
SYSTEM TEST CASES FROM USE CASES

Javier J. Gutiérrez, María J. Escalona, Manuel Mejías, Jesús Torres
University of Sevilla, Avd. Reina Mercedes sn. Sevilla, Spain

Keywords: System testing, use cases, generation of test cases.

Abstract: Use cases have become a widely used technique to define the functionality of a software system. This paper
describes a new, formal and systematic approach for generating system test cases from use cases. This
process has been designed specially for testing the system from the point of view of the actors, through it
graphical user interfaces.

1 INTRODUCTION

System testing is a black-box technique which
verifies the satisfaction of the requirements of the
system under test (SUT) (Burnstein, 2003). Early
testing is the generation of test cases in early
development phases. This is not a new idea. Two
surveys (Denger, 2003) and (Gutiérrez, 2004) (22
different approaches in total) expose that there are
many lacks in the exiting approaches. One lack is
the absence of a formal process and the absence of
free available tools. Another lack is that approaches
are not complete; this means that they describe how
to generate partial test cases, mainly test actions,
without describing other important elements such as
test data, expected result, executable test scripts, or
test coverage.

In a previous work it was described how to
generate test cases from use cases for web
application using existing approaches (Gutiérrez,
2005). This paper tries to resolve both lacks offering
a formal approach for obtain executable test scripts
from use cases. It has been specially designed to be
used in early development phases. It also uses UML
and UML Testing Profile (OMG, 2002) (called
UMLTP from now). Related works may be found in
(Denger, 2003) and (Gutiérrez, 2004).

2 A PROCESS TO GENERATE
TEST CASES FROM USE
CASES

This test process is focused on testing use cases
whose principal actor is human. A test case is

composed of three elements: test action, test values
and expected results. Test actions are the actions
developed by the test case over the system under test
(SUT). Test values are the information needed by
the test case. Expected results are the responses of
the system that allows evaluating whether the test is
satisfied or failed. The results for this process are:
test objectives, a set of test cases to verify each
objective and test scripts. Test cases are expressed
using models and graphical notation defined in
UMLTP when possible.

2.1 Testing Models

The models used to store the information about test
cases are: test objective model, test data model,
interface model and event model.

1. Test objective models.
A test objective is an element named according to
the description of what should be tested. The
UMLTP does not define any notation to represent
test objectives. Thus, we use activity diagrams.

A test objective is a path through the activity
diagram. Test objectives might be automatically
extracted from the activity diagram applying a
coverage criterion, like all-edges and all-transitions.
Every test objective will have at least one test case
to verify it. An example is shown in table 4.

2. Test data model.
Test data model describes the structure and values of
the test data. The first task is to identify operational
variables (or simply variables) of a use case. An
operational variable is an explicit input or output, an
environmental condition or a representation of the

283
J. Gutiérrez J., J. Escalona M., Mejías M. and Torres J. (2006).
SYSTEM TEST CASES FROM USE CASES.
In Proceedings of the First International Conference on Software and Data Technologies, pages 283-286
DOI: 10.5220/0001309302830286
Copyright c© SciTePress

SUT (Binder, 1999). The domain of every variable
is divided into data partitions. UMLTP uses class
diagrams and stereotypes to describe the hierarchy
of data partitions. After that, test values are
generated for every data partition. Case study shows
an example of data structures, partitions and test
values in figure 4.

3. Interface model.
Our aim is to test the functionality throughout a
graphical interface, not to test the graphical interface
itself. The objective of this model is to describe the
interface used for the test case to interact with the
system. Since this process has been designed to be
applied in early development phases, this model
represents a high abstract description of the GUI.
UML Testing Profile, and UML in general, does not
include any specific notation for GUI, so it will be
used class and object diagrams to represent the
components and states of a GUI.

Figure 1: Example of components for interface models.

Figure 1 shows a class diagram with some
elements from an interface model.

4. Event model.
Frequently, actor activities from a test objective are
too abstract to be directly translated into a test script.
It is proposed to build up an event model to address
to this complexity. A set of events describes how to
perform actor activities identified in the test
objective model. If an activity needs to supply
information to the system, this information should
have been defined in the test data model. This paper
introduces a simple set of messages to express
events. These messages are listed in table 1. Due to
their simplicity, the messages might be easily
extended. Event model also includes an assert
message (table 1). This message is sent by the test
case to itself to verify an attribute of the GUI. This
message allows codifying the expected results into a
test script, an example is shown in case study.

Table 1: Messages for event model.

Message Meaning
ClickOn(component) Perform a one-click event over

the indicated GUI component.
Screen(screen) Search for the indicate GUI

screen and set the focus over
it.

SetField(field, value) Set the indicated value into the
field object.

Assert(component.
attribute, value)

Verify that the attribute of the
component indicated matches
with the value.

2.2 Steps to Generate Test Cases

We suggest a process of six steps to generate test
models and to obtain executable test scripts. These
steps are shown in the activity diagram in figure 2
and described in the following paragraphs.

Figure 2: Activities to generate test cases.

The first step is to build up a test objective model
from a use case, as described in point 2.1. The
second one is to build up the test data model as
described in point 2.1. In the third step, test cases are
generated combining test objectives with test values.
The number of test cases is determined by the test
objectives and the different partitions for the
variables involved in that test objective. In the fourth
step, interface model is generated, as described in
point 2.1. In the fifth step event model is generated.
Finally, event messages, test values and assertions
are translated into test scripts, completed with test
harness (Binder, 1999) and executed over the real
SUT.

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

284

3 CASE STUDY

This section applies the process described in section
2 over a real system to generate test cases. The
system under test is an implementation of a classic
notepad. The use case selected to generate test cases
is Open File (table 2).

Table 2: Template for use case "Open File".

Description Load document from file
Precondition No
Main
scenario

1 User select “Open file” option.
2 System asks for the file to

open.
3 User selects a file.
4 System loads the file and

shows the document.
Alternative /
errors

3 User may cancel the loading
operation at any time.

4 If file does not exist or there is
an error, system shows an error
message.

Post
condition

No.

A full coverage for the use case is selected. This
means that at least one test case for every identified
test objective will be generated.

3.1 Generation of Test Objectives

First of all, the test objective model is built (figure
3). Activities 01 and 03 are developed by the user
and activities 02, 04, 04.1 and 04.2 are performed by
the system. Step 4 (table 4) has been divided into
activities 04, 04.1 and 04.2, and due to their results
they may be different if there is an error when
opening the file.

Figure 3: Test objective model.

Table 4 shows test objectives obtained by
traversing figure 3.

3.2 Generation of Test Values

Firstly the variables involved in the use case are
identified. Test objective model in figure 3 reveals
that there are, at least, two variables (the same
number as decision nodes). Variables and domains
are resumed in table 3.

Table 3: Variables and domains.

Variable Domain
User-Option Options available for the user: load

file or cancel.
File File to open

User-Option is a variable of an enumerated type.
However, File is a variable of a complex type. For
the testing purpose there must be known, at least, the
name of the file, its content and its attributes.

Figure 4: Test data.

Now, we divide the domains into data partitions.
Finally, at least one test value is generated for each
partition. Object diagram in figure 4 shows tests
values.

3.3 Build Test Cases

A test case is a test objective with a concrete value
for its variables. Variables and their partitions are
added to the test objectives, as shown in table 4.

Table 4: Test objectives with variables and partitions.

 Test objectives
1 01, 02, 03(f01: Without-Errors, op01:LoadOption), 04,

04.1
2 01, 02, 03(f02: With-Errors, op02:LoadOption), 04, 04.1
3 01, 02, 03(f03: *, op03:CancelOption), 04, 04.1

3.4 Generate Interface Model

It is assumed that the system under test is not built
yet. So, it is generated an abstract description of the
user interface with the minimum set of components
to perform the use case.

Studying the use case, we realize that there are
three screens involved: the main screen, where user
actor clicks on open option, the file selection screen,

SYSTEM TEST CASES FROM USE CASES

285

where user actor selects the file to open, and the
error screen where system shows the error message,
if any.

The interface model is shown in the object
diagram in figure 5.

Figure 5: Interface model.

3.5 Generate Event Models and
Expected Results

First, each user activity is refined using messages
listed in table 1 and the user interface, defined in
point 3.4. The event model to verify the main
scenario is described as UML sequence diagram in
figure 6.

Figure 6: Event model.

Validation actions are implemented using the
assert proposition shown in table 1 and activities
diagrams as proposed in the UMLTP. Due their
simplicity, the have been omitted.

The process has ended. There have been
generated test actions (shown in the event model),
test values (shown in the test value model) and

expected results (shown in the event model too) that
commits our test objectives (shown in the test
objective model). Up to now, we have not needed
the design or the code of the system.

3.6 Building Test Scripts

The information obtained in the points before, might
be automatically translated into executable test
scripts. Details of the implementation and test tool
are needed to perform this step. It is used a real
implementation of the notepad, called Stylepad, to
generate test scripts. The Stylepad is distributed in
the Java Developer Kit. It has been used an open
source tool called Abbot to codify executable
scripts.

4 CONCLUSIONS

This paper has shown a process for the early-testing
of use cases. Although this process has been
designed to test use cases from the perspective of
human actors, it can be also used to test other actors.
This process can be applied in early development
stages. In fact, in case study described in section 3,
all test cases have been generated before choosing a
real implementation to test.

REFERENCES

Binder R.V. 1999. Testing Object-Oriented Systems.
Addison-Wesley. USA.

Burnstein, I. 2003. Practical software Testing. Springer
Professional Computing. USA.

Denger, C. Medina M. 2003. Test Case Derived from
Requirement Specifications. Fraunhofer IESE Report.

Escalona M.J. 2004. Models and Techniques for the
Specification and Analysis of Navigation in Software
Systems. Ph. European Thesis. Department of
Computer Language and Systems. University of
Seville. Seville, Spain.

Gutiérrez, J.J., Escalona M.J., Mejías M., Torres, J. 2004.
Comparative Analysis of Methodological Proposes to
Systematic Generation of System Test Cases. 3º
Workshop on System Testing and Validation. Paris.
France.

Gutiérrez J.J., Escalona M.J., Mejías M., Torres J. 2005. A
practical approach of Web System Testing. Advances
in Information Systems Development. Ed. Springer
Verlag Karlstad, Sweeden.

Object Management Group. 2002. The UML 2.0 Testing
Profile. www.omg.org

ICSOFT 2006 - INTERNATIONAL CONFERENCE ON SOFTWARE AND DATA TECHNOLOGIES

286

