virtualization of hardware and service-oriented archi-
tectures add to this complexity and thus even increase
the challenge for IT management.

One of the key challenges for service providers is
efficient fault management. When a customer expe-
riences problems with a service, the provider needs
to react quickly in order to honor the Service Level
Agreements (SLA) in effect between provider and
customer. Conversely, it is desirable to determine the
impact onto services and Service Level Agreements
when problems with resources or subservices are de-
tected (Hanemann et al., 2005).

Fault Management requires the assessment of de-
pendencies of a service on specific resources, re-
source interdependencies as well as the mapping of
resources on the services provided. This is to infer the
actual cause of service problems, to identify the mal-
functioning or misconfigured resources, and to devise
a problem solution. This process is by no means triv-
ial. In large scale systems, it is nearly impossible

without appropriate tool support. Automation sup-
port, however, requires dependencies to be formal-
ized in a machine-readable format. Service providers
therefore maintain management models, which essen-
tially represent an abstraction of their IT infrastruc-
ture. However, state-of-the-art management models
show deficits regarding the specification of dependen-
cies and thus provide only rudimentary support with
respect to the needs of IT service fault management.

In this paper we examine how dependencies can
be modeled in a systematic and service-oriented way
that allows us to extend – and thereby refine – cur-
rent management models. In Section 2 a set of re-
quirements for the dependency modeling is presented
which is used to analyze related work in Section 3.
Our approach for specifying the dependencies based
on the analysis of interactions is detailed in Section 4.
Conclusion and future work can be found in the last
section highlighting the inclusion of this work into an
approach for management information modeling.

2 REQUIREMENTS

In Fig. 1 different aspects which have to be considered
for the modeling of dependencies are depicted. These

257
Hanemann A., Schmitz D., Marcu P. and Sailer M. (2006).
SPECIFICATION OF DEPENDENCIES FOR IT SERVICE FAULT MANAGEMENT.
In Proceedings of the First International Conference on Software and Data Technologies, pages 257-260
DOI: 10.5220/0001319502570260
Copyright c© SciTePress

are explained in the following.
The type of dependency is used to distinguish

between inter-service, service-resource, and inter-
resource dependencies. These denote dependencies
between services, services and resources as well as
between resources, respectively.

A distinction can be made for thelevel of detail for
services since a service can usually be divided into
service functionalities. For a web hosting service it is
e.g. possible to retrieve web pages or to fill out and
transmit an online form. Dependencies can therefore
be detailed whether they are relevant for a specific ser-
vice functionality.

An important characteristic of dependencies is
whether they can be treated on their own (isolated) or
whether they involve multiple resources or services
which is usually the case forredundancies. A ser-
vice may use a set of redundant hardware compo-
nents. Therefore, an unavailability of a server has to
be regarded in conjunction with the other servers.

Another important characteristic is thedynamic
which denotes the treatment of changes in the depen-
dencies. Especially for fault management it is impor-
tant to know whether it can be assumed that the de-
pendencies remain unchanged during the fault diag-
nosis.

The service lifecycle describes the change of de-
pendencies from the initial installation of the service
until its removal.

The degree of formalization of the dependencies
also needs to be considered. Dependencies cannot
only be formalized or specified as pseudocode but can
also be defined as formal model.

Finally, not only functional dependencies can be
taken into account, but also those resulting from or-
ganizations (dimensioncharacteristic). However, this
paper concentrates only on the functional dependen-
cies.

Redundancy

Dynamics

Type of
Dependency

Service Lifecycle

Characteristic
Level of Detail

Degree of
Formalization

isolated
dependencies composite

dependencies

Resource
Level

Service
Level

no
formalizationtextual/

pseudocode
formal
model

static

dynamic

organizational

functional

Design

Negotiation

Provisioning

Usage

Deinstallation

service as
a whole

division in
functionalities

Resource-Service
Level

Figure 1: Requirement dimensions.

Dependencies play an important role in the area of
IT service fault management. In particular, they are a

prerequisite for the following two use cases: For fault
diagnosis the dependencies should be traversable in a
top-down manner to identify a resource as root cause
of a service problem, while the opposite direction is
relevant for impact analysis to estimate the impact of
a resource failure for services.

3 RELATED WORK

In the analysis of related work we distinguish between
the identification, modeling, and use of dependencies.

In the literature the term “dependency” is often
used without a precise definition. Examples are the
definition of absent, weak, medium and strong depen-
dencies in (Bagchi et al., 2001) or the distinction be-
tween “and” and “or” dependencies in (Rodosek and
Kaiser, 1997), which did not provide any further at-
tributes.

Caswell and Ramanathan (Caswell and Ra-
manathan, 1999) describe dependencies for services,
especially for ISPs. They define five kinds of depen-
dencies which are partially similar with our definition
of terms. They specify inter-service dependencies in
the way it is done in the previous section. Service-
resource dependencies in our terms can be seen as
an superclass of the link, component, and execution
dependencies in this model. The execution depen-
dency reflects the dynamic in service provisioning
where the execution of a functionality can be done
using a selection of resources. The organizational de-
pendency could be covered by the definition of sub-
services. However, the specification does not go into
further details and is tied to ISPs.

Common Information Model (CIM) CIM
(DMTF, 2005) is an object-oriented information
model that aims at providing a common way to
represent information about networks and systems
as well as services. Dependencies between CIM
elements are modeled as association classes and are
derived from a single base classCIM Dependency;
the inheritance hierarchy is therefore flat. CIM would
particularly profit from a more systematic approach
that allows to arrange the existing dependencies in a
hierarchical structure.

NGOSS SID The Shared Information/Data (SID)
model (TeleManagementForum, 2003) is part of the
initiative Next Generation Operation Support and
Software (NGOSS). It employs an object-oriented
modeling approach and constitutes a framework for
defining service management information from a
business-oriented point of view. Since SID is cur-
rently in an early development stage, work has mainly
focused on providing the major building blocks of the

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

258

model. Albeit this did not include systematic model-
ing of dependencies in terms of hierarchies, it can be
expected for upcoming versions of SID.

In sum, it can be concluded that dependency mod-
eling cannot be regarded as a solved research issue
with respect to the requirements of service manage-
ment.

4 DEPENDENCY
SPECIFICATION
METHODOLOGY

In this section a generic model for the dependency
specification is developed striving to fulfill the re-
quirements delineated in Section 2. We also show,
how the model helps in addressing the service fault
diagnosis.

Dependency Modeling Dependencies which are
encountered in practice usually form a hierarchy
which results from the composition of resources and
subservices into more complex higher-level services.
Therefore, the structural design patterncomposite is
used as basis for the modeling.

Figure 2 depicts the proposed dependency model.
The objectDependency reflects thecomponent object
of the pattern and declares the interface for objects in
the compositionCompositeDependency (thecompos-
ite object).

Some attributes characterize theDependency class:
antecedent has the typeServiceBuildingBlock (ab-
stract superclass of services and resources) and is
the antecedent,dependent represents the dependent of
a dependency also having the typeServiceBuilding-
Block. The strength attribute (string) represents the
importance of the dependency with the valuesweak,
medium, strong, mandatory which means that is de-
scribes the redundancy relation. The last attributesta-
tusLifeCycle is an indicator for the state of the de-
pendency along the service lifecycle using the values
planned, active, inactive, withdrawn.

Usually, a service exhibits a set of functionalities.
These functionalities can in turn be divided into sub-
functionalities and can represent the whole service
(global functionality) as well as a single functionality
or a partial functionality of the service. This kind of
modeling allows to find a trade-off between the mod-
eling effort and its benefit in a given scenario.

A set of operations are defined: theadd opera-
tion adds a new dependency to the container, whereas
theremove operation removes a dependency from the
container. The operationgetChild returns the n-th
child of the dependency,getChildList lists all the di-
rect children. The operationsgetDependent, getAn-
tecedent, testPresence, and getImpact are designed

for fault management (see below).
The leaves of the composite pattern are formed by

the three kinds of dependencies.Inter-Resource-Dep
represents inter-resource dependencies with the inher-
ited attributesstrength, antecedent, dependent, status-
LifeCycle defined as in the component class Depen-
dency. The type of the attributesantecedent andde-
pendent is Resource. The operations will implement
the abstract operations from the class Dependency.

The Service-Resource-Dep class represents the
service-resource dependency and has also the at-
tributes and operations inherited from class Depen-
dency. Besides of the different implementation of
operations, the attributeantecedent has the type Re-
source and the attributedependent the type Function-
ality.

Inter-service dependencies are formalized as in-
stances of theInter-Service-Dep class which has the
same attributes and implements the same operations
as class Dependency. The type of the attributesan-
tecedent and dependent is Functionality. This class
contains many hierarchically structured instances re-
sulting from the functionality definition. Dependen-
cies can exist between two services, between a service
and a service functionality (i.e. one service is decom-
posed into its functionalities, while this decomposi-
tion is not made for the other service), or between two
service functionalities.

The composite class in this pattern is the class
CompositeDependency. It defines behavior for depen-
dencies having children, it stores this children (leaves
or composite components) and implements operations
relating on child component (add, remove, getChild,
getChildList) in theDependency interface.

Methods for Fault Management Application In
addition to the child oriented operations there are op-
erations which facilitate the navigation in a system
and which are useful for fault diagnosis and/or for im-
pact analysis.

The operationgetDependent returns all the Ser-
viceBuildingBlock objects which are dependent from
the actual dependency andgetAntecedent returns all
the ServiceBuildingBlock objects the actual depen-
dency depends on. Depending on the element in
which it occurs (leaves or composite elements) it has
another return value (functionality or resource). The
operationtestPresence returns the status of the depen-
dency for a given point in time representing whether
the dependency was in effect at that moment (as a
boolean).

5 CONCLUSION

We have presented a systematic modeling approach
that allows the specification of complex, dynamic and

SPECIFICATION OF DEPENDENCIES FOR IT SERVICE FAULT MANAGEMENT

259

+add(d : Dependency)

+remove (d : Dependency)

+getChild(n : int) : ServiceBuildingBlock

+getChildList (): ServiceBuildingBlock[]

+getImpact() : ImpactObject

+getDependent() : ServiceBuildingBlock

+getAntecedent() : ServiceBuildingBlock

+testPresence(time : Date): bool

-antecedent : ServiceBuildingBlock

-dependent : ServiceBuildingBlock

-strength : string

-statusLifeCycle : string

Dependency

+getImpact() : ImpactObject

+getDependent() : Resource

+getAntecedent() : Resource

+testPresence(time:Date): bool

-antecedent : Resource

-dependent : Resource

Inter-Resource-Dep

+getImpact() : ImpactObject

+getDependent() : Resource

+getAntecedent() : Functionality

+testPresence(time:Date): bool

-antecedent : Resource

-dependent : Functionality

Serv-Resource-Dep

+add(d : Dependency)

+remove (d : Dependency)

+getChild(n : int) : ServiceBuildingBlock

+getChildList () : ServiceBuildingBlock[]

+getImpact() : ImpactObject

+getDependent() : ServiceBuildingBlock

+getAntecedent() : ServiceBuildingBlock

+testPresence(time:Date) : bool

CompositeDependency

+getImpact() : ImpactObject

+getDependent() : Functionality

+getAntecedent() : Functionality

+testPresence(time:Date): bool

-antecedent : Functionality

-dependent : Functionality

Inter-Service-Dep

* children

Figure 2: Dependency Model.

adaptable dependencies. While state-of-the-art man-
agement models are tackling these issues in differ-
ent ways, they would benefit from the systematic ap-
proach presented in this paper.

We are currently implementing our approach by
extending a specific management model, namely
DMTF’s CIM and will apply it for the management
of IT services at the Leibniz Supercomputing Center
in Munich. We also plan to merge the findings of this
paper with the Service Management Information Base
approach (Sailer, 2005), a research project conducted
within our research group.

ACKNOWLEDGEMENTS

The authors wish to thank the members of the Munich
Network Management (MNM) Team for helpful dis-
cussions and valuable comments on previous versions
of this paper. The MNM Team directed by Prof. Dr.
Heinz-Gerd Hegering is a group of researchers of the
University of Munich, the Munich University of Tech-
nology, the University of the Federal Armed Forces
Munich, and the Leibniz Supercomputing Center of
the Bavarian Academy of Sciences. Their web–server
is located athttp://www.mnm-team.org.

This paper was supported in part by the EC IST-
EMANICS Network of Excellence (#26854).

REFERENCES

Bagchi, S., Kar, G., and Hellerstein, J. (2001). Depen-
dency analysis in distributed systems using fault in-
jections: Application to problem determination in an
e-commerce environment. InProceedings of the 12th
International IFIP/IEEE Workshop on Distributed
Systems: Operations and Management (DSOM 2001),
Nancy, France.

Caswell, D. and Ramanathan, S. (1999). Using service
models for management of internet services. In
HP Technical Report HPL-1999-43, HP Laboratories,
Palo Alto, California, USA.

DMTF (2005). Common Information Model (CIM) Ver-
sion 2.9. Specification, Distributed Management Task
Force.

Hanemann, A., Sailer, M., and Schmitz, D. (2005). A
framework for failure impact analysis and recovery
with respect to service level agreements. InProceed-
ings of the IEEE International Conference on Ser-
vices Computing (SCC 2005), Orlando, Florida, USA.
IEEE.

Rodosek, G. D. and Kaiser, T. (1997). Determining the
availability of distributed applications. InProceed-
ings of the Fifth IFIP/IEEE International Symposium
on Integrated Network Management (IM 1997), pages
207–218, San Diego, California, USA. IFIP/IEEE.

Sailer, M. (2005). Towards a service management infor-
mation base. InProceedings of the IBM PhD Stu-
dent Symposium at the 3rd International Conference
on Service-Oriented Computing (ICSOC 2005); IBM
Research Report, Amsterdam, The Netherlands.

TeleManagementForum (2003). Shared Information/Data
(SID) Model Concepts, Principles, and Domains.
Technical Report GB 922 Member Evaluation Version
3.1.

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

260

